Research article
06 Jul 2021
Research article
| 06 Jul 2021
Air–sea exchange of acetone, acetaldehyde, DMS and isoprene at a UK coastal site
Daniel P. Phillips et al.
Related authors
No articles found.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-250, https://doi.org/10.5194/bg-2022-250, 2023
Preprint under review for BG
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales up to 100 km. Sea surface height anomalies, density, and chlorophyll-a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Johana Romero-Alvarez, Aurelia Lupaşcu, Douglas Lowe, Alba Badia, Scott Archer-Nicholls, Steve Dorling, Claire E. Reeves, and Tim Butler
Atmos. Chem. Phys., 22, 13797–13815, https://doi.org/10.5194/acp-22-13797-2022, https://doi.org/10.5194/acp-22-13797-2022, 2022
Short summary
Short summary
As ozone can be transported across countries, efficient air quality management and regulatory policies rely on the assessment of local ozone production vs. transport. In our study, we investigate the origin of surface ozone in the UK and the contribution of the different source regions to regulatory ozone metrics. It is shown that emission controls would be necessary over western Europe to improve health-related metrics and over larger areas to reduce impacts on ecosystems.
Veronica Z. Berta, Lynn M. Russell, Derek J. Price, Chia-Li Chen, Alex K. Y. Lee, Patricia K. Quinn, Timothy S. Bates, Thomas G. Bell, and Michael J. Behrenfeld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-601, https://doi.org/10.5194/acp-2022-601, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Amines are compounds emitted from a variety of marine and continental sources, which were measured by aerosol mass spectrometry and Fourier Transform Infrared spectroscopy during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises. Secondary continental and primary marine sources of amines were identified by comparisons to tracers. The results show that the two methods are complementary for investigating amines in the marine environment.
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Short summary
The third climatological estimation of sea surface dimethyl sulfide (DMS) concentrations based on in situ measurements was created (DMS-Rev3). The update includes a much larger input dataset and includes improvements in the data unification, filtering, and smoothing algorithm. The DMS-Rev3 climatology provides more realistic monthly estimates of DMS, and shows significant regional differences compared to past climatologies.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J1 Bloss, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-207, https://doi.org/10.5194/acp-2022-207, 2022
Preprint under review for ACP
Short summary
Short summary
We measured radicals (OH, HO2, RO2) and OH reactivity at a UK coastal site and compared our observations to the predictions of an MCMv3.3.1 box model. We find variable agreement between measured and modelled radical concentrations and OH reactivity, where the levels of agreement for individual species display strong dependences on NO concentrations. The most substantial disagreement is found for RO2 at high NO (> 1 ppbv), when RO2 levels are underpredicted by a factor of ~10–30.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-213, https://doi.org/10.5194/acp-2022-213, 2022
Preprint under review for ACP
Short summary
Short summary
We performed a radical (OH, HO2, RO2; total ROx) budget analysis on a dataset collected during a field intensive at a UK coastal site. We found significant differences between calculated HO2 and RO2 production and destruction rates, which should be balanced for such highly reactive radicals under steady state conditions. In addition, ozone production rates were calculated from measured radicals and compared to MCMv3.3.1 model predictions.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Wedad Alahamade, Iain Lake, Claire E. Reeves, and Beatriz De La Iglesia
Geosci. Instrum. Method. Data Syst., 10, 265–285, https://doi.org/10.5194/gi-10-265-2021, https://doi.org/10.5194/gi-10-265-2021, 2021
Short summary
Short summary
The goal is to reduce the uncertainty in air quality assessment by imputing all missing pollutants in monitoring stations and identify where more measurements can be beneficial. The proposed approach is based on spatial or temporal similarity between stations. Our proposed approach enables us to impute and estimate plausible concentrations of multiple pollutants at stations across the UK, and the modelled concentrations from the selected models correlated well with the observed concentrations.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Short summary
Eddy covariance (EC) is the most direct method for measuring air–sea CO2 flux from ships. However, uncertainty in EC air–sea CO2 fluxes has not been well quantified. Here we show that with the state-of-the-art gas analysers, instrumental noise no longer contributes significantly to the CO2 flux uncertainty. Applying an appropriate averaging timescale (1–3 h) and suitable air–sea CO2 fugacity threshold (at least 20 µatm) to EC flux data enables an optimal analysis of the gas transfer velocity.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Charel Wohl, Ian Brown, Vassilis Kitidis, Anna E. Jones, William T. Sturges, Philip D. Nightingale, and Mingxi Yang
Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, https://doi.org/10.5194/bg-17-2593-2020, 2020
Short summary
Short summary
The oceans represent a poorly understood source of organic carbon to the atmosphere. In this paper, we present ship-based measurements of specific compounds in ambient air and seawater of the Southern Ocean. We present fluxes of these gases between air and sea at very high resolution. The data also contain evidence for day and night variations in some of these compounds. These measurements can be used to better understand the role of the Southern Ocean in the cycling of these compounds.
Elise S. Droste, Karina E. Adcock, Matthew J. Ashfold, Charles Chou, Zoë Fleming, Paul J. Fraser, Lauren J. Gooch, Andrew J. Hind, Ray L. Langenfelds, Emma C. Leedham Elvidge, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Marios Panagi, Claire E. Reeves, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 20, 4787–4807, https://doi.org/10.5194/acp-20-4787-2020, https://doi.org/10.5194/acp-20-4787-2020, 2020
Short summary
Short summary
We update the tropospheric trends and emissions of six perfluorocarbon (PFC) gases, including separate isomers. Trends for these strong greenhouse gases are still increasing, but at slower rates than previously. The lack of natural sinks results in the global accumulation of 833 million metric tonnes of CO2 equivalent for these six PFCs by 2017. Modelling results indicate potential source regions and types in East Asia, but we find that many emissions are unaccounted for in emission reports.
Sarah J. Lawson, Cliff S. Law, Mike J. Harvey, Thomas G. Bell, Carolyn F. Walker, Warren J. de Bruyn, and Eric S. Saltzman
Atmos. Chem. Phys., 20, 3061–3078, https://doi.org/10.5194/acp-20-3061-2020, https://doi.org/10.5194/acp-20-3061-2020, 2020
Short summary
Short summary
Methanethiol (MeSH) is a reduced sulfur gas originating from phytoplankton, with a global ocean source of ~ 17 % of dimethyl sulfide (DMS). It has been little studied and is rarely observed over the ocean. In this work, MeSH was measured at much higher levels than previously observed (3–36 % of parallel DMS mixing ratios). MeSH could be a significant source of atmospheric sulfur over productive regions of the ocean, but its distribution, and its atmospheric impact, requires more investigation.
Frances E. Hopkins, Philip D. Nightingale, John A. Stephens, C. Mark Moore, Sophie Richier, Gemma L. Cripps, and Stephen D. Archer
Biogeosciences, 17, 163–186, https://doi.org/10.5194/bg-17-163-2020, https://doi.org/10.5194/bg-17-163-2020, 2020
Short summary
Short summary
We investigated the effects of ocean acidification (OA) on the production of climate active gas dimethylsulfide (DMS) in polar waters. We found that polar DMS production was unaffected by OA – in contrast to temperate waters, where large increases in DMS occurred. The regional differences in DMS response may reflect natural variability in community adaptation to ambient carbonate chemistry and should be taken into account in predicting the influence of future DMS emissions on Earth's climate.
Mingxi Yang, Sarah J. Norris, Thomas G. Bell, and Ian M. Brooks
Atmos. Chem. Phys., 19, 15271–15284, https://doi.org/10.5194/acp-19-15271-2019, https://doi.org/10.5194/acp-19-15271-2019, 2019
Short summary
Short summary
This work reports direct measurements of sea spray fluxes from a coastal site in the UK, which are relevant for atmospheric chemistry as well as coastal air quality. Sea spray fluxes from this location are roughly an order of magnitude greater than over the open ocean at similar wind conditions, comparable to previous coastal measurements. Unlike previous open ocean measurements that are largely wind speed dependent, we find that sea spray fluxes near the coast depend more strongly on waves.
Charel Wohl, David Capelle, Anna Jones, William T. Sturges, Philip D. Nightingale, Brent G. T. Else, and Mingxi Yang
Ocean Sci., 15, 925–940, https://doi.org/10.5194/os-15-925-2019, https://doi.org/10.5194/os-15-925-2019, 2019
Short summary
Short summary
In this paper we present a gas equilibrator that can be used to equilibrate gases continuously or in discrete samples from seawater into a carrier gas. The headspace is analysed by a commercially available proton-transfer-reaction mass spectrometer. This allows for the measurement of a broad range of dissolved gases up to a very high solubility in seawater. The main advantage of this equilibrator is its unique design and ease of reproducibility.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Mingxi Yang, Thomas G. Bell, Ian J. Brown, James R. Fishwick, Vassilis Kitidis, Philip D. Nightingale, Andrew P. Rees, and Timothy J. Smyth
Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, https://doi.org/10.5194/bg-16-961-2019, 2019
Short summary
Short summary
We quantify the emissions and uptake of the greenhouse gases carbon dioxide and methane from the coastal seas of the UK over 1 year using the state-of-the-art eddy covariance technique. Our measurements show how these air–sea fluxes vary twice a day (tidal), diurnally (circadian) and seasonally. We also estimate the air–sea gas transfer velocity, which is essential for modelling and predicting coastal air-sea exchange.
Alba Badia, Claire E. Reeves, Alex R. Baker, Alfonso Saiz-Lopez, Rainer Volkamer, Theodore K. Koenig, Eric C. Apel, Rebecca S. Hornbrook, Lucy J. Carpenter, Stephen J. Andrews, Tomás Sherwen, and Roland von Glasow
Atmos. Chem. Phys., 19, 3161–3189, https://doi.org/10.5194/acp-19-3161-2019, https://doi.org/10.5194/acp-19-3161-2019, 2019
Short summary
Short summary
The oceans have an impact on the composition and reactivity of the troposphere through the emission of gases and particles. Thus, a quantitative understanding of the marine atmosphere is crucial to examine the oxidative capacity and climate forcing. This study investigates the impact of halogens in the tropical troposphere and explores the sensitivity of this to uncertainties in the fluxes and their chemical processing. Our modelled tropospheric Ox loss due to halogens ranges from 20 % to 60 %.
Mingxi Yang and Zoë L. Fleming
Atmos. Chem. Phys., 19, 459–471, https://doi.org/10.5194/acp-19-459-2019, https://doi.org/10.5194/acp-19-459-2019, 2019
Short summary
Short summary
The atmosphere contains thousands of different organic compounds but the quantification of their total burden has been a technical challenge. This hinders our understanding in atmospheric chemistry, air pollution, and global carbon cycling. Here we present a novel and robust method to measure total atmospheric organic carbon. By comparing the total organic carbon concentration in marine air to the sum of speciated organic measurements, we aim to estimate the pool of undetected organic species.
Murray J. Smith, Carolyn F. Walker, Thomas G. Bell, Mike J. Harvey, Eric S. Saltzman, and Cliff S. Law
Atmos. Chem. Phys., 18, 5861–5877, https://doi.org/10.5194/acp-18-5861-2018, https://doi.org/10.5194/acp-18-5861-2018, 2018
Short summary
Short summary
The transfer of gases across the air–sea interface has a significant influence on climate. During a research voyage in the South Pacific we measured the transfer rate of the biogenic gas dimethyl sulfide (DMS) from the ocean using two independent methods. The agreement between the techniques provides confidence in their use in compilations of global gas transfer. We also identified physical conditions under which the observations are not well predicted by a standard gas transfer model.
