Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-13957-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13957-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effects of morphology, mobility size, and secondary organic aerosol (SOA) material coating on the ice nucleation activity of black carbon in the cirrus regime
Cuiqi Zhang
School of Energy and Power Engineering, Beihang University, Beijing, China
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Yue Zhang
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
Aerodyne Research Incorporated, Billerica, MA, 01821, USA
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467,
USA
now at: Department of Atmospheric Sciences, Texas A&M University, College Station, 77843, TX, USA
Martin J. Wolf
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
now at: Yale Center for Environmental Law and Policy, Yale Law School and Yale School of the Environment, New Haven, CT, 06511, USA
Leonid Nichman
Flight Research Laboratory, National Research Council Canada, Ottawa, ON, K1V 9B4, Canada
Chuanyang Shen
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Timothy B. Onasch
Aerodyne Research Incorporated, Billerica, MA, 01821, USA
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467,
USA
Longfei Chen
CORRESPONDING AUTHOR
School of Energy and Power Engineering, Beihang University, Beijing, China
Daniel J. Cziczo
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA, 02139, USA
Department of Earth, Atmospheric, and Planetary Sciences, Purdue
University, West Lafayette, IN, 47907, USA
Related authors
Marilena Gidarakou, Alexandros Papayannis, Kunfeng Gao, Panagiotis Gidarakos, Benoit Crouzy, Romanos Foskinis, Sophie Erb, Cuiqi Zhang, Gian Lieberherr, Martine Collaud Coen, Branko Sikoparija, Zamin A. Kanji, Bernard Clot, Bertrand Calpini, Eugenia Giagka, and Athanasios Nenes
EGUsphere, https://doi.org/10.5194/egusphere-2025-2978, https://doi.org/10.5194/egusphere-2025-2978, 2025
Short summary
Short summary
Vertical profiles of pollen and biomass burning particles were obtained at a semi-rural site at the MeteoSwiss station near Payerne (Switzerland) using a novel multi-channel elastic-fluorescence lidar system combined with in situ measurements during the spring 2023 wildfires and pollination season during the PERICLES (PayernE lidaR and Insitu detection of fluorescent bioaerosol and dust partiCLES and their cloud impacts) campaign.
Carynelisa Haspel, Cuiqi Zhang, Martin J. Wolf, Daniel J. Cziczo, and Maor Sela
Atmos. Chem. Phys., 23, 10091–10115, https://doi.org/10.5194/acp-23-10091-2023, https://doi.org/10.5194/acp-23-10091-2023, 2023
Short summary
Short summary
Small particles, commonly termed aerosols, can be found throughout the atmosphere and come from both natural and anthropogenic sources. One important type of aerosol is black carbon (BC). In this study, we conducted laboratory measurements of light scattering by particles meant to mimic atmospheric BC and compared them to calculations of scattering. We find that it is likely that calculations underpredict the scattering by BC particles of certain polarizations of light in certain directions.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Martin J. Wolf, Megan Goodell, Eric Dong, Lilian A. Dove, Cuiqi Zhang, Lesly J. Franco, Chuanyang Shen, Emma G. Rutkowski, Domenic N. Narducci, Susan Mullen, Andrew R. Babbin, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 15341–15356, https://doi.org/10.5194/acp-20-15341-2020, https://doi.org/10.5194/acp-20-15341-2020, 2020
Short summary
Short summary
Sea spray is the largest aerosol source on Earth. These aerosol particles can impact climate by inducing ice formation in clouds. The role that ocean biology plays in determining the composition and ice nucleation abilities of sea spray aerosol is unclarified. In this study, we demonstrate that atomized seawater from highly productive ocean regions is more effective at nucleating ice than seawater from lower-productivity regions.
