Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-2053-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2053-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles
Hoi Ki Lam
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
Rongshuang Xu
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
Jack Choczynski
Department of Chemistry, University of California Riverside,
Riverside, CA, USA
James F. Davies
Department of Chemistry, University of California Riverside,
Riverside, CA, USA
Dongwan Ham
Department of Earth and Environmental Sciences, Jeonbuk National
University, Jeollabuk-do, Republic of Korea
Mijung Song
Department of Earth and Environmental Sciences, Jeonbuk National
University, Jeollabuk-do, Republic of Korea
Andreas Zuend
Department of Atmospheric and Oceanic Sciences, McGill University,
Montréal, Quebec, Canada
Wentao Li
Department of Chemistry, The Chinese University of Hong Kong, Hong
Kong, China
Ying-Lung Steve Tse
Department of Chemistry, The Chinese University of Hong Kong, Hong
Kong, China
Man Nin Chan
CORRESPONDING AUTHOR
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
The Institute of Environment, Energy and Sustainability, The Chinese
University of Hong Kong, Hong Kong, China
Related authors
No articles found.
Donger Lai, Yanxin Bai, Zijing Zhang, Pui-Kin So, Yong Jie Li, Ying-Lung Steve Tse, Ying-Yeung Yeung, Thomas Schaefer, Hartmut Herrmann, Jian Zhen Yu, Yuchen Wang, and Man Nin Chan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2743, https://doi.org/10.5194/egusphere-2025-2743, 2025
Short summary
Short summary
Aqueous-phase •OH oxidation can potentially act as an important atmospheric sink for α-pinene-derived organosulfates (OSs). Such oxidation can also generate a variety of new OS products, and can be as a potential source for some atmospheric OSs with previously unknown origins.
Camilo Serrano Damha, Kyle Gorkowski, and Andreas Zuend
Atmos. Chem. Phys., 25, 5773–5792, https://doi.org/10.5194/acp-25-5773-2025, https://doi.org/10.5194/acp-25-5773-2025, 2025
Short summary
Short summary
We implemented the BAT-VBS (Binary Activity Thermodynamics volatility basis set) aerosol thermodynamics model in the GEOS-Chem chemical transport model to efficiently account for organic aerosol water uptake, nonideal mixing, and impacts on the gas–particle partitioning of semi-volatile organics. Compared to GEOS-Chem's complex (dry) scheme, we show that the BAT-VBS model can predict substantial enhancements in organic aerosol mass concentration at moderate-to-high relative humidity.
Vahid Shahabadi, Cassandra Lefort, Hoi Tang Law, Man Nin Chan, and Thomas C. Preston
EGUsphere, https://doi.org/10.5194/egusphere-2025-2170, https://doi.org/10.5194/egusphere-2025-2170, 2025
Short summary
Short summary
This research explores how organosulfate surfactants affect aerosol particles and their response to changes in relative humidity in the atmosphere. Using optical trapping and strong electric fields to investigate single particles, it is found that these surfactants can significantly lower surface tension, even in very small amounts. These findings are important for understanding how such particles influence cloud formation and properties like brightness.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025, https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
Atmos. Chem. Phys., 24, 13341–13359, https://doi.org/10.5194/acp-24-13341-2024, https://doi.org/10.5194/acp-24-13341-2024, 2024
Short summary
Short summary
The viscosity of ammonium nitrate–sucrose–H2O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remained below 1 h for most tropospheric conditions, making equilibrium partitioning a reasonable assumption.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 23, 7741–7765, https://doi.org/10.5194/acp-23-7741-2023, https://doi.org/10.5194/acp-23-7741-2023, 2023
Short summary
Short summary
Aerosol particles below 100 nm in diameter have high surface-area-to-volume ratios. The enrichment of compounds in the surface of an aerosol particle may lead to depletion of that species in the interior bulk of the particle. We present a framework for modeling the equilibrium bulk–surface partitioning of mixed organic–inorganic particles, including cases of co-condensation of semivolatile organic compounds and species with extremely limited solubility in the bulk or surface of a particle.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Rongshuang Xu, Sze In Madeleine Ng, Wing Sze Chow, Yee Ka Wong, Yuchen Wang, Donger Lai, Zhongping Yao, Pui-Kin So, Jian Zhen Yu, and Man Nin Chan
Atmos. Chem. Phys., 22, 5685–5700, https://doi.org/10.5194/acp-22-5685-2022, https://doi.org/10.5194/acp-22-5685-2022, 2022
Short summary
Short summary
To date, while over a hundred organosulfates (OSs) have been detected in atmospheric aerosols, many of them are still unidentified, with unknown precursors and formation processes. We found the heterogeneous OH oxidation of an α-pinene-derived organosulfate (C10H17O5SNa, αpOS-249, αpOS-249) can proceed at an efficient rate and transform into more oxygenated OSs, which have been commonly detected in atmospheric aerosols and α-pinene-derived SOA in chamber studies.