Karina E. Adcock, Claire E. Reeves, Lauren J. Gooch, Emma C. Leedham Elvidge, Matthew J. Ashfold, Carl A. M. Brenninkmeijer, Charles Chou, Paul J. Fraser, Ray L. Langenfelds, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Siew Moi Phang, Azizan Abu Samah, Thomas Röckmann, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 18, 4737–4751, https://doi.org/10.5194/acp-18-4737-2018, https://doi.org/10.5194/acp-18-4737-2018, 2018
Sebastian Landwehr, Scott D. Miller, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, and Brian Ward
Atmos. Chem. Phys., 18, 4297–4315, https://doi.org/10.5194/acp-18-4297-2018, https://doi.org/10.5194/acp-18-4297-2018, 2018
Short summary
Short summary
The ocean takes up about 25 % of emitted anthropogenic emitted carbon dioxide and thus plays a significant role in the regulation of climate. In order to accurately calculate this uptake, a quantity known as the air–sea gas transfer velocity needs to be determined. This is typically parameterised with mean wind speed, the most commonly used velocity scale for calculating air–sea transfer coefficients. In this article, we propose an alternative velocity scale known as the friction velocity.
Cliff S. Law, Murray J. Smith, Mike J. Harvey, Thomas G. Bell, Luke T. Cravigan, Fiona C. Elliott, Sarah J. Lawson, Martine Lizotte, Andrew Marriner, John McGregor, Zoran Ristovski, Karl A. Safi, Eric S. Saltzman, Petri Vaattovaara, and Carolyn F. Walker
Atmos. Chem. Phys., 17, 13645–13667, https://doi.org/10.5194/acp-17-13645-2017, https://doi.org/10.5194/acp-17-13645-2017, 2017
Short summary
Short summary
We carried out a multidisciplinary study to examine how aerosol production is influenced by the production and emission of trace gases and particles in the surface ocean. Phytoplankton blooms of different species composition in frontal waters southeast of New Zealand were a significant source of dimethylsulfide and other aerosol precursors. The relationships between surface ocean biogeochemistry and aerosol composition will inform the understanding of aerosol production over the remote ocean.
Richard P. Sims, Ute Schuster, Andrew J. Watson, Ming Xi Yang, Frances E. Hopkins, John Stephens, and Thomas G. Bell
Ocean Sci., 13, 649–660, https://doi.org/10.5194/os-13-649-2017, https://doi.org/10.5194/os-13-649-2017, 2017
Short summary
Short summary
This paper describes a near-surface ocean profiler (NSOP) that is deployed from a research vessel. The NSOP is used to sample the top 10 m of the ocean and pumps water back to the research ship for scientific analyses such as for trace gases. The precision in the depth of the seawater collection improves upon previous methods. The NSOP has been used to observe vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide.
Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. de Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, and Eric S. Saltzman
Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017, https://doi.org/10.5194/acp-17-9019-2017, 2017
Short summary
Short summary
The mechanisms that determine the air–sea exchange of gases such as carbon dioxide are not well understood. During a research cruise in the North Atlantic, we simultaneously measured the air–sea transfer of two gases with contrasting solubility over a range in wind and wave conditions. We compare the transfer of these gases to improve understanding of how bubbles from breaking waves may mediate air–sea gas fluxes.
Mike J. Newland, Patricia Martinerie, Emmanuel Witrant, Detlev Helmig, David R. Worton, Chris Hogan, William T. Sturges, and Claire E. Reeves
Atmos. Chem. Phys., 17, 8269–8283, https://doi.org/10.5194/acp-17-8269-2017, https://doi.org/10.5194/acp-17-8269-2017, 2017
Short summary
Short summary
We report increasing levels of alkyl nitrates in the Northern Hemisphere atmosphere between 1960 and the mid-1990s. These increases are symptomatic of large-scale changes to the chemical composition of the atmosphere, particularly with regards to the amounts of short-lived, reactive species. The observed increases are likely driven by increasing levels of nitrogen oxides. These changes have direct implications for the lifetimes of climate-relevant species in the atmosphere, such as methane.
Johannes C. Laube, Norfazrin Mohd Hanif, Patricia Martinerie, Eileen Gallacher, Paul J. Fraser, Ray Langenfelds, Carl A. M. Brenninkmeijer, Jakob Schwander, Emmanuel Witrant, Jia-Lin Wang, Chang-Feng Ou-Yang, Lauren J. Gooch, Claire E. Reeves, William T. Sturges, and David E. Oram
Atmos. Chem. Phys., 16, 15347–15358, https://doi.org/10.5194/acp-16-15347-2016, https://doi.org/10.5194/acp-16-15347-2016, 2016
Mingxi Yang, John Prytherch, Elena Kozlova, Margaret J. Yelland, Deepulal Parenkat Mony, and Thomas G. Bell
Atmos. Meas. Tech., 9, 5509–5522, https://doi.org/10.5194/amt-9-5509-2016, https://doi.org/10.5194/amt-9-5509-2016, 2016
Short summary
Short summary
The exchange of the greenhouse gases carbon dioxide and methane between the ocean and the atmosphere is of critical importance for the earth's climate. Despite this, direct measurements of these fluxes are relatively scarce, especially for methane, in large part due to instrumental challenges. In this paper, we evaluate the performance of two of the latest carbon dioxide and methane flux analysers. We also compare their detection limits to predicted air–sea fluxes of these gases.
Graham P. Mills, Glyn D. Hiatt-Gipson, Sean P. Bew, and Claire E. Reeves
Atmos. Meas. Tech., 9, 4533–4545, https://doi.org/10.5194/amt-9-4533-2016, https://doi.org/10.5194/amt-9-4533-2016, 2016
Short summary
Short summary
The paper describes the development of an instrument to measure isoprene-derived nitrates in the atmosphere, compounds that are crucial to understanding the impact of biogenic hydrocarbons on ozone production. The instrument is suitable for deployment in field studies.
Carolyn F. Walker, Mike J. Harvey, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, Andrew S. Marriner, John A. McGregor, and Cliff S. Law
Ocean Sci., 12, 1033–1048, https://doi.org/10.5194/os-12-1033-2016, https://doi.org/10.5194/os-12-1033-2016, 2016
Alison L. Webb, Emma Leedham-Elvidge, Claire Hughes, Frances E. Hopkins, Gill Malin, Lennart T. Bach, Kai Schulz, Kate Crawfurd, Corina P. D. Brussaard, Annegret Stuhr, Ulf Riebesell, and Peter S. Liss
Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, https://doi.org/10.5194/bg-13-4595-2016, 2016
Short summary
Short summary
This paper presents concentrations of several trace gases produced by the Baltic Sea phytoplankton community during a mesocosm experiment with five different CO2 levels. Average concentrations of dimethylsulphide were lower in the highest CO2 mesocosms over a 6-week period, corresponding to previous mesocosm experiment results. No dimethylsulfoniopropionate was detected due to a methodological issue. Concentrations of iodine- and bromine-containing halocarbons were unaffected by increasing CO2.
Mingxi Yang, Thomas G. Bell, Frances E. Hopkins, Vassilis Kitidis, Pierre W. Cazenave, Philip D. Nightingale, Margaret J. Yelland, Robin W. Pascal, John Prytherch, Ian M. Brooks, and Timothy J. Smyth
Atmos. Chem. Phys., 16, 5745–5761, https://doi.org/10.5194/acp-16-5745-2016, https://doi.org/10.5194/acp-16-5745-2016, 2016
Short summary
Short summary
Coastal seas are sources of methane in the atmosphere and can fluctuate from emitting to absorbing carbon dioxide. Direct air–sea transport measurements of these two greenhouse gases in near shore regions remain scarce. From a recently established coastal atmospheric station on the south-west coast of the UK, we observed that the oceanic absorption of carbon dioxide peaked during the phytoplankton bloom, while methane emission varied with the tidal cycle, likely due to an estuary influence.
Mingxi Yang, Thomas G. Bell, Frances E. Hopkins, and Timothy J. Smyth
Atmos. Chem. Phys., 16, 4771–4783, https://doi.org/10.5194/acp-16-4771-2016, https://doi.org/10.5194/acp-16-4771-2016, 2016
Short summary
Short summary
Exhausts from ships are an important source of air pollution in coastal regions. We observed a ~ 3 fold reduction in the level of sulfur dioxide (a principle pollutant) from the English Channel from 2014 to 2015 after the new International Maritime Organisation regulation on ship sulfur emission became law. Our estimated ship's fuel sulfur content shows a high degree of compliance. Dimethylsulfide from the marine biota becomes a relatively more important source of sulfur in coastal marine air.
T. G. Bell, W. De Bruyn, C. A. Marandino, S. D. Miller, C. S. Law, M. J. Smith, and E. S. Saltzman
Atmos. Chem. Phys., 15, 1783–1794, https://doi.org/10.5194/acp-15-1783-2015, https://doi.org/10.5194/acp-15-1783-2015, 2015
E. A. Marais, D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu, J. G. Murphy, C. E. Reeves, and H. O. T. Pye
Atmos. Chem. Phys., 14, 7693–7703, https://doi.org/10.5194/acp-14-7693-2014, https://doi.org/10.5194/acp-14-7693-2014, 2014
M. Yang, R. Beale, P. Liss, M. Johnson, B. Blomquist, and P. Nightingale
Atmos. Chem. Phys., 14, 7499–7517, https://doi.org/10.5194/acp-14-7499-2014, https://doi.org/10.5194/acp-14-7499-2014, 2014
D. Stone, M. J. Evans, H. Walker, T. Ingham, S. Vaughan, B. Ouyang, O. J. Kennedy, M. W. McLeod, R. L. Jones, J. Hopkins, S. Punjabi, R. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, L. J. Carpenter, G. Forster, D. E. Oram, C. E. Reeves, S. Bauguitte, W. Morgan, H. Coe, E. Aruffo, C. Dari-Salisburgo, F. Giammaria, P. Di Carlo, and D. E. Heard
Atmos. Chem. Phys., 14, 1299–1321, https://doi.org/10.5194/acp-14-1299-2014, https://doi.org/10.5194/acp-14-1299-2014, 2014
T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. H. Christensen, and E. S. Saltzman
Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, https://doi.org/10.5194/acp-13-11073-2013, 2013
F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, and Y. Yokouchi
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, https://doi.org/10.5194/acp-13-8915-2013, 2013
M. Yang, R. Beale, T. Smyth, and B. Blomquist
Atmos. Chem. Phys., 13, 6165–6184, https://doi.org/10.5194/acp-13-6165-2013, https://doi.org/10.5194/acp-13-6165-2013, 2013
M. J. Newland, C. E. Reeves, D. E. Oram, J. C. Laube, W. T. Sturges, C. Hogan, P. Begley, and P. J. Fraser
Atmos. Chem. Phys., 13, 5551–5565, https://doi.org/10.5194/acp-13-5551-2013, https://doi.org/10.5194/acp-13-5551-2013, 2013
P. Di Carlo, E. Aruffo, M. Busilacchio, F. Giammaria, C. Dari-Salisburgo, F. Biancofiore, G. Visconti, J. Lee, S. Moller, C. E. Reeves, S. Bauguitte, G. Forster, R. L. Jones, and B. Ouyang
Atmos. Meas. Tech., 6, 971–980, https://doi.org/10.5194/amt-6-971-2013, https://doi.org/10.5194/amt-6-971-2013, 2013
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Flaring efficiencies and NOx emission ratios measured for offshore oil and gas facilities in the North Sea
Measurement report: Long-range transport and the fate of dimethyl sulfide oxidation products in the free troposphere derived from observations at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes
Formaldehyde and hydroperoxide distribution around the Arabian Peninsula – evaluation of EMAC model results with ship-based measurements
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected
Fundamental oxidation processes in the remote marine atmosphere investigated using the NO–NO2–O3 photostationary state
Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires
The unexpected high frequency of nocturnal surface ozone enhancement events over China: characteristics and mechanisms
Source apportionment of VOCs, IVOCs and SVOCs by positive matrix factorization in suburban Livermore, California
Measurement report: Intra- and interannual variability and source apportionment of volatile organic compounds during 2018–2020 in Zhengzhou, central China
Formation and impacts of nitryl chloride in Pearl River Delta
Multidecadal increases in global tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce ozone trends?