Marilena Gidarakou, Alexandros Papayannis, Kunfeng Gao, Panagiotis Gidarakos, Benoit Crouzy, Romanos Foskinis, Sophie Erb, Cuiqi Zhang, Gian Lieberherr, Martine Collaud Coen, Branko Sikoparija, Zamin A. Kanji, Bernard Clot, Bertrand Calpini, Eugenia Giagka, and Athanasios Nenes
EGUsphere, https://doi.org/10.5194/egusphere-2025-2978, https://doi.org/10.5194/egusphere-2025-2978, 2025
Short summary
Short summary
Vertical profiles of pollen and biomass burning particles were obtained at a semi-rural site at the MeteoSwiss station near Payerne (Switzerland) using a novel multi-channel elastic-fluorescence lidar system combined with in situ measurements during the spring 2023 wildfires and pollination season during the PERICLES (PayernE lidaR and Insitu detection of fluorescent bioaerosol and dust partiCLES and their cloud impacts) campaign.
Christopher N. Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo
Atmos. Chem. Phys., 25, 5519–5536, https://doi.org/10.5194/acp-25-5519-2025, https://doi.org/10.5194/acp-25-5519-2025, 2025
Short summary
Short summary
Atmospheric ice formation is initiated by particulate matter suspended in air and has profound impacts on Earth's climate. This study focuses on examining the effectiveness of ice formation by a subset of particles composed of organic matter and sulfate. We used experiments and computer modeling to obtain the result that these particles are not effective ice-nucleating particles, suggesting that molecular structure is important for ice formation on these types of particles.
Paul J. DeMott, Jessica A. Mirrielees, Sarah Suda Petters, Daniel J. Cziczo, Markus D. Petters, Heinz G. Bingemer, Thomas C. J. Hill, Karl Froyd, Sarvesh Garimella, A. Gannet Hallar, Ezra J. T. Levin, Ian B. McCubbin, Anne E. Perring, Christopher N. Rapp, Thea Schiebel, Jann Schrod, Kaitlyn J. Suski, Daniel Weber, Martin J. Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah D. Brooks
Atmos. Meas. Tech., 18, 639–672, https://doi.org/10.5194/amt-18-639-2025, https://doi.org/10.5194/amt-18-639-2025, 2025
Short summary
Short summary
The Fifth International Ice Nucleation Workshop Phase 3 (FIN-03) compared the ambient atmospheric performance of ice-nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, INP concentrations agreed within 5–10 factors. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024, https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Short summary
To meet the requirements for measuring aerosol optical properties on airborne platforms and conducting dual-wavelength measurements, we introduced A2S2, an airborne dual-wavelength cavity-attenuated phase-shift single monitor. This study reports the results in the laboratory and an aircraft campaign over Paris and its surrounding regions. The results demonstrate A2S2's reliability in measuring aerosol optical properties at both wavelengths and its suitability for future aircraft campaigns.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Ryan N. Farley, Sonya Collier, Christopher D. Cappa, Leah R. Williams, Timothy B. Onasch, Lynn M. Russell, Hwajin Kim, and Qi Zhang
Atmos. Chem. Phys., 23, 15039–15056, https://doi.org/10.5194/acp-23-15039-2023, https://doi.org/10.5194/acp-23-15039-2023, 2023
Short summary
Short summary
Soot particles, also known as black carbon (BC), have important implications for global climate and regional air quality. After the particles are emitted, BC can be coated with other material, impacting the aerosol properties. We selectively measured the composition of particles containing BC to explore their sources and chemical transformations in the atmosphere. We focus on a persistent, multiday fog event in order to study the effects of chemical reactions occurring within liquid droplets.
Carynelisa Haspel, Cuiqi Zhang, Martin J. Wolf, Daniel J. Cziczo, and Maor Sela
Atmos. Chem. Phys., 23, 10091–10115, https://doi.org/10.5194/acp-23-10091-2023, https://doi.org/10.5194/acp-23-10091-2023, 2023
Short summary
Short summary
Small particles, commonly termed aerosols, can be found throughout the atmosphere and come from both natural and anthropogenic sources. One important type of aerosol is black carbon (BC). In this study, we conducted laboratory measurements of light scattering by particles meant to mimic atmospheric BC and compared them to calculations of scattering. We find that it is likely that calculations underpredict the scattering by BC particles of certain polarizations of light in certain directions.