Joseph Lilek and Andreas Zuend
Atmos. Chem. Phys., 22, 3203–3233, https://doi.org/10.5194/acp-22-3203-2022, https://doi.org/10.5194/acp-22-3203-2022, 2022
Short summary
Short summary
Depending on temperature and chemical makeup, certain aerosols can be highly viscous or glassy, with atmospheric implications. We have therefore implemented two major upgrades to the predictive viscosity model AIOMFAC-VISC. First, we created a new viscosity model for aqueous electrolyte solutions containing an arbitrary number of ion species. Second, we integrated the electrolyte model within the existing AIOMFAC-VISC framework to enable viscosity predictions for organic–inorganic mixtures.
Hang Yin, Jing Dou, Liviana Klein, Ulrich K. Krieger, Alison Bain, Brandon J. Wallace, Thomas C. Preston, and Andreas Zuend
Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, https://doi.org/10.5194/acp-22-973-2022, 2022
Short summary
Short summary
Iodine and carbonate species are important components in marine and dust aerosols, respectively. We introduce an extended version of the AIOMFAC thermodynamic mixing model, which includes the ions I−, IO3−, HCO3−, CO32−, OH−, and CO2(aq) as new species, and we discuss two methods for solving the carbonate dissociation equilibria numerically. We also present new experimental water activity data for aqueous iodide and iodate systems.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Jack M. Choczynski, Ravleen Kaur Kohli, Craig S. Sheldon, Chelsea L. Price, and James F. Davies
Atmos. Meas. Tech., 14, 5001–5013, https://doi.org/10.5194/amt-14-5001-2021, https://doi.org/10.5194/amt-14-5001-2021, 2021
Short summary
Short summary
Relative humidity (RH) and hygroscopicity play an important role in regulating the physical, chemical, and optical properties of aerosol. In this work, we develop a new method to characterize hygroscopicity using particle levitation. We levitate two droplets with an electrodynamic balance and measure their size with light-scattering methods using one droplet as a probe of the RH. We demonstrate highly accurate and precise measurements of the RH and hygroscopic growth of a range of samples.
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, https://doi.org/10.5194/acp-21-10215-2021, 2021
Short summary
Short summary
We report viscosity of binary mixtures of organic material / H2O and inorganic salts / H2O, as well as ternary mixtures of organic material / inorganic salts/ H2O, over the atmospheric relative humidity (RH) range. The viscosity measurements indicate that the studied mixed organic–inorganic particles range in phase state from liquid to semi-solid or even solid across the atmospheric RH range at a temperature of 293 K.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Young-Chul Song, Ariana G. Bé, Scot T. Martin, Franz M. Geiger, Allan K. Bertram, Regan J. Thomson, and Mijung Song
Atmos. Chem. Phys., 20, 11263–11273, https://doi.org/10.5194/acp-20-11263-2020, https://doi.org/10.5194/acp-20-11263-2020, 2020
Short summary
Short summary
We report the liquid–liquid phase separation (LLPS) of organic aerosol consisting of α-pinene- and β-caryophyllene-derived ozonolysis products and commercial organic compounds. As compositional complexity increased from one to two organic species, LLPS occurred over a wider range of average O : C values (increasing from 0.44 to 0.67). These results provide further evidence that LLPS is likely frequent in organic aerosol particles in the troposphere, even in the absence of inorganic salt.
Cited articles
Altaf, M. B. and Freedman, M. A.: Effect of drying rate on aerosol particle
morphology, J. Phys. Chem. Lett., 8, 3613–3618, 2017.
Altaf, M. B., Zuend, A., and Freedman, M. A.: Role of nucleation mechanism
on the size dependent morphology of organic aerosol, Chem. Commun., 52,
9220–9223, 2016.
Arangio, A. M., Slade, J. H., Berkemeier, T., Pöschl, U., Knopf, D. A.,
and Shiraiwa, M.: Multiphase chemical kinetics of OH radical uptake by
molecular organic markers of biomass burning aerosols: Humidity and
temperature dependence, surface reaction, and bulk diffusion, J. Phys. Chem.