What caused ozone pollution during the 2022 Shanghai lockdown? Insights from ground and satellite observations
Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air
Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station
Are dense networks of low-cost nodes really useful for monitoring air pollution? A case study in Staffordshire
Pandemic Restrictions in 2020 highlight the significance of non-road NOx sources in central London
Technical note: Northern midlatitude baseline ozone – long-term changes and the COVID-19 impact
Quantifying the importance of vehicle ammonia emissions in an urban area of northeastern USA utilizing nitrogen isotopes
Seasonal variation in nitryl chloride and its relation to gas-phase precursors during the JULIAC campaign in Germany
O3-precursor relationship over multiple patterns of time scale: A case study in Zibo, Shandong Province, China
Radical chemistry in the Pearl River Delta: observations and modeling of OH and HO2 radicals in Shenzhen in 2018
Reconciling the total carbon budget for boreal forest wildfire emissions using airborne observations
Summer variability of the atmospheric NO2 : NO ratio at Dome C on the East Antarctic Plateau
Measurement report: Ambient volatile organic compound (VOC) pollution in urban Beijing: characteristics, sources, and implications for pollution control
Mass spectrometric measurements of ambient ions and estimation of gaseous sulfuric acid in the free troposphere and lowermost stratosphere during the CAFE-EU/BLUESKY campaign
Springtime nitrogen oxides and tropospheric ozone in Svalbard: results from the measurement station network
Measurement report: Observations of long-lived volatile organic compounds from the 2019–2020 Australian wildfires during the COALA campaign
Experimental chemical budgets of OH, HO2 and RO2 radicals in rural air in West-Germany during the JULIAC campaign 2019
Composition and reactivity of volatile organic compounds in the South Coast Air Basin and San Joaquin Valley of California
Analysis of regional CO2 contributions at the high Alpine observatory Jungfraujoch by means of atmospheric transport simulations and δ13C
Variations and sources of volatile organic compounds (VOCs) in urban region: insights from measurements on a tall tower
Elucidate the Formation Mechanism of Particulate Nitrate Based on Direct Radical Observations in Yangtze River Delta summer 2019
Tropical peat fire emissions: 2019 field measurements in Sumatra and Borneo and synthesis with previous studies
Sulfuric acid in the Amazon basin: measurements and evaluation of existing sulfuric acid proxies
Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol
Oxygenated volatile organic compounds (VOCs) as significant but varied contributors to VOC emissions from vehicles
The impacts of wildfires on ozone production and boundary layer dynamics in California's Central Valley
Distribution of hydrogen peroxide over Europe during the BLUESKY aircraft campaign
Eddy covariance measurements highlight sources of nitrogen oxide emissions missing from inventories for central London
Chemical and dynamical identification of emission outflows during the HALO campaign EMeRGe in Europe and Asia
Budget of nitrous acid (HONO) at an urban site in the fall season of Guangzhou, China
Long-term trend of ozone pollution in China during 2014–2020: distinct seasonal and spatial characteristics and ozone sensitivity
Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula
Measurement report: Variations in surface SO2 and NOx mixing ratios from 2004 to 2016 at a background site in the North China Plain
Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements
Spatiotemporal variations of the δ(O2 ∕ N2), CO2 and δ(APO) in the troposphere over the western North Pacific
OH and HO2 radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018
Towards reconstructing the Arctic atmospheric methane history over the 20th century: measurement and modelling results for the North Greenland Ice Core Project firn
Atmospheric gas-phase composition over the Indian Ocean
Joint occurrence of heatwaves and ozone pollution and increased health risks in Beijing, China: role of synoptic weather pattern and urbanization
Jacob T. Shaw, Amy Foulds, Shona Wilde, Patrick Barker, Freya A. Squires, James Lee, Ruth Purvis, Ralph Burton, Ioana Colfescu, Stephen Mobbs, Samuel Cliff, Stéphane J.-B. Bauguitte, Stuart Young, Stefan Schwietzke, and Grant Allen
Atmos. Chem. Phys., 23, 1491–1509, https://doi.org/10.5194/acp-23-1491-2023, https://doi.org/10.5194/acp-23-1491-2023, 2023
Short summary
Short summary
Flaring is used by the oil and gas sector to dispose of unwanted natural gas or for safety. However, few studies have assessed the efficiency with which the gas is combusted. We sampled flaring emissions from offshore facilities in the North Sea. Average measured flaring efficiencies were ~ 98 % but with a skewed distribution, including many flares of lower efficiency. NOx and ethane emissions were also measured. Inefficient flaring practices could be a target for mitigating carbon emissions.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Dirk Dienhart, Bettina Brendel, John N. Crowley, Philipp G. Eger, Hartwig Harder, Monica Martinez, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Sebastian Tauer, David Walter, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023, https://doi.org/10.5194/acp-23-119-2023, 2023
Short summary
Short summary
Formaldehyde and hydroperoxide measurements were performed in the marine boundary layer around the Arabian Peninsula and highlight the Suez Canal and Arabian (Persian) Gulf as a hotspot of photochemical air pollution. A comparison with the EMAC model shows that the formaldehyde results match within a factor of 2, while hydrogen peroxide was overestimated by more than a factor of 5, which revealed enhanced HOx (OH+HO2) radicals in the simulation and an underestimation of dry deposition velocites.
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven C. Wofsy
Atmos. Chem. Phys., 23, 99–117, https://doi.org/10.5194/acp-23-99-2023, https://doi.org/10.5194/acp-23-99-2023, 2023
Short summary
Short summary
We have prepared a unique and unusual result from the recent ATom aircraft mission: a measurement-based derivation of the production and loss rates of ozone and methane over the ocean basins. These are the key products of chemistry models used in assessments but have thus far lacked observational metrics. It also shows the scales of variability of atmospheric chemical rates and provides a major challenge to the atmospheric models.
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 22, 15747–15765, https://doi.org/10.5194/acp-22-15747-2022, https://doi.org/10.5194/acp-22-15747-2022, 2022
Short summary
Short summary
The cycling of NO and NO2 is important to understand to be able to predict O3 concentrations in the atmosphere. We have used long-term measurements from the Cape Verde Atmospheric Observatory together with model outputs to investigate the cycling of nitrogen oxide (NO) and nitrogen dioxide (NO2) in very clean marine air. This study shows that we understand the processes occurring in very clean air, but with small amounts of pollution in the air, known chemistry cannot explain what is observed.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Cheng He, Xiao Lu, Haolin Wang, Haichao Wang, Yan Li, Guowen He, Yuanping He, Yurun Wang, Youlang Zhang, Yiming Liu, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 22, 15243–15261, https://doi.org/10.5194/acp-22-15243-2022, https://doi.org/10.5194/acp-22-15243-2022, 2022
Short summary
Short summary
We report that nocturnal ozone enhancement (NOE) events are observed at a high annual frequency of 41 % over 800 sites in China in 2014–2019 (about 50 % higher than that over Europe or the US). High daytime ozone provides a rich ozone source in the nighttime residual layer, determining the overall high frequency of NOE events in China, and enhanced atmospheric mixing then triggers NOE events by allowing the ozone-rich air in the residual layer to be mixed into the nighttime boundary layer.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Greg T. Drozd, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 14987–15019, https://doi.org/10.5194/acp-22-14987-2022, https://doi.org/10.5194/acp-22-14987-2022, 2022
Short summary
Short summary
We measured volatile and intermediate-volatility gases and semivolatile gas- and particle-phase compounds in the atmosphere during an 11 d period in a Bay Area suburb. We separated compounds based on variability in time to arrive at 13 distinct sources. Some compounds emitted from plants are found in greater quantities as fragrance compounds in consumer products. The wide volatility range of these measurements enables the construction of more complete source profiles.
Shijie Yu, Shenbo Wang, Ruixin Xu, Dong Zhang, Meng Zhang, Fangcheng Su, Xuan Lu, Xiao Li, Ruiqin Zhang, and Lingling Wang
Atmos. Chem. Phys., 22, 14859–14878, https://doi.org/10.5194/acp-22-14859-2022, https://doi.org/10.5194/acp-22-14859-2022, 2022
Short summary
Short summary
In this study, the hourly data of 57 VOC species were collected during 2018–2020 at an urban site in Zhengzhou, China. The research of concentrations, source apportionment, and atmospheric environmental implications clearly elucidated the differences in major reactants observed in different seasons and years. Therefore, the control strategy should focus on key species and sources among interannual and seasonal variations. The results can provide references to develop control strategies.
Haichao Wang, Bin Yuan, E Zheng, Xiaoxiao Zhang, Jie Wang, Keding Lu, Chenshuo Ye, Lei Yang, Shan Huang, Weiwei Hu, Suxia Yang, Yuwen Peng, Jipeng Qi, Sihang Wang, Xianjun He, Yubin Chen, Tiange Li, Wenjie Wang, Yibo Huangfu, Xiaobing Li, Mingfu Cai, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 14837–14858, https://doi.org/10.5194/acp-22-14837-2022, https://doi.org/10.5194/acp-22-14837-2022, 2022
Short summary
Short summary
We present intensive field measurement of ClNO2 in the Pearl River Delta in 2019. Large variation in the level, formation, and atmospheric impacts of ClNO2 was found in different air masses. ClNO2 formation was limited by the particulate chloride (Cl−) and aerosol surface area. Our results reveal that Cl− originated from various anthropogenic emissions rather than sea sources and show minor contribution to the O3 pollution and photochemistry.
Amy Christiansen, Loretta J. Mickley, Junhua Liu, Luke D. Oman, and Lu Hu
Atmos. Chem. Phys., 22, 14751–14782, https://doi.org/10.5194/acp-22-14751-2022, https://doi.org/10.5194/acp-22-14751-2022, 2022
Short summary
Short summary
Understanding tropospheric ozone trends is crucial for accurate predictions of future air quality and climate, but drivers of trends are not well understood. We analyze global tropospheric ozone trends since 1980 using ozonesonde and surface measurements, and we evaluate two models for their ability to reproduce trends. We find observational evidence of increasing tropospheric ozone, but models underestimate these increases. This hinders our ability to estimate ozone radiative forcing.
Yue Tan and Tao Wang
Atmos. Chem. Phys., 22, 14455–14466, https://doi.org/10.5194/acp-22-14455-2022, https://doi.org/10.5194/acp-22-14455-2022, 2022
Short summary
Short summary
We present a timely analysis of the effects of the recent lockdown in Shanghai on ground-level ozone (O3). Despite a huge reduction in human activity, O3 concentrations frequently exceeded the O3 air quality standard during the 2-month lockdown, implying that future emission reductions similar to those that occurred during the lockdown will not be sufficient to eliminate O3 pollution in many urban areas without the imposition of additional VOC controls or substantial decreases in NOx emissions.
Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner
Atmos. Chem. Phys., 22, 14377–14399, https://doi.org/10.5194/acp-22-14377-2022, https://doi.org/10.5194/acp-22-14377-2022, 2022
Short summary
Short summary
Ammonium adduct chemical ionization is used to examine the atmospheric abundances of oxygenated volatile organic compounds associated with emissions from volatile chemical products, which are now key contributors of reactive precursors to ozone and secondary organic aerosols in urban areas. The application of this valuable measurement approach in densely populated New York City enables the evaluation of emissions inventories and thus the role these oxygenated compounds play in urban air quality.
