



# Supplement of

## Probing key organic substances driving new particle growth initiated by iodine nucleation in coastal atmosphere

Yibei Wan et al.

Correspondence to: Huan Yu (yuhuan@cug.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

#### Text:

#### ESI-FT-ICR MS operation conditions

#### Figures:

Figure S1: Figure S1. (a) The observation site, indicated as a red star, in an aerial photograph. Photo source: Baidu Map. (b) 72-hour air mass back trajectories ending at 100 m above ground level at the observation site computed by HYSPLIT model during the I-NPF events from May 8 to 10, 2018.

Figure S2. (a), (c) Number concentration of 2-7 nm particles ( $N_{2-7}$ ), tidal height and solar radiation intensity during the Iodine-initiated NPF (I-NPF) days from May 9 to 11 and the continental regional NPF (C-NPF) days from February 11 to 13. Particle number size distribution and 10-56 nm particle mass concentration during (b) I-NPF days from May 9 to 11, (d) C-NPF days from February 11 to 13 and (e) non-NPF days from April 16 to 18.

Figure S3. Reconstructed mass spectra of the 7 elemental groups in ESI-and ESI+ modes for the four size bins.

Figure S4: DBE vs. C atom number diagrams of all the CHON and CHO formulas detected in 10–18 nm particles in ESI+ mode. (a) (b) +H adducts, (c) (d) +Na adducts. The color bar denotes the O number in the formulas. The size of the circles reflects the relative intensities of molecular formulas on a logarithmic scale.

Figure S5: Relative intensities of subgroups according to O atom number in CHON, CHO, CHONI and CHOI formulas in the four size bins in ESI+ (in red) and ESI- (in blue). The intensity of the most abundant subgroup is defined as 1 and those of other subgroups are normalized by it. The relative intensities of non-iodinated OC formulas (iodinated OC formulas) are plotted in the region above (below) zero line.

Figure S6: O atom number of *vs*. N atom number of  $C_{10}H_xO_yN_z$  compounds detected in 180–560 nm particles (a) and  $C_{18}H_xO_yN_z$  compounds detected in 10–18 nm particles in ESI- mode (b).

Figure S7: Simplified reaction scheme showing the formation of oxygenated and nitrated CHO and CHON compounds from  $\alpha$ -linolenic acid oxidation in the atmosphere.

Figure S8: Simplified reaction scheme showing the formation of oxygenated CHO compounds from unsaturated  $C_{28}$  FA ( $C_{28}H_{52}O_2$ ) oxidation in the atmosphere. Figure S9: Simplified reaction scheme showing the formation of oxygenated CHON compounds containing a  $-NH_2$  group from unsaturated  $C_{18}$  amino alcohol ( $C_{18}H_{37}NO_4$ ) oxidation in the atmosphere.

### **Tables:**

Table S1. Predicted saturation concentration (C\*) range of most abundant CHON and CHO formulas, as well as their possible precursors.

#### **ESI-FT-ICR MS operation conditions**

A syringe pump infused the sample extract continuously into the ESI unit with a flow rate of 180  $\mu$ L h-1. The ESI source conditions were as follows: the nebulizer gas pressure was 1 bar; the dry gas (N<sub>2</sub>) pressure was 4 bar and its temperature was 200 °C; the capillary voltage was 4.5 kV. The ion accumulation time in the argon-filled hexapole collision pool with 1.5 V of direct current voltage and 1400 Vp-p of radio frequency (RF) amplitude was 0.05 s, followed by transport ions through a hexapole ion guide to the ICR cell for 0.7 ms. 4 M words of data were recorded over the mass range of 150-1000 for each run. A total of 128 scans were collected to enhance the signal/noise (S/N) ratio and dynamic range.



Figure S1. (a) The observation site, indicated as a red star, in an aerial photograph.Photo source: Baidu Map. (b) 72-hour air mass back trajectories ending at 100 m above ground level at the observation site computed by HYSPLIT model during the I-NPF events from My 8 to 10, 2018.



Figure S2. (a), (c) Number concentration of 2-7 nm particles (*N*<sub>2-7</sub>), tidal height and solar radiation intensity during the Iodine-initiated NPF (I-NPF) days from May 9 to 11 and the continental regional NPF (C-NPF) days from February 11 to 13. Particle number size distribution and 10-56 nm particle mass concentration during (b) I-NPF days from May 9 to 11, (d) C-NPF days from February 11 to 13 and (e) non-NPF days from April 16 to 18.



Figure S3. Reconstructed mass spectra of the 7 elemental groups in ESI- (left panels) and ESI+ (right panels) modes for the four size bins. The signals are normalized against the intensity of the most abundant molecular ions in a size bin.