A, 119, 4533–4544, 2015.
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011.
Brunamonti, S., Krieger, U. K., Marcolli, C., and Peter, T.: Redistribution
of black carbon in aerosol particles undergoing liquid–liquid phase
separation, Geophys. Res. Lett., 42, 2532–2539, 2015.
Cappa, C. D., Che, D. L., Kessler, S. H., Kroll, J. H., and Wilson, K. R.:
Variations in organic aerosol optical and hygroscopic properties upon
heterogeneous OH oxidation, J. Geophys. Res., 116, D15204,
https://doi.org/10.1029/2011JD015918, 2011.
Chan, M. N. and Chan, C. K.: Mass transfer effects on the hygroscopic growth
of ammonium sulfate particles with a water-insoluble coating, Atmos.
Environ., 41, 4423–4433, 2007.
Chan, M. N., Nah, T., and Wilson, K. R.: Real time in-situ chemical
characterization of sub-micron organic aerosols using Direct Analysis in
Real Time Mass Spectrometry (DART–MS): The effect of aerosol size and
volatility, Analyst, 138, 3749–3757, 2013.
Chan, M. N., Zhang, H., Goldstein, A. H., and Wilson, K. R.: Role of water
and phase in the heterogeneous oxidation of solid and aqueous succinic acid
aerosol by hydroxyl radicals, J. Phys. Chem. C, 118, 28978–28992, 2014.
Chapleski Jr., R. C., Zhang, Y., Troyaa, D., and Morris, J. R.:
Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants,
O3, NO3, and OH, on organic surfaces, Chem. Soc. Rev., 45,
3731–3746, 2016.
Charnawskas, J. C., Alpert, P. A., Lambe, A. T., Berkemeier, T., O'Brien, R.
E., Massoli, P., Onasch, T. B., Shiraiwa, M., Moffet, R. C., Gilles, M.
K., Davidovits, P., Worsnop, D. R., and Knopf, D. A.: Condensed-phase
biogenic-anthropogenic interactions with implications for cold cloud
formation, Faraday Discuss., 200, 165–194, 2017.
Cheng, C. T., Chan, M. N., and Wilson, K. R.: The role of alkoxy radicals in
the heterogeneous reaction of two structural isomers of dimethylsuccinic
acid, Phys. Chem. Chem. Phys., 17, 25309–25321, 2015.
Chim, M. M., Chow, C. Y., Davie, J. F., and Chan, M. N.: Effects of relative
humidity and particle phase water on the heterogeneous OH oxidation of
2-methylglutaric acid aqueous droplets, J. Phys. Chem. A, 121, 1666–1674,
2017.
Chim, M. M., Lim, C. Y., Kroll, J. H., and Chan, M. N.: Evolution in the
reactivity of citric acid toward heterogeneous oxidation by gas-phase OH
radicals, ACS Earth Space Chem., 2, 1323–1329, 2018.
Davies, J. F. and Wilson, K. R.: Nanoscale interfacial gradients formed by
the reactive uptake of OH radicals onto viscous aerosol surfaces, Chem.
Sci., 6, 7020–7027, 2015.
Davies, J. F., Zuend, A., and Wilson, K. R.: Technical note: The role of evolving surface tension in the formation of cloud droplets, Atmos. Chem. Phys., 19, 2933–2946, https://doi.org/10.5194/acp-19-2933-2019, 2019.
Dennis-Smither, B. J., Miles, R. E. H., and Reid, J. P.: Oxidative aging of
mixed oleic acid/sodium chloride aerosol particles, J. Geophys. Res., 117,
D20204, https://doi.org/10.1029/2012JD018163, 2012.
DeRieux, W. S. W., Lakey, P. S., Chu, Y., Chan, C. K., Glicker, H. S.,
Smith, J. N., Zuend, A., and Shiraiwa, M.: Effects of phase state and phase
separation on dimethylamine uptake of ammonium sulfate and ammonium
sulfate–sucrose mixed particles, ACS Earth Space Chem., 3, 1268–1278,
2019.
Freedman, M. A.: Liquid–liquid phase separation in supermicrometer and
submicrometer aerosol particles, Acc. Chem. Res., 53, 6, 1102–1110, 2020.
Gaston, C. J., Thornton, J. A., and Ng, N. L.: Reactive uptake of N2O5 to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations, Atmos. Chem. Phys., 14, 5693–5707, https://doi.org/10.5194/acp-14-5693-2014, 2014.