Vanessa Selimovic, Damien Ketcherside, Sreelekha Chaliyakunnel, Catherine Wielgasz, Wade Permar, Hélène Angot, Dylan B. Millet, Alan Fried, Detlev Helmig, and Lu Hu
Atmos. Chem. Phys., 22, 14037–14058, https://doi.org/10.5194/acp-22-14037-2022, https://doi.org/10.5194/acp-22-14037-2022, 2022
Short summary
Short summary
Arctic warming has led to an increase in plants that emit gases in response to stress, but how these gases affect regional chemistry is largely unknown due to lack of observational data. Here we present the most comprehensive gas-phase measurements for this area to date and compare them to predictions from a global transport model. We report 78 gas-phase species and investigate their importance to atmospheric chemistry in the area, with broader implications for similar plant types.
Louise Bøge Frederickson, Ruta Sidaraviciute, Johan Albrecht Schmidt, Ole Hertel, and Matthew Stanley Johnson
Atmos. Chem. Phys., 22, 13949–13965, https://doi.org/10.5194/acp-22-13949-2022, https://doi.org/10.5194/acp-22-13949-2022, 2022
Short summary
Short summary
Low-cost sensors see additional pollution that is not seen with traditional regional air quality monitoring stations. This additional local pollution is sufficient to cause exceedance of the World Health Organization exposure thresholds. Analysis shows that a significant amount of the NO2 pollution we observe is local, mainly due to road traffic. This article demonstrates how networks of nodes containing low-cost pollution sensors can powerfully extend existing monitoring programmes.
Samuel J. Cliff, Will Drysdale, James D. Lee, Carole Helfter, Eiko Nemitz, Stefan Metzger, and Janet F. Barlow
EGUsphere, https://doi.org/10.5194/egusphere-2022-956, https://doi.org/10.5194/egusphere-2022-956, 2022
Short summary
Short summary
Emissions of nitrogen oxides (NOx) to the atmosphere are an ongoing air quality issue. This study directly measures emissions of NOx and carbon dioxide from a tall tower in central London during the coronavirus pandemic. It was found that transport NOx emissions had reduced by > 75 % since 2017 as a result of air quality policy and reduced congestion during coronavirus restrictions. During this period, central London was thought to be dominated by point source heat and power generation emissions.
David D. Parrish, Richard G. Derwent, Ian C. Faloona, and Charles A. Mims
Atmos. Chem. Phys., 22, 13423–13430, https://doi.org/10.5194/acp-22-13423-2022, https://doi.org/10.5194/acp-22-13423-2022, 2022
Short summary
Short summary
Accounting for the continuing long-term decrease of pollution ozone and the large 2020 Arctic stratospheric ozone depletion event improves estimates of background ozone changes caused by COVID-19-related emission reductions; they are smaller than reported earlier. Cooperative, international emission control efforts aimed at maximizing the ongoing decrease in hemisphere-wide background ozone may be the most effective approach to improving ozone pollution in northern midlatitude countries.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Zhaofeng Tan, Hendrik Fuchs, Andreas Hofzumahaus, William J. Bloss, Birger Bohn, Changmin Cho, Thorsten Hohaus, Frank Holland, Chandrakiran Lakshmisha, Lu Liu, Paul S. Monks, Anna Novelli, Doreen Niether, Franz Rohrer, Ralf Tillmann, Thalassa S. E. Valkenburg, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Roberto Sommariva
Atmos. Chem. Phys., 22, 13137–13152, https://doi.org/10.5194/acp-22-13137-2022, https://doi.org/10.5194/acp-22-13137-2022, 2022
Short summary
Short summary
During the 2019 JULIAC campaign, ClNO2 was measured at a rural site in Germany in different seasons. The highest ClNO2 level was 1.6 ppbv in September. ClNO2 production was more sensitive to the availability of NO2 than O3. The average ClNO2 production efficiency was up to 18 % in February and September and down to 3 % in December. These numbers are at the high end of the values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
Zhensen Zheng, Kangwei Li, Bo Xu, Jianping Dou, Liming Li, Guotao Zhang, Shijie Li, Chunmei Geng, Wen Yang, Merched Azzi, and Zhipeng Bai
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-592, https://doi.org/10.5194/acp-2022-592, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Previous box model studies applied different timescales of observational datasets to identify the O3-precursor relationship, but there is a lack of comparison among these different timescales upon the impact of O3 formation chemistry. Through a case study at Zibo of China, we find that the O3 formation regime showed overall consistency but non-negligible variability among various patterns of timescale. This would be complementary in developing more accurate O3 pollution control strategy.
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022, https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Short summary
We present the OH and HO2 radical observations at the Shenzhen site (Pearl River Delta, China) in the autumn of 2018. The diurnal maxima were 4.5 × 106 cm−3 for OH and 4.2 × 108 cm−3 for HO2 (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime). The OH underestimation was identified again, and it was attributable to the missing OH sources. HO2 heterogeneous uptake, ROx sources and sinks, and the atmospheric oxidation capacity were evaluated as well.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Albane Barbero, Roberto Grilli, Markus M. Frey, Camille Blouzon, Detlev Helmig, Nicolas Caillon, and Joël Savarino
Atmos. Chem. Phys., 22, 12025–12054, https://doi.org/10.5194/acp-22-12025-2022, https://doi.org/10.5194/acp-22-12025-2022, 2022
Short summary
Short summary
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of nitrogen oxides produced during photo-denitrification of the snowpack, but its underlying mechanisms are not yet fully understood. The results of this study suggest that more NO2 is produced from the snowpack early in the photolytic season, possibly due to stronger UV irradiance caused by a smaller solar zenith angle near the solstice.
Lulu Cui, Di Wu, Shuxiao Wang, Qingcheng Xu, Ruolan Hu, and Jiming Hao
Atmos. Chem. Phys., 22, 11931–11944, https://doi.org/10.5194/acp-22-11931-2022, https://doi.org/10.5194/acp-22-11931-2022, 2022
Short summary
Short summary
A 1-year campaign was conducted to characterize VOCs at a Beijing urban site during different episodes. VOCs from fuel evaporation and diesel exhaust, particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene, and 1-hexene, were the main contributors. VOCs from diesel exhaust as well as coal and biomass combustion were found to be the dominant contributors for SOAFP, particularly the VOC species toluene, 1-hexene, xylenes, ethylbenzene, and styrene.
Marcel Zauner-Wieczorek, Martin Heinritzi, Manuel Granzin, Timo Keber, Andreas Kürten, Katharina Kaiser, Johannes Schneider, and Joachim Curtius
Atmos. Chem. Phys., 22, 11781–11794, https://doi.org/10.5194/acp-22-11781-2022, https://doi.org/10.5194/acp-22-11781-2022, 2022
Short summary
Short summary
We present measurements of ambient ions in the free troposphere and lower stratosphere over Europe in spring 2020. We observed nitrate and hydrogen sulfate, amongst others. From their ratio, the number concentrations of gaseous sulfuric acid were inferred. Nitrate increased towards the stratosphere, whilst sulfuric acid was slightly decreased there. The average values for sulfuric acid were 1.9 to 7.8 × 105 cm-3. Protonated pyridine was identified in an altitude range of 4.6 to 8.5 km.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Asher P. Mouat, Clare Paton-Walsh, Jack B. Simmons, Jhonathan Ramirez-Gamboa, David W. T. Griffith, and Jennifer Kaiser
Atmos. Chem. Phys., 22, 11033–11047, https://doi.org/10.5194/acp-22-11033-2022, https://doi.org/10.5194/acp-22-11033-2022, 2022
Short summary
Short summary
We examine emissions of volatile organic compounds from 2020 wildfires in forested regions of Australia (AU). We find that biomass burning in temperate regions of the US and AU emit similar species in similar proportion, both in natural and lab settings. This suggests studies of wildfires in one region may be used to help improve air quality models in other parts of the world. We observe time series of ozone and nitrogen dioxide. Last, we look at which compounds contribute most to OH reactivity.
Changmin Cho, Hendrik Fuchs, Andreas Hofzumahaus, Frank Holland, William J. Bloss, Birger Bohn, Hans-Peter Dorn, Marvin Glowania, Thorsten Hohaus, Lu Liu, Paul S. Monks, Doreen Niether, Franz Rohrer, Roberto Sommariva, Zhaofeng Tan, Ralf Tillmann, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
EGUsphere, https://doi.org/10.5194/egusphere-2022-820, https://doi.org/10.5194/egusphere-2022-820, 2022
Short summary
Short summary
With this study, we investigated the processes leading to the formation, destruction, and recycling of radicals for four seasons in a rural environment. A complete knowledge of their chemistry is needed if we are to predict the formation of secondary pollutants from primary emissions. The results highlighted an incomplete understanding of the paths leading to the formation of the OH radical and that has been observed in several different environments and that needs to be investigated further.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Simone M. Pieber, Béla Tuzson, Stephan Henne, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Dominik Brunner, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 22, 10721–10749, https://doi.org/10.5194/acp-22-10721-2022, https://doi.org/10.5194/acp-22-10721-2022, 2022
Short summary
Short summary
Understanding regional greenhouse gas emissions into the atmosphere is a prerequisite to mitigate climate change. In this study, we investigated the regional contributions of carbon dioxide (CO2) at the location of the high Alpine observatory Jungfraujoch (JFJ, Switzerland, 3580 m a.s.l.). To this purpose, we combined receptor-oriented atmospheric transport simulations for CO2 concentration in the period 2009–2017 with stable carbon isotope (δ13C–CO2) information.
Xiao-Bing Li, Bin Yuan, Sihang Wang, Chunlin Wang, Jing Lan, Zhijie Liu, Yongxin Song, Xianjun He, Yibo Huangfu, Chenglei Pei, Peng Cheng, Suxia Yang, Jipeng Qi, Caihong Wu, Shan Huang, Yingchang You, Ming Chang, Huadan Zheng, Wenda Yang, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 10567–10587, https://doi.org/10.5194/acp-22-10567-2022, https://doi.org/10.5194/acp-22-10567-2022, 2022
Short summary
Short summary
High-time-resolution measurements of volatile organic compounds (VOCs) were made using an online mass spectrometer at a 600 m tall tower in urban region. Compositions, temporal variations, and sources of VOCs were quantitatively investigated in this study. We find that VOC measurements in urban regions aloft could better characterize source characteristics of anthropogenic emissions. Our results could provide important implications in making future strategies for control of VOCs.
Tianyu Zhai, Keding Lu, Haichao Wang, Shengrong Lou, Xiaorui Chen, Renzhi Hu, and Yuanhang Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-548, https://doi.org/10.5194/acp-2022-548, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Particulate nitrate is a growing issue in the air pollution. Based on a comprehensive field measurement, we show a heavy nitrate pollution in eastern China in summer. OH reacts with NO2 at daytime dominates nitrate formation on clean days while N2O5 hydrolysis largely enhanced and become comparable with that of OH reacts with O2 during polluted days (47.1 % and 52.9 %). Model simulation indicates that VOCs: NOx = 2:1 is effective to mitigate the O3 and nitrate pollution coordinately.
