Articles | Volume 20, issue 16
https://doi.org/10.5194/acp-20-9821-2020
https://doi.org/10.5194/acp-20-9821-2020
Research article
 | 
21 Aug 2020
Research article |  | 21 Aug 2020

Probing key organic substances driving new particle growth initiated by iodine nucleation in coastal atmosphere

Yibei Wan, Xiangpeng Huang, Bin Jiang, Binyu Kuang, Manfei Lin, Deming Xia, Yuhong Liao, Jingwen Chen, Jian Zhen Yu, and Huan Yu

Related authors

Rapid Aqueous-Phase Oxidation of An α-Pinene-Derived Organosulfate by Hydroxyl Radicals: A Potential Source of Some Unclassified Oxygenated and Small Organosulfates in the Atmosphere
Donger Lai, Yanxin Bai, Zijing Zhang, Pui-Kin So, Yong Jie Li, Ying-Lung Steve Tse, Ying-Yeung Yeung, Thomas Schaefer, Hartmut Herrmann, Jian Zhen Yu, Yuchen Wang, and Man Nin Chan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2743,https://doi.org/10.5194/egusphere-2025-2743, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Atmospheric Organosulfate Formation Regulated by Continental Outflows and Marine Emissions over East Asian Marginal Seas
Shubin Li, Yujue Wang, Yiwen Zhang, Yizhe Yi, Yuchen Wang, Yuqi Guo, Chao Yu, Yue Jiang, Jinhui Shi, Chao Zhang, Jialei Zhu, Wei Hu, Jianzhen Yu, Xiaohong Yao, Huiwang Gao, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2154,https://doi.org/10.5194/egusphere-2025-2154, 2025
Short summary
Acid-catalyzed hydrolysis kinetics of organic hydroperoxides: Computational strategy and structure-activity relationship
Qiaojing Zhao, Fangfang Ma, Hui Zhao, Qian Xu, Rujing Yin, Hong-Bin Xie, Xin Wang, and Jingwen Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1662,https://doi.org/10.5194/egusphere-2025-1662, 2025
Short summary
Using nanoindentation to quantify the mechanical profile of Wufeng-Longmaxi formation shale in Southwest China: Link to sedimentary conditions
Jianfeng Wang, Chao Yang, Yuke Liu, Wenmin Jiang, Yun Li, Ting Zhang, Yijun Zheng, Yuhong Liao, Qiuli Huo, Li Fu, Yusheng Wang, Ping'an Peng, and Yongqiang Xiong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1365,https://doi.org/10.5194/egusphere-2025-1365, 2025
Short summary
Influencing Factors of Gas-Particle Distribution of Oxygenated Organic Molecules in Urban Atmosphere and its Deviation from Equilibrium Partitioning
Xinyu Wang, Nan Chen, Bo Zhu, and Huan Yu
EGUsphere, https://doi.org/10.5194/egusphere-2025-229,https://doi.org/10.5194/egusphere-2025-229, 2025
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Enrichment of organic nitrogen in fog residuals observed in the Italian Po Valley
Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr
Atmos. Chem. Phys., 25, 7973–7989, https://doi.org/10.5194/acp-25-7973-2025,https://doi.org/10.5194/acp-25-7973-2025, 2025
Short summary
Asian dust transport of proteinaceous matter from the Gobi Desert to northern China
Ren-Guo Zhu, Hua-Yun Xiao, Meiju Yin, Hao Xiao, Zhongkui Zhou, Yuanyuan Pan, Guo Wei, and Cheng Liu
Atmos. Chem. Phys., 25, 7699–7718, https://doi.org/10.5194/acp-25-7699-2025,https://doi.org/10.5194/acp-25-7699-2025, 2025
Short summary
Machine-learning-assisted chemical characterization and optical properties of atmospheric brown carbon in Nanjing, China
Yu Huang, Xingru Li, Dan Dan Huang, Ruoyuan Lei, Binhuang Zhou, Yunjiang Zhang, and Xinlei Ge
Atmos. Chem. Phys., 25, 7619–7645, https://doi.org/10.5194/acp-25-7619-2025,https://doi.org/10.5194/acp-25-7619-2025, 2025
Short summary
Technical note: Reconstructing missing surface aerosol elemental carbon data in long-term series with ensemble learning
Qingxiao Meng, Yunjiang Zhang, Sheng Zhong, Jie Fang, Lili Tang, Yongcai Rao, Minfeng Zhou, Jian Qiu, Xiaofeng Xu, Jean-Eudes Petit, Olivier Favez, and Xinlei Ge
Atmos. Chem. Phys., 25, 7485–7498, https://doi.org/10.5194/acp-25-7485-2025,https://doi.org/10.5194/acp-25-7485-2025, 2025
Short summary
Enhanced emission of intermediate-volatility/semi-volatile organic matter in gas and particle phases from ship exhausts with low-sulfur fuels
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025,https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary

Cited articles

Allan, J. D., Williams, P. I., Najera, J., Whitehead, J. D., Flynn, M. J., Taylor, J. W., Liu, D., Darbyshire, E., Carpenter, L. J., Chance, R., Andrews, S. J., Hackenberg, S. C., and McFiggans, G.: Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA, Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, 2015. 
An, Y., Xu, J., Feng, L., Zhang, X., Liu, Y., Kang, S., Jiang, B., and Liao, Y.: Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 1115–1128, https://doi.org/10.5194/acp-19-1115-2019, 2019. 
Atkinson, R., Tuazon, E. C., and Aschmann, S. M.: Products of the Gas-Phase Reactions of a Series of 1-Alkenes and 1-Methylcyclohexene with the OH Radical in the Presence of NO, Environ. Sci. Technol., 29, 1674–1680, https://doi.org/10.1021/es00006a035, 1995. 
Bao, H. Y., Niggemann, J., Li, L., Dittmar, T., and Kao, S.-J.: Molecular composition and origin of water-soluble organic matter in marine aerosols in the Pacific off China, Atmos. Environ., 191, 27–35, https://doi.org/10.1016/j.atmosenv.2018.07.059, 2018. 
Barnes, I., Hjorth, J., and Mihalopoulos, N.: Dimethyl Sulfide and Dimethyl Sulfoxide and Their Oxidation in the Atmosphere, Chem. Rev., 106, 940–975, https://doi.org/10.1021/cr020529+, 2006. 
Download
Short summary
Biogenic iodine emission from macroalgae and microalgae could initiate atmospheric new particle formation (NPF). But it is unknown if other species are needed to drive the growth of new iodine particles in the marine boundary layer. Unlike the deeper understanding of organic compounds driving continental NPF, little is known about the organics involved in coastal or open-ocean NPF. This article reveals a new group of important organic compounds involved in this process.
Share
Altmetrics
Final-revised paper
Preprint