George, I. J. and Abbatt, J. P. D.: Heterogeneous oxidation of atmospheric
aerosol particles by gas-phase radicals, Nature Chem., 2, 713–722, 2010.
Gervasi, N. R., Topping, D. O., and Zuend, A.: A predictive group-contribution model for the viscosity of aqueous organic aerosol, Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, 2020.
Gopalakrishnan, S., Jungwirth, P., Tobias, D. J., and Allen, H. C.: Air-Liquid
Interfaces of Aqueous Solutions Containing Ammonium and Sulfate:
Spectroscopic and Molecular Dynamics Studies, J. Phys. Chem. B, 109,
8861–8872, 2005.
Gorkowski, K., Beydoun, H., Aboff, M., Walker, J. S., Reid, J. P., and
Sullivan, R. C.: Advanced aerosol optical tweezers chamber design to
facilitate phase-separation and equilibration timescale experiments on
complex droplets, Aerosol Sci. Technol., 50, 1327–1341, 2016.
Gržinić, G., Bartels-Rausch, T., Berkemeier, T., Türler, A., and Ammann, M.: Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol, Atmos. Chem. Phys., 15, 13615–13625, https://doi.org/10.5194/acp-15-13615-2015, 2015.
Harmon, C. W., Ruehl, C. R., Cappa, C. D., and Wilson, K. R.: A statistical
description of the evolution of cloud condensation nuclei activity during
the heterogeneous oxidation of squalane and bis (2-ethylhexyl) sebacate
aerosol by hydroxyl radicals, Phys. Chem. Chem. Phys., 15, 9679–9693, 2013.
Hodas, N., Zuend, A., Mui, W., Flagan, R. C., and Seinfeld, J. H.: Influence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols, Atmos. Chem. Phys., 15, 5027–5045, https://doi.org/10.5194/acp-15-5027-2015, 2015.
Houle, F. A., Wiegel, A. A., and Wilson, K. R.: Predicting aerosol
reactivity across scales: From the laboratory to the atmosphere, Environ.
Sci. Technol., 52, 13774–13781, 2018.
Kawamura, K. and Kaplan, I. R.: Motor exhaust emissions as a primary source
for dicarboxylic acids in Los Angeles ambient air, Environ. Sci. Technol.,
21, 105–110, 1987.
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition
and phase state of organic compounds: Dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem.
Chem. Phys., 13, 19238–19255, 2011.
Krieger, U. K., Marcolli, C., and Reid, J. P.: Exploring the complexity of
aerosol particle properties and processes using single particle techniques,
Chem. Soc. Rev., 41, 6631–6662, 2012.
Kroll, J. H., Lim, C. Y., Kessler, S. H., and Wilson, K. R.: Heterogeneous
oxidation of atmospheric organic aerosol: Kinetics of changes to the amount
and oxidation of particle-phase organic carbon, J. Phys. Chem. A, 119,
10767–10783, 2015.
Kundu, S., Kawamura, K., Kobayashi, M., Tachibana, E., Lee, M., Fu, P., and
Jung, J.: A sub-decadal trend in diacids in atmospheric aerosols in eastern
Asia, Atmos. Chem. Phys., 16, 585–596, 2016.
Kwamena, N. O. A., Buajarern, J., and Reid, J. P.: Equilibrium morphology of
mixed organic/inorganic/aqueous aerosol droplets: Investigating the effect
of relative humidity and surfactants, J. Phys. Chem. A, 114, 5787–5795,
2010.
Lam, H. K., Shum, S. M., Davies, J. F., Song, M., Zuend, A., and Chan, M. N.: Effects of inorganic salts on the heterogeneous OH oxidation of organic compounds: insights from methylglutaric acid–ammonium sulfate, Atmos. Chem. Phys., 19, 9581–9593, https://doi.org/10.5194/acp-19-9581-2019, 2019.
Lambe, A. T., Zhang, J. Y., Sage, A. M., and Donahue, N. M.: Controlled OH
radical production via ozone-alkene reactions for use in aerosol aging
studies, Environ. Sci. Technol., 41, 2357–2363, 2007.
Li, J., Forrester, S. M., and Knopf, D. A.: Heterogeneous oxidation of amorphous organic aerosol surrogates by O3, NO3, and OH at typical tropospheric temperatures, Atmos. Chem. Phys., 20, 6055–6080, https://doi.org/10.5194/acp-20-6055-2020, 2020.
