Articles | Volume 20, issue 13
https://doi.org/10.5194/acp-20-8063-2020
https://doi.org/10.5194/acp-20-8063-2020
Research article
 | 
13 Jul 2020
Research article |  | 13 Jul 2020

Improving the prediction of an atmospheric chemistry transport model using gradient-boosted regression trees

Peter D. Ivatt and Mathew J. Evans

Related authors

Low-NO atmospheric oxidation pathways in a polluted megacity
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021,https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
An improved low-power measurement of ambient NO2 and O3 combining electrochemical sensor clusters and machine learning
Kate R. Smith, Peter M. Edwards, Peter D. Ivatt, James D. Lee, Freya Squires, Chengliang Dai, Richard E. Peltier, Mat J. Evans, Yele Sun, and Alastair C. Lewis
Atmos. Meas. Tech., 12, 1325–1336, https://doi.org/10.5194/amt-12-1325-2019,https://doi.org/10.5194/amt-12-1325-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024,https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024,https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024,https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024,https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024,https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary

Cited articles

Anderson, G. J. and Lucas, D. D.: Machine Learning Predictions of a Multiresolution Climate Model Ensemble, Geophys. Res. Lett., 45, 4273–4280, https://doi.org/10.1029/2018gl077049, 2018. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bergstra, J. and Bengio, Y.: Random Search for Hyper-Parameter Optimization, J. Mach. Learn. Res., 13, 281–305, 2012. a
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807, 2001. a
Blockeel, H. and De Raedt, L.: Top-down induction of first-order logical decision trees, Artificial Intelligence, 101, 285–297, https://doi.org/10.1016/s0004-3702(98)00034-4, 1998. a
Download
Short summary
We investigate the potential of using a decision tree algorithm to identify and correct the tropospheric ozone bias in a chemical transport model. We train the algorithm on 2010–2015 ground and column observation data and test the algorithm on the 2016–2017 data using the ground data as well as independent flight data. We find the algorithm is successfully able to identify and correct the bias, improving the model performance.
Altmetrics
Final-revised paper
Preprint