Articles | Volume 20, issue 8
Atmos. Chem. Phys., 20, 5093–5110, 2020
https://doi.org/10.5194/acp-20-5093-2020
Atmos. Chem. Phys., 20, 5093–5110, 2020
https://doi.org/10.5194/acp-20-5093-2020

Research article 30 Apr 2020

Research article | 30 Apr 2020

The effects of cloud–aerosol interaction complexity on simulations of presummer rainfall over southern China

Kalli Furtado et al.

Related authors

The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth System Models
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-570,https://doi.org/10.5194/acp-2021-570, 2021
Preprint under review for ACP
Short summary
A strong statistical link between aerosol indirect effects and the self-similarity of rainfall distributions
Kalli Furtado and Paul Field
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-443,https://doi.org/10.5194/acp-2021-443, 2021
Preprint under review for ACP
Short summary
Introducing Ice Nucleating Particles functionality into the Unified Model and its impact on the Southern Ocean short-wave radiation biases
Vidya Varma, Olaf Morgenstern, Kalli Furtado, Paul Field, and Jonny Williams
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-438,https://doi.org/10.5194/acp-2021-438, 2021
Preprint under review for ACP
Short summary
Improving the Southern Ocean cloud albedo biases in a general circulation model
Vidya Varma, Olaf Morgenstern, Paul Field, Kalli Furtado, Jonny Williams, and Patrick Hyder
Atmos. Chem. Phys., 20, 7741–7751, https://doi.org/10.5194/acp-20-7741-2020,https://doi.org/10.5194/acp-20-7741-2020, 2020
Short summary
On the relationship between the scattering phase function of cirrus and the atmospheric state
A. J. Baran, K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco
Atmos. Chem. Phys., 15, 1105–1127, https://doi.org/10.5194/acp-15-1105-2015,https://doi.org/10.5194/acp-15-1105-2015, 2015
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Supersaturation, buoyancy, and deep convection dynamics
Wojciech W. Grabowski and Hugh Morrison
Atmos. Chem. Phys., 21, 13997–14018, https://doi.org/10.5194/acp-21-13997-2021,https://doi.org/10.5194/acp-21-13997-2021, 2021
Short summary
Statistical properties of a stochastic model of eddy hopping
Izumi Saito, Takeshi Watanabe, and Toshiyuki Gotoh
Atmos. Chem. Phys., 21, 13119–13130, https://doi.org/10.5194/acp-21-13119-2021,https://doi.org/10.5194/acp-21-13119-2021, 2021
Short summary
Understanding the model representation of clouds based on visible and infrared satellite observations
Stefan Geiss, Leonhard Scheck, Alberto de Lozar, and Martin Weissmann
Atmos. Chem. Phys., 21, 12273–12290, https://doi.org/10.5194/acp-21-12273-2021,https://doi.org/10.5194/acp-21-12273-2021, 2021
Short summary
Impact of high- and low-vorticity turbulence on cloud–environment mixing and cloud microphysics processes
Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao
Atmos. Chem. Phys., 21, 12317–12329, https://doi.org/10.5194/acp-21-12317-2021,https://doi.org/10.5194/acp-21-12317-2021, 2021
Short summary
Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys., 21, 12049–12067, https://doi.org/10.5194/acp-21-12049-2021,https://doi.org/10.5194/acp-21-12049-2021, 2021
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
CAMS (Chinese Academy of Meteorological Sciences): 46 Zhonguancun South Avenue, Beijing, 100081, China, Southern China Monsoon Rainfall Experiment, a WMO/WWRP Research and Development Project, available at: http://exps.camscma.cn/scmrex, last access: 28 February 2020. a
Cooper, W. A.: Ice Initiation in Natural Clouds. In: Precipitation Enhancement – A Scientific Challenge. Meteorological Monographs, American Meteorological Society, Boston, MA, 1986. a
Fan, J., Leung, L. R., Li, Z., Morrison, H., Chen, H., Zhou, Y., Qian, Y., and Wang Y.: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics, J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537 2012. a
Feingold, G. and Kreidenweis, S. M.: Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry, J. Geophys. Res., 107, 4687, https://doi.org/10.1029/2002JD002054, 2002. a
Download
Short summary
By combining observations with simulations from a weather forecasting model, new insights are obtained into extreme rainfall processes. We use a model which includes the effects of aerosols on clouds in a fully consistent way. This greater complexity improves realism but raises the computational cost. We address the cost–benefit relationship of this and show that cloud–aerosol interactions have important, measurable benefits for simulating climate extremes.
Altmetrics
Final-revised paper
Preprint