Li, X.-D., Yang, Z., Fu, P., Yu, J., Lang, Y.-C., Liu, D., Ono, K., and
Kawamura, K.: High abundances of dicarboxylic acids, oxocarboxylic acids,
and α-dicarbonyls in fine aerosols (PM2.5) in Chengdu, china during
wintertime haze pollution, Environ. Sci. Pollut. Res., 22, 12902–12918,
2015.
Losey, D. J., Parker, R. G., and Freedman, M. A.: pH dependence of
liquid–liquid phase separation in organic aerosol, J. Phys. Chem. Lett., 7,
3861–3865, 2016.
Losey, D. J., Ott, E. J. E., and Freedman, M. A.: Effects of high acidity on
phase transitions of an organic aerosol, J. Phys. Chem. A, 122, 3819–3828,
2018.
McNeill, V. F., Wolfe, G. M., and Thornton, J. A.: The oxidation of oleate
in submicron aqueous salt aerosols: Evidence of a surface process, J. Phys.
Chem. A, 111, 1073–1083, 2007.
Nah, T., Chan, M. N., Leone, S. R., and Wilson, K. R.: Real time in situ
chemical characterization of submicrometer organic particles using direct
analysis in real time-mass spectrometry, Anal. Chem., 85, 2087–2095, 2013.
O'Brien, R. E., Wang, B., Kelly, S. T., Lundt, N., You, Y., Bertram, A. K.,
Leone, S. R., Laskin, A., and Gilles, M. K.: Liquid–liquid phase separation
in aerosol particles: Imaging at the nanometer scale, Environ. Sci.
Technol., 49, 4995–5002, 2015.
Papon, P., Leblond, J., and Meijer, P.: The Physics of Phase Transitions,
Springer, The Netherlands, 2006.
Preston, T. C. and Reid, J. P.: Determining the size and refractive index of
microspheres using the mode assignments from Mie resonances, J. Opt. Soc.
Am. A, 32, 2210–2217, 2015.
Price, C. L., Bain, A., Wallace, B. J., Preston, T. C., and Davies, J. F.:
Simultaneous retrieval of the size and refractive index of suspended
droplets in a linear quadrupole electrodynamic balance, J. Phys. Chem. A.,
124, 1811–1820, 2020.
Qiu, Y. and Molinero, V.: Morphology of liquid–liquid phase separated
aerosols, J. Am. Chem. Soc., 137, 10642–10651, 2015.
Reid, J. P., Dennis-Smither, B. J., Kwamena, N. O. A., Miles, R. E. H.,
Hanford, K. L., and Homer, C. J.: The morphology of aerosol particles
consisting of hydrophobic and hydrophilic phases, hydrocarbons, alcohols and
fatty acids as the hydrophobic component, Phys. Chem. Chem. Phys., 13,
15559–15572, 2011.
Ruehl, C. R., Nah, T., Isaacman, G., Worton, D. R., Chan, A. W. H., Kolesar,
K. R., Cappa, C. D., Goldstein, A. H., and Wilson, K. R.: The influence of
molecular structure and aerosol phase on the heterogeneous oxidation of
normal and branched alkanes by OH, J. Phys. Chem. A, 117, 3990–4000, 2013.
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle
partitioning of atmospheric aerosols: Interplay of physical state, non-ideal
mixing and morphology, Phys. Chem. Chem. Phys., 15, 11441–11453, 2013.
Slade, J. H. and Knopf, D. A.: Multiphase OH oxidation kinetics of organic
aerosol: The role of particle phase state and relative humidity, Geophys.
Res. Lett., 41, 5297–5306, 2014.
Slade, J. H., Thalman, R., Wang, J., and Knopf, D. A.: Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity, Atmos. Chem. Phys., 15, 10183–10201, https://doi.org/10.5194/acp-15-10183-2015, 2015.
Slade, J. H., Shiraiwa, M., Arangio, A., Su, H., Pöschl,
U., Wang, J., and Knopf, D. A.: Cloud droplet activation through oxidation
of organic aerosol influenced by temperature and particle phase state,
Geophys. Res. Lett., 44, 1583–1591, 2017.
Smith, J. D., Kroll, J. H., Cappa, C. D., Che, D. L., Liu, C. L., Ahmed, M., Leone, S. R., Worsnop, D. R., and Wilson, K. R.: The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols, Atmos. Chem. Phys., 9, 3209–3222, https://doi.org/10.5194/acp-9-3209-2009, 2009.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, Atmos. Chem. Phys., 12, 2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012a.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.:
Liquid–liquid phase separation in aerosol particles: Dependence on O:C,
organic functionalities, and compositional complexity, Geophys. Res. Lett.,
39, L19801, https://doi.org/10.1029/2012GL052807, 2012b.