Anita M. Avery, Mariam Fawaz, Leah R. Williams, Tami Bond, and Timothy B. Onasch
Atmos. Chem. Phys., 23, 8837–8854, https://doi.org/10.5194/acp-23-8837-2023, https://doi.org/10.5194/acp-23-8837-2023, 2023
Short summary
Short summary
Pyrolysis is the thermal decomposition of fuels like wood which occurs during combustion or as an isolated process. During combustion, some pyrolysis products are emitted directly, while others are oxidized in the combustion process. This work describes the chemical composition of particle-phase pyrolysis products in order to investigate both the uncombusted emissions from wildfires and the fuel that participates in combustion.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Patrick Weber, Andreas Petzold, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Andrew Freedman, Timothy B. Onasch, and Ulrich Bundke
Atmos. Meas. Tech., 15, 3279–3296, https://doi.org/10.5194/amt-15-3279-2022, https://doi.org/10.5194/amt-15-3279-2022, 2022
Short summary
Short summary
In our laboratory closure study, we measured the full set of aerosol optical properties for different light-absorbing aerosols using a set of instruments.
Our key finding is that the extensive and intensive aerosol optical properties obtained agree with data from reference instruments, except the absorption Ångström exponent of externally mixed aerosols. The reported uncertainty in the single-scattering albedo fulfils the defined goals for Global Climate Observing System applications of 10 %.
Libby Koolik, Michael Roesch, Carmen Dameto de Espana, Christopher Nathan Rapp, Lesly J. Franco Deloya, Chuanyang Shen, A. Gannet Hallar, Ian B. McCubbin, and Daniel J. Cziczo
Atmos. Meas. Tech., 15, 3213–3222, https://doi.org/10.5194/amt-15-3213-2022, https://doi.org/10.5194/amt-15-3213-2022, 2022
Short summary
Short summary
A new inlet for studying the small particles, droplets, and ice crystals that constitute mixed-phase clouds has been constructed and is described here. This new inlet was tested in the laboratory. We present the performance of the new inlet to demonstrate its capability of separating ice, droplets, and small particles.
Cuong M. Nguyen, Mengistu Wolde, Alessandro Battaglia, Leonid Nichman, Natalia Bliankinshtein, Samuel Haimov, Kenny Bala, and Dirk Schuettemeyer
Atmos. Meas. Tech., 15, 775–795, https://doi.org/10.5194/amt-15-775-2022, https://doi.org/10.5194/amt-15-775-2022, 2022
Short summary
Short summary
An analysis of airborne triple-frequency radar and almost perfectly co-located coincident in situ data from an Arctic storm confirms the main findings of modeling work with radar dual-frequency ratios (DFRs) at different zones of the DFR plane associated with different ice habits. High-resolution CPI images provide accurate identification of rimed particles within the DFR plane. The relationships between the triple-frequency signals and cloud microphysical properties are also presented.
Mariam Fawaz, Anita Avery, Timothy B. Onasch, Leah R. Williams, and Tami C. Bond
Atmos. Chem. Phys., 21, 15605–15618, https://doi.org/10.5194/acp-21-15605-2021, https://doi.org/10.5194/acp-21-15605-2021, 2021
Short summary
Short summary
Biomass burning is responsible for 90 % of the emissions of primary organic aerosols to the atmosphere. Emissions from biomass burning sources are considered chaotic. In this work, we developed a controlled experimental approach to understand the controlling factors in emission. Our results showed that emissions are repeatable and deterministic and that emissions from wood can be constrained.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, https://doi.org/10.5194/acp-21-10671-2021, 2021
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Anna L. Hodshire, Emily Ramnarine, Ali Akherati, Matthew L. Alvarado, Delphine K. Farmer, Shantanu H. Jathar, Sonia M. Kreidenweis, Chantelle R. Lonsdale, Timothy B. Onasch, Stephen R. Springston, Jian Wang, Yang Wang, Lawrence I. Kleinman, Arthur J. Sedlacek III, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 6839–6855, https://doi.org/10.5194/acp-21-6839-2021, https://doi.org/10.5194/acp-21-6839-2021, 2021
Short summary
Short summary
Biomass burning emits particles and vapors that can impact both health and climate. Here, we investigate the role of dilution in the evolution of aerosol size and composition in observed US wildfire smoke plumes. Centers of plumes dilute more slowly than edges. We see differences in concentrations and composition between the centers and edges both in the first measurement and in subsequent measurements. Our findings support the hypothesis that plume dilution influences smoke aging.