Figure S4. DBE vs. C atom number diagrams of all CHON and CHO formulas detected in 10–18 nm particles in ESI+ mode. (a) (b)  $[M+H]^+$  adducts, (c) (d)  $[M+Na]^+$  adducts. The color bar denotes O number in the formulas. The size of the circles reflects the relative intensities of molecular formulas on a logarithmic scale.



Figure S5. Relative intensities of subgroups according to O atom number in CHON, CHO, CHONI and CHOI formulas in the four size bins in ESI+ (in red) and ESI- (in blue). The intensity of the most abundant subgroup in a size bin is defined as 1 and those of other subgroups are normalized by it. The relative intensities of non-iodinated OC formulas (iodinated OC formulas) are plotted in the region above (below) zero line.



Figure S6. O atom number of *vs*. N atom number of  $C_{10}H_hO_oN_n^-$  compounds detected in 180–560 nm particles (a) and  $C_{18}H_hO_oN_n^-$  compounds detected in 10–18 nm particles in ESI- mode (b).



Figure S7. Simplified reaction scheme of the formation of oxygenated and nitrated CHO and CHON compounds from  $\alpha$ -linolenic acid (C<sub>18</sub>H<sub>30</sub>O<sub>2</sub>) oxidation in the atmosphere. One representative structure is shown for each chemical formula. Chemical formulas in the boxes are found in the formula list detected in 10–18 nm particles. Pathway 1: OH and O<sub>2</sub> addition followed by reaction with NO to form a – ONO<sub>2</sub> group; pathway 2: OH and O<sub>2</sub> addition followed by reaction with NO to form an alkoxy radical that further reacts with O<sub>2</sub> to form a –C=O group.



Figure S8. Simplified reaction scheme of the formation of oxygenated CHO compounds from unsaturated  $C_{28}$  FA ( $C_{28}H_{52}O_2$ ) oxidation in the atmosphere. One representative structure is shown for each chemical formula. Chemical formulas in the boxes are found in the formula list detected in 10–18 nm particles. Pathway 3: OH and  $O_2$  addition followed by reaction with RO<sub>2</sub> to form a –OH or a –C=O group; Pathway 4: successive intermolecular H-shift/ $O_2$  addition (autoxidation) to form RO<sub>2</sub> radicals with –OOH group. –OOH group is not stable and decomposed to -OH.



Figure S9. Simplified reaction scheme of the formation of oxygenated CHON compounds containing a  $-NH_2$  group from unsaturated C<sub>18</sub> amino alcohol (C<sub>18</sub>H<sub>37</sub>NO<sub>4</sub>) oxidation in the atmosphere. One representative structure is shown for each chemical formula. Chemical formulas in the boxes are found in the formula list detected in 10–18 nm particles. Pathway 3: OH and O<sub>2</sub> addition followed by reaction with RO<sub>2</sub> to form a -OHor a -C=O group; Pathway 4: successive intermolecular H-shift/O<sub>2</sub> addition autoxidation to form RO<sub>2</sub> radicals with -OOH group.

Table S1. Predicted saturation concentration (C\*) range of most abundant CHON and

