Articles | Volume 20, issue 8
https://doi.org/10.5194/acp-20-5093-2020
https://doi.org/10.5194/acp-20-5093-2020
Research article
 | 
30 Apr 2020
Research article |  | 30 Apr 2020

The effects of cloud–aerosol interaction complexity on simulations of presummer rainfall over southern China

Kalli Furtado, Paul Field, Yali Luo, Tianjun Zhou, and Adrian Hill

Related authors

A strong statistical link between aerosol indirect effects and the self-similarity of rainfall distributions
Kalli Furtado and Paul Field
Atmos. Chem. Phys., 22, 3391–3407, https://doi.org/10.5194/acp-22-3391-2022,https://doi.org/10.5194/acp-22-3391-2022, 2022
Short summary
The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021,https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Introducing Ice Nucleating Particles functionality into the Unified Model and its impact on the Southern Ocean short-wave radiation biases
Vidya Varma, Olaf Morgenstern, Kalli Furtado, Paul Field, and Jonny Williams
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-438,https://doi.org/10.5194/acp-2021-438, 2021
Revised manuscript not accepted
Short summary
Improving the Southern Ocean cloud albedo biases in a general circulation model
Vidya Varma, Olaf Morgenstern, Paul Field, Kalli Furtado, Jonny Williams, and Patrick Hyder
Atmos. Chem. Phys., 20, 7741–7751, https://doi.org/10.5194/acp-20-7741-2020,https://doi.org/10.5194/acp-20-7741-2020, 2020
Short summary
On the relationship between the scattering phase function of cirrus and the atmospheric state
A. J. Baran, K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco
Atmos. Chem. Phys., 15, 1105–1127, https://doi.org/10.5194/acp-15-1105-2015,https://doi.org/10.5194/acp-15-1105-2015, 2015
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024,https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024,https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024,https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024,https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024,https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
CAMS (Chinese Academy of Meteorological Sciences): 46 Zhonguancun South Avenue, Beijing, 100081, China, Southern China Monsoon Rainfall Experiment, a WMO/WWRP Research and Development Project, available at: http://exps.camscma.cn/scmrex, last access: 28 February 2020. a
Cooper, W. A.: Ice Initiation in Natural Clouds. In: Precipitation Enhancement – A Scientific Challenge. Meteorological Monographs, American Meteorological Society, Boston, MA, 1986. a
Fan, J., Leung, L. R., Li, Z., Morrison, H., Chen, H., Zhou, Y., Qian, Y., and Wang Y.: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics, J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537 2012. a
Feingold, G. and Kreidenweis, S. M.: Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry, J. Geophys. Res., 107, 4687, https://doi.org/10.1029/2002JD002054, 2002. a
Download
Short summary
By combining observations with simulations from a weather forecasting model, new insights are obtained into extreme rainfall processes. We use a model which includes the effects of aerosols on clouds in a fully consistent way. This greater complexity improves realism but raises the computational cost. We address the cost–benefit relationship of this and show that cloud–aerosol interactions have important, measurable benefits for simulating climate extremes.
Altmetrics
Final-revised paper
Preprint