Julia Perim de Faria, Ulrich Bundke, Andrew Freedman, Timothy B. Onasch, and Andreas Petzold
Atmos. Meas. Tech., 14, 1635–1653, https://doi.org/10.5194/amt-14-1635-2021, https://doi.org/10.5194/amt-14-1635-2021, 2021
Short summary
Short summary
An evaluation of the performance and accuracy of a Cavity Attenuated Phase-Shift Single Scattering Albedo Monitor (CAPS PMSSA; Aerodyne Research, Inc.) was conducted in an optical-closure study with proven technologies for aerosol particle optical-property measurements. This study demonstrates that the CAPS PMSSA is a robust and reliable instrument for the direct measurement of the particle scattering and extinction coefficients and thus single-scattering albedo.
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1319–1331, https://doi.org/10.5194/amt-14-1319-2021, https://doi.org/10.5194/amt-14-1319-2021, 2021
Chuanyang Shen, Gang Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1293–1301, https://doi.org/10.5194/amt-14-1293-2021, https://doi.org/10.5194/amt-14-1293-2021, 2021
Short summary
Short summary
Aerosol hygroscopicity measured by the humidified tandem differential mobility analyzer (HTDMA) is affected by multiply charged particles from two aspects: (1) number contribution and (2) the weakening effect. An algorithm is proposed to do the multi-charge correction and applied to a field measurement. Results show that the difference between corrected and measured size-resolved κ can reach 0.05, highlighting that special attention needs to be paid to the multi-charge effect when using HTDMA.
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021, https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary
Short summary
Submicron particles larger than 300 nm dominate the aerosol light extinction and mass concentration in the urban environment. Aerosol hygroscopic properties extended to 600 nm were investigated at an urban site. Our results find that there exists a large fraction of a less hygroscopic group above 300 nm, and the hygroscopicity in this size range is enhanced significantly with the development of pollution levels. The hygroscopicity variation contributes greatly to the low visibility.
Michael Rösch and Daniel J. Cziczo
Atmos. Meas. Tech., 13, 6807–6812, https://doi.org/10.5194/amt-13-6807-2020, https://doi.org/10.5194/amt-13-6807-2020, 2020
Short summary
Short summary
The need for a simple atomizer with a high-output stability combined with the capabilities of CAD software and high-resolution 3D printing has allowed for the design, production and testing of the PRinted drOpleT Generator (PROTeGE) to generate liquid particles from solutions. The size and number concentrations of the generated particles have been characterized with different ammonium sulfate and PSL solutions. PROTeGE is easy to operate, requires minimal maintenance and is cost-effective.
Martin J. Wolf, Megan Goodell, Eric Dong, Lilian A. Dove, Cuiqi Zhang, Lesly J. Franco, Chuanyang Shen, Emma G. Rutkowski, Domenic N. Narducci, Susan Mullen, Andrew R. Babbin, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 15341–15356, https://doi.org/10.5194/acp-20-15341-2020, https://doi.org/10.5194/acp-20-15341-2020, 2020
Short summary
Short summary
Sea spray is the largest aerosol source on Earth. These aerosol particles can impact climate by inducing ice formation in clouds. The role that ocean biology plays in determining the composition and ice nucleation abilities of sea spray aerosol is unclarified. In this study, we demonstrate that atomized seawater from highly productive ocean regions is more effective at nucleating ice than seawater from lower-productivity regions.