Robert J. Yokelson, Bambang H. Saharjo, Chelsea E. Stockwell, Erianto I. Putra, Thilina Jayarathne, Acep Akbar, Israr Albar, Donald R. Blake, Laura L. B. Graham, Agus Kurniawan, Simone Meinardi, Diah Ningrum, Ati D. Nurhayati, Asmadi Saad, Niken Sakuntaladewi, Eko Setianto, Isobel J. Simpson, Elizabeth A. Stone, Sigit Sutikno, Andri Thomas, Kevin C. Ryan, and Mark A. Cochrane
Atmos. Chem. Phys., 22, 10173–10194, https://doi.org/10.5194/acp-22-10173-2022, https://doi.org/10.5194/acp-22-10173-2022, 2022
Short summary
Short summary
Fire plus non-fire GHG emissions associated with draining peatlands are the largest per area of any land use change considered by the IPCC. To characterize average and variability for tropical peat fire emissions, highly mobile smoke sampling teams were deployed across four Indonesian provinces to explore an extended interannual, climatic, and spatial range. Large adjustments to IPCC-recommended emissions are suggested. Lab data bolster an extensive emissions database for tropical peat fires.
Deanna C. Myers, Saewung Kim, Steven Sjostedt, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 22, 10061–10076, https://doi.org/10.5194/acp-22-10061-2022, https://doi.org/10.5194/acp-22-10061-2022, 2022
Short summary
Short summary
We present the first measurements of gas-phase sulfuric acid from the Amazon basin and evaluate the efficacy of existing sulfuric acid parameterizations in this understudied region. Sulfuric acid is produced during the daytime and nighttime, though current proxies underestimate nighttime production. These results illustrate the need for better parameterizations of sulfuric acid and its precursors that are informed by measurements across a broad range of locations.
Yishuo Guo, Chao Yan, Yuliang Liu, Xiaohui Qiao, Feixue Zheng, Ying Zhang, Ying Zhou, Chang Li, Xiaolong Fan, Zhuohui Lin, Zemin Feng, Yusheng Zhang, Penggang Zheng, Linhui Tian, Wei Nie, Zhe Wang, Dandan Huang, Kaspar R. Daellenbach, Lei Yao, Lubna Dada, Federico Bianchi, Jingkun Jiang, Yongchun Liu, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 10077–10097, https://doi.org/10.5194/acp-22-10077-2022, https://doi.org/10.5194/acp-22-10077-2022, 2022
Short summary
Short summary
Gaseous oxygenated organic molecules (OOMs) are able to form atmospheric aerosols, which will impact on human health and climate change. Here, we find that OOMs in urban Beijing are dominated by anthropogenic sources, i.e. aromatic (29 %–41 %) and aliphatic (26 %–41 %) OOMs. They are also the main contributors to the condensational growth of secondary organic aerosols (SOAs). Therefore, the restriction on anthropogenic VOCs is crucial for the reduction of SOAs and haze formation.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Keming Pan and Ian C. Faloona
Atmos. Chem. Phys., 22, 9681–9702, https://doi.org/10.5194/acp-22-9681-2022, https://doi.org/10.5194/acp-22-9681-2022, 2022
Short summary
Short summary
This work represents a unique analysis of 10 existing air quality network sites and meteorological sites, two AmeriFlux sites, and a radio acoustic sounding system in the Central Valley of California during five consecutive fire seasons, June through September, from 2016 to 2020. We find that the ozone production rate increases by ~ 50 % during wildfire influenced periods. Wildfire smoke also decreases the heat flux by 30 % and results in 12 % lower mixed-layer height.
Zaneta T. Hamryszczak, Andrea Pozzer, Florian Obersteiner, Birger Bohn, Benedikt Steil, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 9483–9497, https://doi.org/10.5194/acp-22-9483-2022, https://doi.org/10.5194/acp-22-9483-2022, 2022
Short summary
Short summary
Hydrogen peroxide plays a pivotal role in the chemistry of the atmosphere. Together with organic hydroperoxides, it forms a reservoir for peroxy radicals, which are known to be the key contributors to the self-cleaning processes of the atmosphere. Hydroperoxides were measured over Europe during the BLUESKY campaign in May–June 2020. The paper gives an overview of the distribution of the species in the troposphere and investigates the impact of wet scavenging and deposition on the budget of H2O2.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Eric Förster, Harald Bönisch, Marco Neumaier, Florian Obersteiner, Andreas Zahn, Andreas Hilboll, Anna Beata Kalisz Hedegaard, Nikos Daskalakis, Alexandros Panagiotis Poulidis, Mihalis Vrekoussis, Michael Lichtenstern, and Peter Braesicke
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-455, https://doi.org/10.5194/acp-2022-455, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
The airborne megacity campaign EMeRGe provided an unprecedented amount of trace gas measurements. We combine measured volatile organic compounds (VOCs) with trajectory-modelled emission uptakes to identify potential source regions of pollution. We also characterise the chemical fingerprints (e.g. biomass burning and anthropogenic signatures) of the probed air-masses to corroborate the contributing source regions. Our approach is the first large-scale study of VOCs originating from megacities.
Yihang Yu, Peng Cheng, Huirong Li, Wenda Yang, Baobin Han, Wei Song, Weiwei Hu, Xinming Wang, Bin Yuan, Min Shao, Zhijiong Huang, Zhen Li, Junyu Zheng, Haichao Wang, and Xiaofang Yu
Atmos. Chem. Phys., 22, 8951–8971, https://doi.org/10.5194/acp-22-8951-2022, https://doi.org/10.5194/acp-22-8951-2022, 2022
Short summary
Short summary
We have investigated the budget of HONO at an urban site in Guangzhou. Budget and comprehensive uncertainty analysis suggest that at such locations as ours, HONO direct emissions and NO + OH can become comparable or even surpass other HONO sources that typically receive greater attention and interest, such as the NO2 heterogeneous source and the unknown daytime photolytic source. Our findings emphasize the need to reduce the uncertainties of both conventional and novel HONO sources and sinks.
Wenjie Wang, David D. Parrish, Siwen Wang, Fengxia Bao, Ruijing Ni, Xin Li, Suding Yang, Hongli Wang, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 8935–8949, https://doi.org/10.5194/acp-22-8935-2022, https://doi.org/10.5194/acp-22-8935-2022, 2022
Short summary
Short summary
Tropospheric ozone is an air pollutant that is detrimental to human health, vegetation and ecosystem productivity. A comprehensive characterisation of the spatial and temporal distribution of tropospheric ozone is critical to our understanding of these issues. Here we summarise this distribution over China from the available observational records to the extent possible. This study provides insights into efficient future ozone control strategies in China.
Lauriane L. J. Quéléver, Lubna Dada, Eija Asmi, Janne Lampilahti, Tommy Chan, Jonathan E. Ferrara, Gustavo E. Copes, German Pérez-Fogwill, Luis Barreira, Minna Aurela, Douglas R. Worsnop, Tuija Jokinen, and Mikko Sipilä
Atmos. Chem. Phys., 22, 8417–8437, https://doi.org/10.5194/acp-22-8417-2022, https://doi.org/10.5194/acp-22-8417-2022, 2022
Short summary
Short summary
Understanding how aerosols form is crucial for correctly modeling the climate and improving future predictions. This work provides extensive analysis of aerosol particles and their precursors at Marambio Station, Antarctic Peninsula. We show that sulfuric acid, ammonia, and dimethylamine are key contributors to the frequent new particle formation events observed at the site. We discuss nucleation mechanisms and highlight the need for targeted measurement to fully understand these processes.
Xueli Liu, Liang Ran, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Fan Dong, Di He, Liyan Zhou, Qingfeng Shi, and Yao Wang
Atmos. Chem. Phys., 22, 7071–7085, https://doi.org/10.5194/acp-22-7071-2022, https://doi.org/10.5194/acp-22-7071-2022, 2022
Short summary
Short summary
Significant decreases in annual mean NOx from 2011 to 2016 and SO2 from 2008 to 2016 confirm the effectiveness of relevant control measures on the reduction in NOx and SO2 emissions in the North China Plain (NCP). NOx at SDZ had a weaker influence than SO2 on the emission reduction in Beijing and other areas in the NCP. An increase in the number of motor vehicles and weak traffic restrictions have caused vehicle emissions of NOx, which indicates that NOx emission control should be strengthened.
Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, Akima Ringsdorf, Achim Edtbauer, Horst Fischer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 7051–7069, https://doi.org/10.5194/acp-22-7051-2022, https://doi.org/10.5194/acp-22-7051-2022, 2022
Short summary
Short summary
We measured the gas-phase reactivity of the NO3 radical on the summit (825 m a.s.l.) of a semi-rural mountain in southwestern Germany in July 2021. The impact of VOC-induced NO3 losses (mostly monoterpenes) competing with a loss by reaction with NO and photolysis throughout the diel cycle was estimated. Besides chemistry, boundary layer dynamics and plant-physiological processes presumably have a great impact on our observations, which were compared to previous NO3 measurements at the same site.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Yosuke Niwa, Hidekazu Matsueda, Shohei Murayama, Kentaro Ishijima, and Kazuyuki Saito
Atmos. Chem. Phys., 22, 6953–6970, https://doi.org/10.5194/acp-22-6953-2022, https://doi.org/10.5194/acp-22-6953-2022, 2022
Short summary
Short summary
The atmospheric O2 / N2 ratio and CO2 concentration over the western North Pacific are presented. We found significant modification of the seasonal APO cycle in the middle troposphere due to the interhemispheric mixing of air. APO driven by the net marine biological activities indicated annual sea–air O2 flux during El Niño. Terrestrial biospheric and oceanic CO2 uptakes during 2012–2019 were estimated to be 1.8 and 2.8 Pg C a−1, respectively.
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 7005–7028, https://doi.org/10.5194/acp-22-7005-2022, https://doi.org/10.5194/acp-22-7005-2022, 2022
Short summary
Short summary
This paper presents the first OH and HO2 radical observations made in the Yangtze River Delta in China, and strong oxidation capacity is discovered based on direct measurements. The impacts of new OH regeneration mechanisms, monoterpene oxidation, and HO2 uptake processes are examined and discussed. The sources and the factors to sustain such strong oxidation are the key to understanding the ozone pollution formed in this area.
Taku Umezawa, Satoshi Sugawara, Kenji Kawamura, Ikumi Oyabu, Stephen J. Andrews, Takuya Saito, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 22, 6899–6917, https://doi.org/10.5194/acp-22-6899-2022, https://doi.org/10.5194/acp-22-6899-2022, 2022
Short summary
Short summary
Greenhouse gas methane in the Arctic atmosphere has not been accurately reported for 1900–1980 from either direct observations or ice core reconstructions. By using trace gas data from firn (compacted snow layers above ice sheet), air samples at two Greenland sites, and a firn air transport model, this study suggests a likely range of the Arctic methane reconstruction for the 20th century. Atmospheric scenarios from two previous studies are also evaluated for consistency with the firn data sets.
Susann Tegtmeier, Christa Marandino, Yue Jia, Birgit Quack, and Anoop S. Mahajan
Atmos. Chem. Phys., 22, 6625–6676, https://doi.org/10.5194/acp-22-6625-2022, https://doi.org/10.5194/acp-22-6625-2022, 2022
Short summary
Short summary
In the atmosphere over the Indian Ocean, intense anthropogenic pollution from Southeast Asia mixes with pristine oceanic air. During the winter monsoon, high pollution levels are regularly observed over the entire northern Indian Ocean, while during the summer monsoon, clean air dominates. Here, we review current progress in detecting and understanding atmospheric gas-phase composition over the Indian Ocean and its impacts on the upper atmosphere, oceanic biogeochemistry, and marine ecosystems.