| Formula                                         | Predicted $C^*(\mu g m^{-3})$                    | Predicted C* of possible precursors ( $\mu g m^{-3}$ )   |  |
|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--|
| ESI- mode                                       |                                                  |                                                          |  |
| C18H33NO4                                       | $1.62 \times 10^{-5} - 2.06 \times 10^{-2}$      | $3.40 \times 10^{-1} - 8.91$                             |  |
| C18H33NO6                                       | $7.66 \times 10^{-10} - 1.33 \times 10^{-2}$     | $3.40 \times 10^{-1} - 8.87 \times 10^{1}$               |  |
| $C_{18}H_{34}N_2O_6$                            | $7.62 \times 10^{-11}  1.32 \times 10^{-3}$      | $3.40 \times 10^{-2} - 8.91$                             |  |
| C18H34N2O7                                      | $5.21 \times 10^{-13}$ - $9.06 \times 10^{-6}$   | 3.40 ×10 <sup>-2</sup> -8.91                             |  |
| $C_{18}H_{34}N_2O_8$                            | $1.30 \times 10^{-15}  5.56 \times 10^{-6}$      | 3.40 ×10 <sup>-2</sup> -8.91                             |  |
| $C_{18}H_{36}N_2O_5$                            | $1.44 \times 10^{-8} - 1.10 \times 10^{-2}$      | $3.40 \times 10^{-2} - 8.87 \times 10^{1}$               |  |
| $C_{18}H_{36}N_2O_6$                            | $9.83 \times 10^{-11}  7.54 \times 10^{-5}$      | $3.40 \times 10^{-2} - 8.87 \times 10^{1}$               |  |
| C18H36N2O7                                      | $6.72 \times 10^{-13}$ - $5.15 \times 10^{-7}$   | $3.40 \times 10^{-2}$ - $8.87 \times 10^{1}$             |  |
| C19H39NO7                                       | $3.40 \times 10^{-12} - 1.15 \times 10^{-7}$     | $1.34 \times 10^{-1} - 3.51 \times 10^{1}$               |  |
| C30H57NO4                                       | $7.44 \times 10^{-8}$ -6.69 $\times 10^{-6}$     | $4.29 \times 10^{-6} - 1.16 \times 10^{-3}$              |  |
| C <sub>30</sub> H <sub>59</sub> NO <sub>3</sub> | $5.58 \times 10^{-9}$ - $1.58 \times 10^{-6}$    | $4.29 \times 10^{-6} - 1.14 \times 10^{-4}$              |  |
| C30H59NO4                                       | $6.28 \times 10^{-10}$ - $8.62 \times 10^{-6}$   | $4.29 \times 10^{-6} - 1.16 \times 10^{-3}$              |  |
| C <sub>30</sub> H <sub>59</sub> NO <sub>5</sub> | $4.52 \times 10^{-12} - 1.32 \times 10^{-6}$     | $4.29 \times 10^{-6} - 1.16 \times 10^{-3}$              |  |
| C30H59NO6                                       | $2.64 \times 10^{-13}$ - $8.93 \times 10^{-9}$   | $4.29 \times 10^{-6} - 1.16 \times 10^{-3}$              |  |
| C30H60O6                                        | $1.66 \times 10^{-14}$ -3.76 $\times 10^{-13}$   | $4.36 \times 10^{-5} - 1.16 \times 10^{-3}$              |  |
| $C_{20}H_{40}O_{6}$                             | $2.13 \times 10^{-10}$ - $4.83 \times 10^{-9}$   | $5.28 \times 10^{-1}$ - $1.39 \times 10^{1}$             |  |
| $C_{21}H_{42}O_6$                               | $8.32 \times 10^{-11} - 1.88 \times 10^{-9}$     | $2.07 \times 10^{-1}$ - $5.46 \times 10^{0}$             |  |
| C22H44O4                                        | $6.95 \times 10^{-7} - 1.57 \times 10^{-5}$      | $8.15 \times 10^{-2}$ - $2.15 \times 10^{0}$             |  |
| C24H48O4                                        | $1.06 \times 10^{-7}$ - $2.39 \times 10^{-6}$    | $1.25 \times 10^{-2}$ 3.3 × 10 <sup>-1</sup>             |  |
| $C_{26}H_{52}O_4$                               | $1.60 \times 10^{-8}$ - $3.63 \times 10^{-7}$    | $1.90 \times 10^{-3}$ - $5.05 \times 10^{-2}$            |  |
| C27H54O6                                        | $2.87 \times 10^{-13}$ -6.49 $\times 10^{-12}$   | $7.42 \times 10^{-4}$ -1.97 $\times 10^{-2}$             |  |
| C28H56O4                                        | $2.41 \times 10^{-9}$ -5.47 $\times 10^{-8}$     | $2.89 \times 10^{-4}  7.67 \times 10^{-3}$               |  |
| C <sub>28</sub> H <sub>56</sub> O <sub>6</sub>  | $1.11 \times 10^{-13}$ -2.51 $\times 10^{-12}$   | $2.89 \times 10^{\text{-4}}  7.67 \times 10^{\text{-3}}$ |  |
| C <sub>29</sub> H <sub>58</sub> O <sub>6</sub>  | $4.29 \times 10^{-14} - 9.73 \times 10^{-13}$    | $1.12 \times 10^{-4}$ -2.98 $\times 10^{-3}$             |  |
| C33H66O6                                        | $9.56 \times 10^{-16}$ -2.17 $\times 10^{-14}$   | $2.54 \times 10^{-6}$ -6.77 $\times 10^{-5}$             |  |
| C38H76O8                                        | $3.66 \times 10^{-22}$ - $8.30 \times 10^{-21}$  | $2.18 \times 10^{-8}$ -5.85 $\times 10^{-7}$             |  |
| ESI+ mode                                       |                                                  |                                                          |  |
| $C_{11}H_{18}N_4O_8$                            | 4.73 × 10 <sup>-9</sup> -3.63 × 10 <sup>-3</sup> | $2.21 \times 10^{0}$ -5.61 $\times 10^{2}$               |  |
| $C_{12}H_{20}N_4O_8$                            | $1.85 \times 10^{-9} - 1.42 \times 10^{-3}$      | $8.85 \times 10^{-1} - 2.26 \times 10^{2}$               |  |
| C19H35NO3                                       | $9.26 \times 10^{-4}$                            | $1.34 \times 10^{-1} - 2.23 \times 10^{-1}$              |  |
| C19H36N2O5                                      | $4.35 \times 10^{-9}$ - $3.34 \times 10^{-3}$    | $1.34 \times 10^{-1} - 3.52 \times 10^{0}$               |  |
| C19H37NO3                                       | $1.20 \times 10^{-3}$ -2.71 $\times 10^{-2}$     | $1.34 \times 10^{-1} - 2.23 \times 10^{-1}$              |  |