Gourihar Kulkarni, Naruki Hiranuma, Ottmar Möhler, Kristina Höhler, Swarup China, Daniel J. Cziczo, and Paul J. DeMott
Atmos. Meas. Tech., 13, 6631–6643, https://doi.org/10.5194/amt-13-6631-2020, https://doi.org/10.5194/amt-13-6631-2020, 2020
Short summary
Short summary
This study presents a new continuous-flow-diffusion-chamber-style operated ice chamber (Modified Compact Ice Chamber, MCIC) to measure the immersion-freezing efficiency of atmospheric particles. MCIC allowed us to obtain maximum droplet-freezing efficiency at higher time resolution without droplet breakthrough ambiguity. Its evaluation was performed by reproducing published data from the recent ice nucleation workshop and past laboratory data for standard and airborne ice-nucleating particles.
Lawrence I. Kleinman, Arthur J. Sedlacek III, Kouji Adachi, Peter R. Buseck, Sonya Collier, Manvendra K. Dubey, Anna L. Hodshire, Ernie Lewis, Timothy B. Onasch, Jeffery R. Pierce, John Shilling, Stephen R. Springston, Jian Wang, Qi Zhang, Shan Zhou, and Robert J. Yokelson
Atmos. Chem. Phys., 20, 13319–13341, https://doi.org/10.5194/acp-20-13319-2020, https://doi.org/10.5194/acp-20-13319-2020, 2020
Short summary
Short summary
Aerosols from wildfires affect the Earth's temperature by absorbing light or reflecting it back into space. This study investigates time-dependent chemical, microphysical, and optical properties of aerosols generated by wildfires in the Pacific Northwest, USA. Wildfire smoke plumes were traversed by an instrumented aircraft at locations near the fire and up to 3.5 h travel time downwind. Although there was no net aerosol production, aerosol particles grew and became more efficient scatters.
Cited articles
Anderson, B. E., Beyersdorf, A. J., Hudgins, C. H., Plant, J. V., Thornhill,
K. L., Winstead, E. L., Ziemba, L. D., Howard, R., Corporan, E., Miake-Lye,
R. C., Herndon, S. C., Timko, M., Woods, E., Dodds, W., Lee, B., Santoni,
G., Whitefield, P., Hagen, D., Lobo, P., Knighton, W. B., Bulzan, D.,
Tacina, K., Wey, C., VanderWal, R., and Bhargava, A.: Alternative Aviation
Fuel Experiment (AAFEX), National Aeronautics and Space Administration,
Langley Research Center, NASA/TM-2011-217059, Hanover, 2011.
Arey, J., Winer, A. M., Atkinson, R., Aschmann, S. M., Long, W. D.,
Morrison, C. L., and Olszyk, D. M.: Terpenes Emitted from Agricultural
Species Found in California's Central Valley, J. Geophys.
Res.-Atmos., 96, 9329–9336, https://doi.org/10.1029/91JD00447, 1991.
Atkinson, R. and Arey, J.: Gas-Phase Tropospheric Chemistry of Biogenic
Volatile Organic Compounds: A Review, Atmos. Environ., 37, 197–219,
https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
Awad, O. I., Ma, X., Kamil, M., Ali, O. M., Zhang, Z., and Shuai, S.:
Particulate Emissions from Gasoline Direct Injection Engines: A Review of
How Current Emission Regulations Are Being Met by Automobile Manufacturers,
Sci. Total Environ., 718, 137302, https://doi.org/10.1016/j.scitotenv.2020.137302, 2020.