Lian Zong, Yuanjian Yang, Haiyun Xia, Meng Gao, Zhaobin Sun, Zuofang Zheng, Xianxiang Li, Guicai Ning, Yubin Li, and Simone Lolli
Atmos. Chem. Phys., 22, 6523–6538, https://doi.org/10.5194/acp-22-6523-2022, https://doi.org/10.5194/acp-22-6523-2022, 2022
Short summary
Short summary
Heatwaves (HWs) paired with higher ozone (O3) concentration at surface level pose a serious threat to human health. Taking Beijing as an example, three unfavorable synoptic weather patterns were identified to dominate the compound HW and O3 pollution events. Under the synergistic stress of HWs and O3 pollution, public mortality risk increased, and synoptic patterns and urbanization enhanced the compound risk of events in Beijing by 33.09 % and 18.95 %, respectively.
Cited articles
Andreae, M. O., Ferek, R. J., Bermond, F., Byrd, K. P., Engstrom, R. T.,
Hardin, S., Houmere, P. D., LeMarrec, F., Raemdonck, H., and Chatfield, R.
B.: Dimethyl sulfide in the marine atmosphere, J. Geophys. Res., 90,
12891, https://doi.org/10.1029/JD090iD07p12891, 1985.
Archer, S. D., Cummings, D. G., Llewellyn, C. A., and Fishwick, J. R.:
Phytoplankton taxa, irradiance and nutrient availability determine the
seasonal cycle of DMSP in temperate shelf seas, Mar. Ecol. Prog. Ser., 394,
111–124, https://doi.org/10.3354/meps08284, 2009.
Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J.,
Bonsang, B., Gros, V., Peeken, I., Lewis, A. C., Alvain, S., and Moulin, C.:
Evaluation of the global oceanic isoprene source and its impacts on marine
organic carbon aerosol, Atmos. Chem. Phys., 9, 1253–1262,
https://doi.org/10.5194/acp-9-1253-2009, 2009.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ.,
34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic
Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Baker, A. R., Turner, S. M., Broadgate, W. J., Thompson, A., McFiggans, G.
B., Vesperini, O., Nightingal, P. D., Liss, P. S., and Jickells, T. D.:
Distribution and sea-air fluxes of biogenic trace gases in the eastern
Atlantic Ocean, Global Biogeochem. Cy., 14, 871–886,
https://doi.org/10.1029/1999GB001219, 2000.
Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean,
Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Beale, R., Dixon, J. L., Arnold, S. R., Liss, P. S., and Nightingale, P. D.:
Methanol, acetaldehyde, and acetone in the surface waters of the Atlantic
Ocean, J. Geophys. Res.-Ocean., 118, 5412–5425, https://doi.org/10.1002/jgrc.20322,
2013.
Beale, R., Dixon, J. L., Smyth, T. J., and Nightingale, P. D.: Annual study
of oxygenated volatile organic compounds in UK shelf waters, Mar. Chem.,
171, 96–106, https://doi.org/10.1016/j.marchem.2015.02.013, 2015.
Bell, T. G., de Bruyn, W. J., Miller, S. D., Ward, B., Christensen, K., and
Saltzman, E. S.: Air-sea dimethylsulfide (DMS) gas transfer in the North
Atlantic: Evidence for limited interfacial gas exchange at high wind speed,
Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013,
2013.
Bell, T. G., Landwehr, S., Miller, S. D., De Bruyn, W. J., Callaghan, A. H.,
Scanlon, B., Ward, B., Yang, M., and Saltzman, E. S.: Estimation of
bubble-mediated air-sea gas exchange from concurrent DMS and CO2 transfer
velocities at intermediate-high wind speeds, Atmos. Chem. Phys., 17,
9019–9033, https://doi.org/10.5194/acp-17-9019-2017, 2017.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in
cloud and fog droplets: A literature evaluation of plausibility, Atmos.
Environ., 34, 1623–1632, https://doi.org/10.1016/S1352-2310(99)00392-1, 2000.
Blitz, M. A., Heard, D. E., Pilling, M. J., Arnold, S. R., and Chipperfield,
M. P.: Pressure and temperature-dependent quantum yields for the
photodissociation of acetone between 279 and 327.5 nm, Geophys. Res. Lett.,
31, 1–5, https://doi.org/10.1029/2003gl018793, 2004.
Blomquist, B. W., Fairall, C. W., Huebert, B. J., Kieber, D. J., and Westby,
G. R.: DMS sea-air transfer velocity: Direct measurements by eddy covariance
amd parameterizarion based on the NOAA/COAREgas transfer model, Geophys.
Res. Lett., 33, 2–5, https://doi.org/10.1029/2006GL025735, 2006.
Blomquist, B. W., Huebert, B. J., Fairall, C. W., and Faloona, I. C.:
Determining the sea-air flux of dimethylsulfide by eddy correlation using
mass spectrometry, Atmos. Meas. Tech., 3, 1–20,
https://doi.org/10.5194/amt-3-1-2010, 2010.
Blomquist, B. W., Brumer, S. E., Fairall, C. W., Huebert, B. J., Zappa, C.
J., Brooks, I. M., Yang, M., Bariteau, L., Prytherch, J., Hare, J. E.,
Czerski, H., Matei, A., and Pascal, R. W.: Wind Speed and Sea State
Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas
Exchange Study (HiWinGS), J. Geophys. Res.-Ocean., 122, 8034–8062,
https://doi.org/10.1002/2017JC013181, 2017.
Booge, D., Marandino, C. A., Schlundt, C., Palmer, P. I., Schlundt, M.,
Atlas, E. L., Bracher, A., Saltzman, E. S., and Wallace, D. W. R.: Can simple
models predict large-scale surface ocean isoprene concentrations?, Atmos.
Chem. Phys., 16, 11807–11821, https://doi.org/10.5194/acp-16-11807-2016, 2016.
Booge, D., Schlundt, C., Bracher, A., Endres, S., Zäncker, B., and
Marandino, C. A.: Marine isoprene production and consumption in the mixed
layer of the surface ocean – a field study over two oceanic regions,
Biogeosciences, 15, 649–667, https://doi.org/10.5194/bg-15-649-2018, 2018.
Borges, A. V., Vanderborght, J. P., Schiettecatte, L. S., Gazeau, F.,
Ferrón-Smith, S., Delille, B., and Frankignoulle, M.: Variability of the
gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt),
Estuaries, 27, 593–603, https://doi.org/10.1007/BF02907647, 2004.
Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and
sources of CO2 in the coastal ocean: Diversity of ecosystem counts, Geophys.
Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023053, 2005.
Broadgate, W. J., Liss, P. S., and Penkett, S. A.: Seasonal emissions of
isoprene and other reactive hydrocarbon gases from the ocean, Geophys. Res.
Lett., 24, 2675–2678, https://doi.org/10.1029/97GL02736, 1997.
Broadgate, W. J., Malin, G., Küpper, F. C., Thompson, A., and Liss, P.
S.: Isoprene and other non-methane hydrocarbons from seaweeds: A source of
reactive hydrocarbons to the atmosphere, Mar. Chem., 88, 61–73,
https://doi.org/10.1016/j.marchem.2004.03.002, 2004.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E.,
Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
Evaluation No. 18, JPL Publ, available at:
https://jpldataeval.jpl.nasa.gov/ (last access: 10 March 2020), 2015.
Carslaw, N., Bell, N., Lewis, A. C., McQuaid, J. B., and Pilling, M. J.: A
detailed case study of isoprene chemistry during the EASE96 Mace Head
campaign, Atmos. Environ., 34, 2827–2836,
https://doi.org/10.1016/S1352-2310(00)00088-1, 2000.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature,
326, 655–661, https://doi.org/10.1038/326655a0, 1987.
Ciuraru, R., Fine, L., Pinxteren, M. Van, D'Anna, B., Herrmann, H., and
George, C.: Unravelling New Processes at Interfaces: Photochemical Isoprene
Production at the Sea Surface, Environ. Sci. Technol., 49, 13199–13205,
https://doi.org/10.1021/acs.est.5b02388, 2015.
Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary
production in the world's estuarine-coastal ecosystems, Biogeosciences,
11, 2477–2501, https://doi.org/10.5194/bg-11-2477-2014, 2014.
Dani, K. G. S. and Loreto, F.: Trade-Off Between Dimethyl Sulfide and
Isoprene Emissions from Marine Phytoplankton, Trends Plant Sci., 22,
361–372, https://doi.org/10.1016/j.tplants.2017.01.006, 2017.
de Bruyn, W. J., Clark, C. D., Pagel, L., and Singh, H.: Loss rates of
acetone in filtered and unfiltered coastal seawater, Mar. Chem., 150,
39–44, https://doi.org/10.1016/j.marchem.2013.01.003, 2013.
de Bruyn, W. J., Clark, C. D., Senstad, M., Barashy, O., and Hok, S.: The
biological degradation of acetaldehyde in coastal seawater, Mar. Chem., 192,
13–21, https://doi.org/10.1016/j.marchem.2017.02.008, 2017.
Dixon, J. L., Beale, R., and Nightingale, P. D.: Production of methanol,
acetaldehyde, and acetone in the Atlantic Ocean, Geophys. Res. Lett.,
40, 4700–4705, https://doi.org/10.1002/grl.50922, 2013.
Dixon, J. L., Beale, R., Sargeant, S. L., Tarran, G. A., and Nightingale, P.
D.: Microbial acetone oxidation in coastal seawater, Front. Microbiol.,
5, 1–9, https://doi.org/10.3389/fmicb.2014.00243, 2014.
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A.
J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.:
On the exchange of momentum over the open ocean, J. Phys. Oceanogr., 43,
1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013.
Exton, D. A., Suggett, D. J., McGenity, T. J., and Steinke, M.:
Chlorophyll-normalized isoprene production in laboratory cultures of marine
microalgae and implications for global models, Limnol. Oceanogr., 58,
1301–1311, https://doi.org/10.4319/lo.2013.58.4.1301, 2013.
Fischer, E. V., Jacob, D. J., Millet, D. B., Yantosca, R. M., and Mao, J.:
The role of the ocean in the global atmospheric budget of acetone, Geophys.
Res. Lett., 39, 3–7, https://doi.org/10.1029/2011GL050086, 2012.
Guenther, A. B., Karl, T. R., Harley, P., Wiedinmyer, C., Palmer, P. I., and
Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN
(Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys.,
6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hackenberg, S. C., Andrews, S. J., Airs, R., Arnold, S. R., Bouman, H. A.,
Brewin, R. J. W., Chance, R. J., Cummings, D., Dall'Olmo, G., Lewis, A. C.,
Minaeian, J. K., Reifel, K. M., Small, A., Tarran, G. A., Tilstone, G. H., and Carpenter, L. J.: Potential controls of isoprene in the surface ocean,
Global Biogeochem. Cy., 31, 644–662, https://doi.org/10.1002/2016GB005531, 2017.
Halsey, K. H., Giovannoni, S. J., Graus, M., Zhao, Y., Landry, Z., Thrash,
J. C., Vergin, K. L., and De Gouw, J. A.: Biological cycling of volatile
organic carbon by phytoplankton and bacterioplankton, Limnol. Oceanogr.,
62, 2650–2661, https://doi.org/10.1002/lno.10596, 2017.
