Articles | Volume 20, issue 13
https://doi.org/10.5194/acp-20-8227-2020
https://doi.org/10.5194/acp-20-8227-2020
Research article
 | 
16 Jul 2020
Research article |  | 16 Jul 2020

Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor

Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Adam C. Watts, Hans Moosmüller, and Andrey Y. Khlystov

Related authors

Deposition of brown carbon onto snow: changes in snow optical and radiative properties
Nicholas D. Beres, Deep Sengupta, Vera Samburova, Andrey Y. Khlystov, and Hans Moosmüller
Atmos. Chem. Phys., 20, 6095–6114, https://doi.org/10.5194/acp-20-6095-2020,https://doi.org/10.5194/acp-20-6095-2020, 2020
Short summary
Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion
Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Elena Kirillova, Lynn Mazzoleni, Michealene Iaukea-Lum, Adam Watts, Hans Moosmüller, and Andrey Khlystov
Atmos. Chem. Phys., 18, 10849–10867, https://doi.org/10.5194/acp-18-10849-2018,https://doi.org/10.5194/acp-18-10849-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024,https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024,https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024,https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024,https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Formation and loss of light absorbance by phenolic aqueous SOA by OH and an organic triplet excited state
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024,https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary

Cited articles

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Alvarado, M. J., Lonsdale, C. R., Yokelson, R. J., Akagi, S. K., Coe, H., Craven, J. S., Fischer, E. V., McMeeking, G. R., Seinfeld, J. H., Soni, T., Taylor, J. W., Weise, D. R., and Wold, C. E.: Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral, Atmos. Chem. Phys., 15, 6667–6688, https://doi.org/10.5194/acp-15-6667-2015, 2015. 
Andreae, M. O. and and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001. 
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. 
Arbex, M. A., Martins, L. C., Carvalho De Oliveira, R., Pereira, A. A., Arbex, F. F., Eduardo, J., Cançado, D., Hilário, P., Saldiva, N., Luís, A., and Braga, F.: Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil, J. Epidemiol. Commun. H., 61, 395–400, https://doi.org/10.1136/jech.2005.044743, 2007. 
Download
Short summary
This paper presents important results on the atmospheric chemistry of combustion emissions. Organic compounds from these emissions can contribute significantly to chemical and physical properties of atmospheric aerosols. In this paper, a detailed chemical analysis of gas- and particle-phase polar organic compounds from the laboratory combustion of globally important fuels is presented. The aging experiments were performed to understand the fate of biomass-burning organics in the atmosphere.
Altmetrics
Final-revised paper
Preprint