Song, M. J., Marcolli, C., Krieger, U. K., Lienhard, D., and Peter, T.: Morphologies of mixed organic/inorganic/aqueous aerosol droplets, Faraday Discuss., 165, 289–316, 2013.
Song, M., Liu, P., Martin, S. T., and Bertram, A. K.: Liquid–liquid phase separation in particles containing secondary organic material free of inorganic salts, Atmos. Chem. Phys., 17, 11261–11271, https://doi.org/10.5194/acp-17-11261-2017, 2017.
Song, M., Ham, S., Andrews, R. J., You, Y., and Bertram, A. K.: Liquid–liquid phase separation in organic particles containing one and two organic species: importance of the average O:C, Atmos. Chem. Phys., 18, 12075–12084, https://doi.org/10.5194/acp-18-12075-2018, 2018.
Steimer, S. S., Berkemeier, T., Gilgen, A., Krieger, U. K., Peter, T.,
Shiraiwa, M., and Ammann, M.: Shikimic acid ozonolysis kinetics of the
transition from liquid aqueous solution to highly viscous glass, Phys. Chem.
Chem. Phys., 17, 31101–31109, 2015.
Stewart, D. J., Cai, C., Nayler, J., Preston, T. C., Reid, J. P., Krieger,
U. K., Marcolli, C., and Zhang, Y. H.: Liquid–liquid phase separation in
mixed organic/inorganic single aqueous aerosol droplets, J. Phys. Chem. A,
119, 4177–4190, 2015.
Veghte, D. P., Altaf, M. B., and Freedman, M. A.: Size dependence of the
structure of organic aerosol, J. Am. Chem. Soc., 135, 16046–16049, 2013.
Veghte, D. P., Bittner, D. R., and Freedman, M. A.: Cryo-transmission
electron microscopy imaging of the morphology of submicrometer aerosol
containing organic acids and ammonium sulfate, Anal. Chem., 86, 2436–2442,
2014.
Xu, R., Lam, H. K., Wilson, K. R., Davies, J. F., Song, M., Li, W., Tse, Y.-L. S., and Chan, M. N.: Effect of inorganic-to-organic mass ratio on the heterogeneous OH reaction rates of erythritol: implications for atmospheric chemical stability of 2-methyltetrols, Atmos. Chem. Phys., 20, 3879–3893, https://doi.org/10.5194/acp-20-3879-2020, 2020.
You, Y., Smith, M. L., Song, M., Martin, S. T., and Bertram, A. K.:
Liquid–liquid phase separation in atmospherically relevant particles
consisting of organic species and inorganic salts, Int. Rev. Phys. Chem.,
33, 43–77, 2014.
Zhou, S., Hwang, B. C., Lakey, P. S., Zuend, A., Abbatt, J. P., and
Shiraiwa, M.: Multiphase reactivity of polycyclic aromatic hydrocarbons is
driven by phase separation and diffusion limitations, P. Natl. Acad. Sci.
USA, 116, 11658–11663, 2019.
Zuend, A. and Seinfeld, J. H.: Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation, Atmos. Chem. Phys., 12, 3857–3882, https://doi.org/10.5194/acp-12-3857-2012, 2012.
Zuend, A. and Seinfeld, J. H.: A practical method for the calculation of
liquid–liquid equilibria in multicomponent organic–water–electrolyte
systems using physicochemical constraints, Fluid Phase Equilib., 337,
201–213, 2013.
Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559–4593, https://doi.org/10.5194/acp-8-4559-2008, 2008.
Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols, Atmos. Chem. Phys., 10, 7795–7820, https://doi.org/10.5194/acp-10-7795-2010, 2010.
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups, Atmos. Chem. Phys., 11, 9155–9206, https://doi.org/10.5194/acp-11-9155-2011, 2011.
Short summary
This work demonstrates that organic compounds present at or near the surface of aerosols can be subjected to oxidation initiated by gas-phase oxidants, such as hydroxyl radicals (OH). The heterogeneous reactivity is sensitive to their surface concentrations, which are determined by the phase separation behavior. This results of this work emphasize the effects of phase separation and potentially distinct aerosol morphologies on the chemical transformation of atmospheric aerosols.
This work demonstrates that organic compounds present at or near the surface of aerosols can be...
Altmetrics
Final-revised paper
Preprint