Heald, C. L., Goldstein, A. H., Allan, J. D., Aiken, A. C., Apel, E. C.,
Atlas, E. L., Baker, A. K., Bates, T. S., Beyersdorf, A. J., Blake, D. R.,
Campos, T., Coe, H., Crounse, J. D., DeCarlo, P. F., De Gouw, J. A., Dunlea,
E. J., Flocke, F. M., Fried, A., Goldan, P. D., Griffin, R. J., Herndon, S.
C., Holloway, J. S., Holzinger, R., Jimenez, J. L., Junkermann, W., Kuster,
W. C., Lewis, A. C., Meinardi, S., Millet, D. B., Onasch, T., Polidori, A.,
Quinn, P. K., Riemer, D. D., Roberts, J. M., Salcedo, D., Sive, B., Swanson,
A. L., Talbot, R., Warneke, C., Weber, R. J., Weibring, P., Wennberg, P. O.,
Worsnop, D. R., Wittig, A. E., Zhang, R., Zheng, J., and Zheng, W.: Total
observed organic carbon (TOOC) in the atmosphere: A synthesis of North
American observations, Atmos. Chem. Phys., 8, 2007–2025,
https://doi.org/10.5194/acp-8-2007-2008, 2008.
Henze, D. K. and Seinfeld, J. H.: Global secondary organic aerosol from
isoprene oxidation, Geophys. Res. Lett., 33, 6–9,
https://doi.org/10.1029/2006GL025976, 2006.
Hopkins, F. E. and Archer, S. D.: Consistent increase in dimethyl sulfide
(DMS) in response to high CO2 in five shipboard bioassays from contrasting NW
European waters, Biogeosciences, 11, 4925–4940,
https://doi.org/10.5194/bg-11-4925-2014, 2014.
Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J.,
Granier, C., Tie, X., Lamarque, J. F., Schultz, M. G., Tyndall, G. S.,
Orlando, J. J., and Brasseur, G. P.: A global simulation of tropospheric
ozone and related tracers: Description and evaluation of MOZART, version 2,
J. Geophys. Res.-Atmos., 108, 4784, https://doi.org/10.1029/2002jd002853, 2003.
Huebert, B. J., Blomquist, B. W., Yang, M., Archer, S. D., Nightingale, P.
D., Yelland, M. J., Stephens, J., Pascal, R. W., and Moat, B. I.: Linearity
of DMS transfer coefficient with both friction velocity and wind speed in
the moderate wind speed range, Geophys. Res. Lett., 37, L01605,
https://doi.org/10.1029/2009GL041203, 2010.
Hyson, P., Garratt, J. R., and Francey, R. J.: Algebraic and Electronic
Corrections of Measured uw Covariance in the Lower Atmosphere, J. Appl.
Meteorol., 16, 43–47, https://doi.org/10.1175/1520-0450(1977)016<0043:AAECOM>2.0.CO;2, 1977.
Jacob, D. J., Field, B. D., Jin, E. M., Bey, I., Li, Q., Logan, J. A.,
Yantosca, R. M., and Singh, H. B.: Atmospheric budget of acetone, J. Geophys.
Res.-Atmos., 107, 4100, https://doi.org/10.1029/2001JD000694, 2002.
Johnson, M. T.: A numerical scheme to calculate temperature and salinity
dependent air-water transfer velocities for any gas, Ocean Sci., 6,
913–932, https://doi.org/10.5194/os-6-913-2010, 2010.
Kaimal, J., Wyngaard, J., Izumi, Y., and Cote, O.: Spectral characteristics
of surface-layer turbulence, Q. J. R. Meteorol. Soc., 098, 563–589,
https://doi.org/10.1256/smsqj.41706, 1972.
Kara, A. B., Metzger, E. J., and Bourassa, M. A.: Ocean current and wave
effects on wind stress drag coefficient over the global ocean, Geophys. Res.
Lett., 34, 2–5, https://doi.org/10.1029/2006GL027849, 2007.
Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compound (VOC): An
Overview on Emissions, Physiology and Ecology, J. Atmos. Chem., 33,
23–88, https://doi.org/10.1023/A:1006127516791, 1999.
Khan, M. A. H., Cooke, M. C., Utembe, S. R., Archibald, A. T., Maxwell, P.,
Morris, W. C., Xiao, P., Derwent, R. G., Jenkin, M. E., Percival, C. J.,
Walsh, R. C., Young, T. D. S., Simmonds, P. G., Nickless, G., O'Doherty, S., and Shallcross, D. E.: A study of global atmospheric budget and distribution
of acetone using global atmospheric model STOCHEM-CRI, Atmos. Environ., 112,
269–277, https://doi.org/10.1016/j.atmosenv.2015.04.056, 2015.
Kieber, R. J., Zhou, X., and Mopper, K.: Formation of carbonyl compounds from
UV-induced photodegradation of humic substances in natural waters: Fate of
riverine carbon in the sea, Limnol. Oceanogr., 35, 1503–1515,
https://doi.org/10.4319/lo.1990.35.7.1503, 1990.
Kiene, R. P., Linn, L. J., and Bruton, J. A.: New and important roles for
DMSP in marine microbial communities, J. Sea Res., 43, 209–224,
https://doi.org/10.1016/S1385-1101(00)00023-X, 2000.
Kim, M. J., Novak, G. A., Zoerb, M. C., Yang, M., Blomquist, B. W., Huebert,
B. J., Cappa, C. D., and Bertram, T. H.: Air-Sea exchange of biogenic
volatile organic compounds and the impact on aerosol particle size
distributions, Geophys. Res. Lett., 44, 3887–3896,
https://doi.org/10.1002/2017GL072975, 2017.
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson,
J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global Biogeochem.
Cy., 25, 1–17, https://doi.org/10.1029/2010GB003850, 2011.
Lewis, A. C., Carpenter, L. J., and Pilling, M. J.: Nonmethane hydrocarbons
in Southern Ocean boundary layer air, J. Geophys. Res.-Atmos., 106,
4987–4994, https://doi.org/10.1029/2000JD900634, 2001.
Lewis, A. C., Hopkins, J. R., Carpenter, L. J., Stanton, J., Read, K. A., and
Pilling, M. J.: Sources and sinks of acetone, methanol, and acetaldehyde in
North Atlantic marine air, Atmos. Chem. Phys., 5, 1963–1974,
https://doi.org/10.5194/acp-5-1963-2005, 2005.
Li, M., Karu, E., Brenninkmeijer, C. A. M., Fischer, H., Lelieveld, J., and
Williams, J.: Tropospheric OH and stratospheric OH and Cl concentrations
determined from CH4, CH3Cl, and SF6 measurements, Clim. Atmos. Sci., 1,
29, https://doi.org/10.1038/s41612-018-0041-9, 2018.
Liss, P. S. and Slater, P. G.: Flux of Gases across the Air-Sea Interface,
Nature, 247, 181–184, https://doi.org/10.1038/247181a0, 1974.
Loades, D. C., Yang, M., Bell, T. G., Vaughan, A. R., Pound, R. J., Metzger,
S., Lee, J. D., and Carpenter, L. J.: Ozone deposition to a coastal sea:
comparison of eddy covariance observations with reactive air–sea exchange
models, Atmos. Meas. Tech., 13, 6915–6931,
https://doi.org/10.5194/amt-13-6915-2020, 2020.
Mackay, D. and Yeun, A. T. K.: Mass Transfer Coefficient Correlations for
Volatilization of Organic Solutes from Water, Environ. Sci. Technol., 17,
211–217, https://doi.org/10.1021/es00110a006, 1983.
Marandino, C. A., de Bruyn, W. J., Miller, S. D., Prather, M. J., and
Saltzman, E. S.: Oceanic uptake and the global atmospheric acetone budget,
Geophys. Res. Lett., 32, L15806, https://doi.org/10.1029/2005GL023285, 2005.
Millet, D. B., Guenther, A. B., Siegel, D. A., Nelson, N. B., Singh, H. B.,
De Gouw, J. A., Warneke, C., Williams, J., Eerdekens, G., Sinha, V., Karl,
T. R., Flocke, F., Apel, E. C., Riemer, D. D., Palmer, P. I., and Barkley,
M.: Global atmospheric budget of acetaldehyde: 3-D model analysis and
constraints from in-situ and satellite observations, Atmos. Chem. Phys.,
10, 3405–3425, https://doi.org/10.5194/acp-10-3405-2010, 2010.
Moore, R. M., Oram, D. E., and Penkett, S. A.: Production of isoprene by
marine phytoplankton cultures, Geophys. Res. Lett., 21, 2507–2510,
https://doi.org/10.1029/94GL02363, 1994.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air-sea gas exchange parameterizations using novel conservative and
volatile tracers, Global Biogeochem. Cy., 14, 373–387,
https://doi.org/10.1029/1999GB900091, 2000.
Palmer, P. I. and Shaw, S. L.: Quantifying global marine isoprene fluxes
using MODIS chlorophyll observations, Geophys. Res. Lett., 32, 1–5,
https://doi.org/10.1029/2005GL022592, 2005.
Quinn, P. K., Bates, T. S., Coffman, D. J., Upchurch, L., Johnson, J. E.,
Moore, R., Ziemba, L., Bell, T. G., Saltzman, E. S., Graff, J., and
Behrenfeld, M. J.: Seasonal Variations in Western North Atlantic Remote
Marine Aerosol Properties, J. Geophys. Res.-Atmos., 124, 14240–14261,
https://doi.org/10.1029/2019JD031740, 2019.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Model. Softw., 95, 210–228,
https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Royer, S. J., Galí, M., Mahajan, A. S., Ross, O. N., Pérez, G. L.,
Saltzman, E. S., and Simó, R.: A high-resolution time-depth view of
dimethylsulphide cycling in the surface sea, Sci. Rep., 6,
1–13, https://doi.org/10.1038/srep32325, 2016.
Saltzman, E. S., King, D. B., Holmen, K., and Leck, C.: Experimental
determination of the diffusion coefficient of dimethylsulfide in water, J.
Geophys. Res., 98, 481–486, https://doi.org/10.1029/93jc01858, 1993.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as
solvent, Atmos. Chem. Phys., 15, 4399–4981,
https://doi.org/10.5194/acp-15-4399-2015, 2015.
Schlundt, C., Tegtmeier, S., Lennartz, S. T., Bracher, A., Cheah, W.,
Krüger, K., Quack, B., and Marandino, C. A.: Oxygenated volatile organic
carbon in the western Pacific convective center: Ocean cycling, air-sea gas
exchange and atmospheric transport, Atmos. Chem. Phys., 17,
10837–10854, https://doi.org/10.5194/acp-17-10837-2017, 2017.
Schwarz, K., Filipiak, W., and Amann, A.: Determining concentration patterns
of volatile compounds in exhaled breath by PTR-MS, J. Breath Res., 3,
027002, https://doi.org/10.1088/1752-7155/3/2/027002, 2009.
Shaw, S. L., Chisholm, S. W., and Prinn, R. G.: Isoprene production by
Prochlorococcus, a marine cyanobacterium, and other phytoplankton, Mar.
Chem., 80, 227–245, https://doi.org/10.1016/S0304-4203(02)00101-9, 2003.
Spirig, C., Neftel, A., Ammann, C., Dommen, J., Grabmer, W., Thielmann, A.,
Schaub, A., Beauchamp, J. L., Wisthaler, A., and Hansel, A.: Eddy covariance
flux measurements of biogenic VOCs during ECHO 2003 using proton transfer
reaction mass spectrometry, Atmos. Chem. Phys., 5, 465–481,
https://doi.org/10.5194/acp-5-465-2005, 2005.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: Noaa's hysplit atmospheric transport and dispersion modeling
system, Bull. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Tanner, C. B. and Thurtell, G. W.: Anemoclinometer measurements of Reynolds
stress and heat transport in the atmospheric surface layer, University of Wisconsin Tech. Rep., ECOM-66-G22-F, 82 pp., 1969.
Uncles, R. J., Stephens, J. A., and Harris, C.: Physical processes in a
coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound, Prog.
Oceanogr., 137, 360–384, https://doi.org/10.1016/j.pocean.2015.04.019, 2015.
Upstill-Goddard, R. C.: Air-sea gas exchange in the coastal zone, Estuar.
