Articles | Volume 20, issue 8
https://doi.org/10.5194/acp-20-5093-2020
https://doi.org/10.5194/acp-20-5093-2020
Research article
 | 
30 Apr 2020
Research article |  | 30 Apr 2020

The effects of cloud–aerosol interaction complexity on simulations of presummer rainfall over southern China

Kalli Furtado, Paul Field, Yali Luo, Tianjun Zhou, and Adrian Hill

Data sets

Terra/MODIS Cloud Product 5-Min L2 Swath 1 km and 5 km, C6, NASA Level-1 and Atmosphere Archive \& Distribution System (LAADS) Distributed Active Archive Center (DAAC) W. P. Menzel, R. A. Frey, and B. A. Baum https://doi.org/10.5067/MODIS/MOD06_L2.006

Download
Short summary
By combining observations with simulations from a weather forecasting model, new insights are obtained into extreme rainfall processes. We use a model which includes the effects of aerosols on clouds in a fully consistent way. This greater complexity improves realism but raises the computational cost. We address the cost–benefit relationship of this and show that cloud–aerosol interactions have important, measurable benefits for simulating climate extremes.
Altmetrics
Final-revised paper
Preprint