CHO formulas, as well as their possible precursors.

| $C_{19}H_{38}N_2O_3$                            | $2.71 \times 10^{-3}$ - $5.04 \times 10^{-3}$  | $1.34 \times 10^{-2} - 3.52 \times 10^{0}$       |
|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| $C_{24}H_{46}N_2O_4$                            | $5.73 \times 10^{-9}$ - $4.39 \times 10^{-3}$  | $1.24 \times 10^{-4}$ - $3.28 \times 10^{-2}$    |
| C25H43NO4                                       | $3.07 \times 10^{-7} - 1.72 \times 10^{-5}$    | $4.83 \times 10^{-4}$ -1.28 $\times 10^{-2}$     |
| C <sub>26</sub> H <sub>51</sub> NO <sub>5</sub> | $1.73 \times 10^{-9}$                          | $1.88 \times 10^{-4}$ $3.13 \times 10^{-4}$      |
| $C_{27}H_{50}N_2O_4$                            | $6.42 \times 10^{-10}$ -3.29 $\times 10^{-7}$  | $7.23 \times 10^{-6}$ -1.95 $\times 10^{-3}$     |
| C27H50N2O5                                      | $3.11 \times 10^{-11} - 1.05 \times 10^{-6}$   | $7.23 \times 10^{-6}$ -1.95 $\times 10^{-3}$     |
| C27H52N2O3                                      | $4.94 \times 10^{-8} - 2.76 \times 10^{-6}$    | $7.23 \times 10^{-6}$ -1.95 $\times 10^{-3}$     |
| $C_{28}H_{52}N_2O_6$                            | $1.14 \times 10^{-14}$ -8.03 $\times 10^{-8}$  | $2.81 \times 10^{-6}$ -7.57 $\times 10^{-4}$     |
| $C_{28}H_{54}N_2O_6$                            | $5.95 \times 10^{-15} - 1.03 \times 10^{-7}$   | $2.81 \times 10^{-6}$ -7.57 $\times 10^{-4}$     |
| $C_{28}H_{56}N_2O_3$                            | $6.09 \times 10^{-8} - 1.38 \times 10^{-6}$    | $2.81 \times 10^{-6}$ -7.57 $\times 10^{-4}$     |
| $C_{28}H_{56}N_2O_6$                            | $1.89 \times 10^{-14}$ -5.88 $\times 10^{-9}$  | $2.81 \times 10^{-6}$ -7.57 $\times 10^{-4}$     |
| $C_{28}H_{58}N_2O_3$                            | $3.18 \times 10^{-8}$                          | $2.81 \times 10^{-6}$ - $4.66 \times 10^{-6}$    |
| $C_{29}H_{56}N_2O_6$                            | $2.30 \times 10^{-15}  3.99 \times 10^{-8}$    | $1.09 \times 10^{-6}$ -2.94 $\times 10^{-4}$     |
| C29H59NO7                                       | $2.85 \times 10^{-17}  6.47 \times 10^{-16}$   | $1.11 \times 10^{-5}$ -2.94 $\times 10^{-4}$     |
| C33H59NO5                                       | $1.05 \times 10^{-12}$ -3.02 $\times 10^{-8}$  | $2.49 \times 10^{-7}$ -6.65 $\times 10^{-6}$     |
| C34H59NO6                                       | $2.13 \times 10^{-15}$ $-1.38 \times 10^{-9}$  | $9.64 \times 10^{-8}$ -2.57 $\times 10^{-6}$     |
| $C_{34}H_{66}N_2O_3$                            | $1.15 \times 10^{-11}$ -3.58 $\times 10^{-9}$  | $9.45 \times 10^{-9}$ -2.57 $\times 10^{-6}$     |
| $C_{34}H_{68}N_2O_3$                            | $2.03 \times 10^{-10}$ - $4.61 \times 10^{-9}$ | $9.45 \times 10^{-9}$ - $2.57 \times 10^{-6}$    |
| C34H68N2O5                                      | $3.75 \times 10^{-15} - 2.88 \times 10^{-9}$   | 9.45 × 10 <sup>-9</sup> -2.57 × 10 <sup>-6</sup> |
|                                                 |                                                |                                                  |