Bé, A. G., Upshur, M. A., Liu, P., Martin, S. T., Geiger, F. M., and
Thomson, R. J.: Cloud Activation Potentials for Atmospheric α-Pinene
and β-Caryophyllene Ozonolysis Products, ACS Central Science, 3,
715–725, https://doi.org/10.1021/acscentsci.7b00112, 2017.
Berkemeier, T., Shiraiwa, M., Pöschl, U., and Koop, T.: Competition between water uptake and ice nucleation by glassy organic aerosol particles, Atmos. Chem. Phys., 14, 12513–12531, https://doi.org/10.5194/acp-14-12513-2014, 2014.
Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Ziemba, L. D., Blake,
D. R., Timko, M. T., and Anderson, B. E.: Power-Dependent Speciation of
Volatile Organic Compounds in Aircraft Exhaust, Atmos. Environ., 61,
275–282, https://doi.org/10.1016/j.atmosenv.2012.07.027, 2012.
Beyersdorf, A. J., Timko, M. T., Ziemba, L. D., Bulzan, D., Corporan, E., Herndon, S. C., Howard, R., Miake-Lye, R., Thornhill, K. L., Winstead, E., Wey, C., Yu, Z., and Anderson, B. E.: Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels, Atmos. Chem. Phys., 14, 11–23, https://doi.org/10.5194/acp-14-11-2014, 2014.
Bhandari, J., China, S., Chandrakar, K. K., Kinney, G., Cantrell, W., Shaw,
R. A., Mazzoleni, L. R., Girotto, G., Sharma, N., Gorkowski, K., Gilardoni,
S., Decesari, S., Facchini, M. C., Zanca, N., Pavese, G., Esposito, F.,
Dubey, M. K., Aiken, A. C., Chakrabarty, R. K., Moosmüller, H., Onasch,
T. B., Zaveri, R. A., Scarnato, B. V., Fialho, P., and Mazzoleni, C.:
Extensive Soot Compaction by Cloud Processing from Laboratory and Field
Observations, Sci. Rep.-UK, 9, 11824, https://doi.org/10.1038/s41598-019-48143-y,
2019.
Bockhorn, H., D'Anna, A., and Sarofim, A. F.: Combustion Generated Fine
Carbonaceous Particles, edited by: Wang, H., Universitätsverlag
Karlsruhe, Karlsruhe, 2009.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the Role of Black Carbon in the Climate System: A Scientific
Assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
Klimont, Z.: A Technology-Based Global Inventory of Black and Organic Carbon
Emissions from Combustion, J. Geophys. Res.-Atmos.,
109, D14203, https://doi.org/10.1029/2003jd003697, 2004.
Borgnakke, C. and Sonntag, R. E.: Thermodynamic Relations, in: Fundamentals
of Thermodynamics, 8th Edn., Wiley, New York, 557–559, 2013.
Brasil, A. M., Farias, T. L., and Carvalho, M. G.: A Recipe for Image
Characterization of Fractal-Like Aggregates, J. Aerosol Sci., 30,
1379–1389, https://doi.org/10.1016/S0021-8502(99)00026-9, 1999.
Brooks, S. D., Suter, K., and Olivarez, L.: Effects of Chemical Aging on the
Ice Nucleation Activity of Soot and Polycyclic Aromatic Hydrocarbon
Aerosols, J. Phys. Chem. A, 118, 10036–10047,
https://doi.org/10.1021/jp508809y, 2014.
Burkhardt, U. and Kärcher, B.: Global Radiative Forcing from Contrail
Cirrus, Nat. Clim. Change, 1, 54, https://doi.org/10.1038/nclimate1068, 2011.
Cabot Corporation: Regal 330R Datasheet, available at: https://www.cabotcorp.com/search/?query=regal+330R, last access: 9 October 2020.
Calogirou, A., Kotzias, D., and Kettrup, A.: Product Analysis of the
Gas-Phase Reaction of β-Caryophyllene with Ozone, Atmos.