Coast. Shelf Sci., 70, 388–404, https://doi.org/10.1016/j.ecss.2006.05.043, 2006.
Veres, P. R., Andrew Neuman, J., Bertram, T. H., Assaf, E., Wolfe, G. M.,
Williamson, C. J., Weinzierl, B., Tilmes, S., Thompson, C. R., Thames, A.
B., Schroder, J. C., Saiz-Lopez, A., Rollins, A. W., Roberts, J. M., Price,
D., Peischl, J., Nault, B. A., Møller, K. H., Miller, D. O., Meinardi,
S., Li, Q., Lamarque, J. F., Kupc, A., Kjaergaard, H. G., Kinnison, D.,
Jimenez, J. L., Jernigan, C. M., Hornbrook, R. S., Hills, A., Dollner, M.,
Day, D. A., Cuevas, C. A., Campuzano-Jost, P., Burkholder, J. B., Paul Bui,
T., Brune, W. H., Brown, S. S., Brock, C. A., Bourgeois, I., Blake, D. R.,
Apel, E. C., and Ryerson, T. B.: Global airborne sampling reveals a
previously unobserved dimethyl sulfide oxidation mechanism in the marine
atmosphere, P. Natl. Acad. Sci. USA, 117, 4505–4510,
https://doi.org/10.1073/pnas.1919344117, 2020.
Wang, S., Hornbrook, R. S., Hills, A., Emmons, L. K., Tilmes, S., Lamarque,
J. F., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Crounse, J. D.,
Wennberg, P. O., Kim, M., Allen, H. M., Ryerson, T. B., Thompson, C. R.,
Peischl, J., Moore, F., Nance, D., Hall, B., Elkins, J., Tanner, D., Huey,
L. G., Hall, S. R., Ullmann, K., Orlando, J. J., Tyndall, G. S., Flocke, F.
M., Ray, E., Hanisco, T. F., Wolfe, G. M., St. Clair, J., Commane, R.,
Daube, B., Barletta, B., Blake, D. R., Weinzierl, B., Dollner, M., Conley,
A., Vitt, F., Wofsy, S. C., Riemer, D. D., and Apel, E. C.: Atmospheric
Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the
Remote Troposphere, Geophys. Res. Lett., 46, 5601–5613,
https://doi.org/10.1029/2019GL082034, 2019.
Wang, S., Apel, E. C., Schwantes, R., Bates, K., Jacob, D., Fischer, E.,
Hornbrook, R. S., Hills, A., Emmons, L., Pan, L., Honomichl, S., Tilmes, S.,
Lamarque, J., Yang, M., Marandino, C., Saltzman, E., Bruyn, W., Kameyama,
S., Tanimoto, H., Omori, Y., Hall, S., Ullmann, K., Ryerson, T., Thompson,
C., Peischl, J., Daube, B., Commane, R., McKain, K., Sweeney, C., Thames,
A., Miller, D., Brune, W. H., Diskin, G., DiGangi, J., and Wofsy, S.: Global
Atmospheric Budget of Acetone: Air-Sea Exchange and the Contribution to
Hydroxyl Radicals, J. Geophys. Res.-Atmos., 2, 1–23,
https://doi.org/10.1029/2020JD032553, 2020a.
Wang, W.-L., Song, G., Primeau, F., Saltzman, E. S., Bell, T. G., and Moore, J. K.: Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network, Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, 2020b.
Warneck, P. and Moortgat, G. K.: Quantum yields and photodissociation
coefficients of acetaldehyde in the troposphere, Atmos. Environ., 62,
153–163, https://doi.org/10.1016/j.atmosenv.2012.08.024, 2012.
Warneke, C., De Gouw, J. A., Kuster, W. C., Goldan, P. D., and Fall, R.:
Validation of atmospheric VOC measurements by proton-transfer-reaction mass
spectrometry using a gas-chromatographic preseparation method, Environ. Sci.
Technol., 37, 2494–2501, https://doi.org/10.1021/es026266i, 2003.
Williams, J., Holzinger, R., Gros, V., Xu, X., Atlas, E. L., and Wallace, D.
W. R.: Measurements of organic species in air and seawater from the tropical
Atlantic, Geophys. Res. Lett., 31, 1–5, https://doi.org/10.1029/2004GL020012, 2004.
Wohl, C., Capelle, D., Jones, A., Sturges, W. T., Nightingale, P. D., Else,
B. G. T., and Yang, M.: Segmented flow coil equilibrator coupled to a
proton-transfer-reaction mass spectrometer for measurements of a broad range
of volatile organic compounds in seawater, Ocean Sci., 15, 925–940,
https://doi.org/10.5194/os-15-925-2019, 2019.
Wohl, C., Brown, I. J., Kitidis, V., Jones, A. E., Sturges, W. T.,
Nightingale, P. D., and Yang, M.: Underway seawater and atmospheric
measurements of volatile organic compounds in the Southern Ocean,
Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, 2020.
Yang, M. and Fleming, Z. L.: Estimation of atmospheric total organic carbon
(TOC) – Paving the path towards carbon budget closure, Atmos. Chem. Phys.,
19, 459–471, https://doi.org/10.5194/acp-19-459-2019, 2019.
Yang, M., Blomquist, B. W., Fairall, C. W., Archer, S. D., and Huebert, B.
J.: Air-sea exchange of dimethylsulfide in the Southern Ocean: Measurements
from so GasEx compared to temperate and tropical regions, J. Geophys. Res.-Ocean., 116, 1–17, https://doi.org/10.1029/2010JC006526, 2011a.
Yang, M., Huebert, B. J., Blomquist, B. W., Howell, S. G., Shank, L. M.,
McNaughton, C. S., Clarke, A. D., Hawkins, L. N., Russell, L. M., Covert, D.
S., Coffman, D. J., Bates, T. S., Quinn, P. K., Zagorac, N., Bandy, A. R.,
de Szoeke, S. P., Zuidema, P. D., Tucker, S. C., Brewer, W. A., Benedict, K.
B., and Collett, J. L.: Atmospheric sulfur cycling in the southeastern
Pacific – longitudinal distribution, vertical profile, and diel variability
observed during VOCALS-REx, Atmos. Chem. Phys., 11, 5079–5097,
https://doi.org/10.5194/acp-11-5079-2011, 2011b.
Yang, M., Nightingale, P. D., Beale, R., Liss, P. S., Blomquist, B. W., and
Fairall, C. W.: Atmospheric deposition of methanol over the Atlantic Ocean,
P. Natl. Acad. Sci. USA, 110, 20034–20039, https://doi.org/10.1073/pnas.1317840110,
2013a.
Yang, M., Archer, S. D., Blomquist, B. W., Ho, D. T., Lance, V. P., and
Torres, R. J.: Lagrangian evolution of DMS during the Southern Ocean gas
exchange experiment: The effects of vertical mixing and biological community
shift, J. Geophys. Res.-Ocean., 118, 6774–6790,
https://doi.org/10.1002/2013JC009329, 2013b.
Yang, M., Beale, R., Smyth, T. J., and Blomquist, B. W.: Measurements of OVOC
fluxes by eddy covariance using a proton-transfer- reaction mass
spectrometer – method development at a coastal site, Atmos. Chem. Phys.,
13, 6165–6184, https://doi.org/10.5194/acp-13-6165-2013, 2013c.
Yang, M., Blomquist, B. W., and Nightingale, P. D.: Air-sea exchange of
methanol and acetone during HiWinGS: Estimation of air phase, water phase
gas transfer velocities, J. Geophys. Res.-Ocean., 119, 7308–7323,
https://doi.org/10.1002/2014JC010227, 2014a.
Yang, M., Beale, R., Liss, P. S., Johnson, M. T., Blomquist, B. W., and
Nightingale, P. D.: Air–sea fluxes of oxygenated volatile organic compounds
across the Atlantic Ocean, Atmos. Chem. Phys., 14, 7499–7517,
https://doi.org/10.5194/acp-14-7499-2014, 2014b.
Yang, M., Bell, T. G., Hopkins, F. E., Kitidis, V., Cazenave, P. W.,
Nightingale, P. D., Yelland, M. J., Pascal, R. W., Prytherch, J., Brooks, I.
M., and Smyth, T. J.: Air-sea fluxes of CO2 and CH4 from the penlee point
atmospheric observatory on the south-west coast of the UK, Atmos. Chem.
Phys., 16, 5745–5761, https://doi.org/10.5194/acp-16-5745-2016, 2016a.
Yang, M., Bell, T. G., Blomquist, B. W., Fairall, C. W., Brooks, I. M., and
Nightingale, P. D.: Air-sea transfer of gas phase controlled compounds, IOP
Conf. Ser. Earth Environ. Sci., 35, 012011, https://doi.org/10.1088/1755-1315/35/1/012011,
2016b.
Yang, M., Bell, T. G., Hopkins, F. E., and Smyth, T. J.: Attribution of
atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and
changing ship emissions, Atmos. Chem. Phys., 16, 4771–4783,
https://doi.org/10.5194/acp-16-4771-2016, 2016c.
Yang, M., Prytherch, J., Kozlova, E., Yelland, M. J., Parenkat Mony, D., and
Bell, T. G.: Comparison of two closed-path cavity-based spectrometers for
measuring air-water CO2 and CH4 fluxes by eddy covariance, Atmos. Meas.
Tech., 9, 5509–5522, https://doi.org/10.5194/amt-9-5509-2016, 2016d.
Yang, M., Bell, T. G., Brown, I. J., Fishwick, J. R., Kitidis, V.,
Nightingale, P. D., Rees, A. P., and Smyth, T. J.: Insights from year-long
measurements of air–water CH4 and CO2 exchange in a coastal environment,
Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, 2019a.
Yang, M., Norris, S. J., Bell, T. G., and Brooks, I. M.: Sea spray fluxes
from the southwest coast of the United Kingdom-Dependence on wind speed and
wave height, Atmos. Chem. Phys., 19, 15271–15284,
https://doi.org/10.5194/acp-19-15271-2019, 2019b.
Zhou, S., Gonzalez, L., Leithead, A., Finewax, Z., Thalman, R., Vlasenko,
A., Vagle, S., Miller, L. A., Li, S. M., Bureekul, S., Furutani, H.,
Uematsu, M., Volkamer, R., and Abbatt, J. P. D.: Formation of gas-phase
carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the
air-water interface and of the sea surface microlayer, Atmos. Chem. Phys.,
14, 1371–1384, https://doi.org/10.5194/acp-14-1371-2014, 2014.
Zhou, X. and Mopper, K.: Photochemical production of low-molecular-weight
carbonyl compounds in seawater and surface microlayer and their air-sea
exchange, Mar. Chem., 56, 201–213, https://doi.org/10.1016/S0304-4203(96)00076-X,
1997.
Zhu, Y. and Kieber, D. J.: Wavelength- and Temperature-Dependent Apparent
Quantum Yields for Photochemical Production of Carbonyl Compounds in the
North Pacific Ocean, Environ. Sci. Technol., 52, 1929–1939,
https://doi.org/10.1021/acs.est.7b05462, 2018.
Short summary
We present the first measurements of the rate of transfer (flux) of three gases between the atmosphere and the ocean, using a direct flux measurement technique, at a coastal site. We show greater atmospheric loss of acetone and acetaldehyde into the ocean than estimated by global models for the open water; importantly, the acetaldehyde transfer direction is opposite to the model estimates. Measured dimethylsulfide fluxes agreed with a recent model. Isoprene fluxes were too weak to be measured.
We present the first measurements of the rate of transfer (flux) of three gases between the...
Altmetrics
Final-revised paper
Preprint