Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5513-2020
https://doi.org/10.5194/acp-20-5513-2020
Research article
 | 
12 May 2020
Research article |  | 12 May 2020

Partitioning of hydrogen peroxide in gas-liquid and gas-aerosol phases

Xiaoning Xuan, Zhongming Chen, Yiwei Gong, Hengqing Shen, and Shiyi Chen

Related authors

The impact of organic nitrates on summer ozone formation in Shanghai, China
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3337,https://doi.org/10.5194/egusphere-2024-3337, 2024
Short summary
Radical chemistry in the Pearl River Delta: observations and modeling of OH and HO2 radicals in Shenzhen in 2018
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022,https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Water enhances the formation of fragmentation products via the cross-reactions of RO2 and HO2 in the photooxidation of isoprene
Jiayun Xu, Zhongming Chen, Xuan Qin, and Ping Dong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-444,https://doi.org/10.5194/acp-2022-444, 2022
Revised manuscript not accepted
Short summary
Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022,https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Spatial variability of air pollutants in a megacity characterized by mobile measurements
Reza Bashiri Khuzestani, Keren Liao, Ying Liu, Ruqian Miao, Yan Zheng, Xi Cheng, Tianjiao Jia, Xin Li, Shiyi Chen, Guancong Huang, and Qi Chen
Atmos. Chem. Phys., 22, 7389–7404, https://doi.org/10.5194/acp-22-7389-2022,https://doi.org/10.5194/acp-22-7389-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024,https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024,https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024,https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024,https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024,https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary

Cited articles

Adamowicz, R. F.: A model for the reversible washout of sulfur-dioxide, ammonia and carbon-dioxide from a polluted atmosphere and the production of sulfates in raindrops, Atmos. Environ., 13, 105–121, https://doi.org/10.1016/0004-6981(79)90250-6, 1979. 
Arellanes, C., Paulson, S. E., Fine, P. M., and Sioutas, C.: Exceeding of Henry's law by hydrogen peroxide associated with urban aerosols, Environ. Sci. Technol., 40, 4859–4866, https://doi.org/10.1021/es0513786, 2006. 
Banerjee, D. K. and Budke, C. C.: Spectrophotometric determination of traces of peroxides in organic solvents, Anal. Chem., 36, 792–796, https://doi.org/10.1021/ac60210a027, 1964. 
Baum, E. J.: Chemical property estimation: theory and application, CRC Press LLC, Florida, USA, 1998. 
Campbell, S. J., Stevanovic, S., Miljevic, B., Bottle, S. E., Ristovski, Z., and Kalberer, M.: Quantification of particle-bound organic radicals in secondary organic aerosol, Environ. Sci. Technol., 53, 6729–6737, https://doi.org/10.1021/acs.est.9b00825, 2019. 
Download
Short summary
In this study, we found that the effective field-derived Henry's law constant for the ground rainwater and the gas-phase H2O2 was about 2.5 times that of the theoretical value, and the effective gas–particle partitioning coefficient for the aerosol particle and the gas-phase H2O2 was 4 orders of magnitude higher than the theoretical one. We suggested the missing source of H2O2 in the particulate phase, e.g. the contribution from the decomposition/hydrolysis of organic peroxides.
Altmetrics
Final-revised paper
Preprint