Environ., 31, 283–285, https://doi.org/10.1016/1352-2310(96)00190-2, 1997.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Cape, J. N., Coyle, M., and Dumitrean, P.: The Atmospheric Lifetime of Black
Carbon, Atmos. Environ., 59, 256–263, https://doi.org/10.1016/j.atmosenv.2012.05.030, 2012.
China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.:
Morphology and Mixing State of Individual Freshly Emitted Wildfire
Carbonaceous Particles, Nat. Commun., 4, 2122, https://doi.org/10.1038/ncomms3122,
2013.
China, S., Salvadori, N., and Mazzoleni, C.: Effect of Traffic and Driving
Characteristics on Morphology of Atmospheric Soot Particles at Freeway
on-Ramps, Environ. Sci. Technol., 48, 3128–3135,
https://doi.org/10.1021/es405178n, 2014.
China, S., Kulkarni, G., Scarnato, B. V., Sharma, N., Pekour, M., Shilling,
J. E., Wilson, J., Zelenyuk, A., Chand, D., Liu, S., Aiken, A. C., Dubey,
M., Laskin, A., Zaveri, R. A., and Mazzoleni, C.: Morphology of Diesel Soot
Residuals from Supercooled Water Droplets and Ice Crystals: Implications for
Optical Properties, Environ. Res. Lett., 10, 114010,
https://doi.org/10.1088/1748-9326/10/11/114010, 2015a.
China, S., Scarnato, B., Owen, R. C., Zhang, B., Ampadu, M. T., Kumar, S.,
Dzepina, K., Dziobak, M. P., Fialho, P., Perlinger, J. A., Hueber, J.,
Helmig, D., Mazzoleni, L. R., and Mazzoleni, C.: Morphology and Mixing State
of Aged Soot Particles at a Remote Marine Free Troposphere Site:
Implications for Optical Properties, Geophys. Res. Lett., 42,
1243–1250, https://doi.org/10.1002/2014GL062404, 2015b.
Chou, C., Kanji, Z. A., Stetzer, O., Tritscher, T., Chirico, R., Heringa, M. F., Weingartner, E., Prévôt, A. S. H., Baltensperger, U., and Lohmann, U.: Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles, Atmos. Chem. Phys., 13, 761–772, https://doi.org/10.5194/acp-13-761-2013, 2013.
Ciccioli, P., Brancaleoni, E., Frattoni, M., Di Palo, V., Valentini, R.,
Tirone, G., Seufert, G., Bertin, N., Hansen, U., Csiky, O., Lenz, R., and
Sharma, M.: Emission of Reactive Terpene Compounds from Orange Orchards and
Their Removal by within-Canopy Processes, J. Geophys. Res.-Atmos., 104, 8077–8094, https://doi.org/10.1029/1998jd100026, 1999.
Connolly, P. J., Möhler, O., Field, P. R., Saathoff, H., Burgess, R., Choularton, T., and Gallagher, M.: Studies of heterogeneous freezing by three different desert dust samples, Atmos. Chem. Phys., 9, 2805–2824, https://doi.org/10.5194/acp-9-2805-2009, 2009.
Crawford, I., Möhler, O., Schnaiter, M., Saathoff, H., Liu, D., McMeeking, G., Linke, C., Flynn, M., Bower, K. N., Connolly, P. J., Gallagher, M. W., and Coe, H.: Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements, Atmos. Chem. Phys., 11, 9549–9561, https://doi.org/10.5194/acp-11-9549-2011, 2011.
Cziczo, D. J., Thomson, D. S., Thompson, T. L., DeMott, P. J., and Murphy,
D. M.: Particle Analysis by Laser Mass Spectrometry (PALMS) Studies of Ice
Nuclei and Other Low Number Density Particles, Int. J. Mass
Spectrom., 258, 21–29, https://doi.org/10.1016/j.ijms.2006.05.013, 2006.
David, R. O., Fahrni, J., Marcolli, C., Mahrt, F., Brühwiler, D., and Kanji, Z. A.: The role of contact angle and pore width on pore condensation and freezing, Atmos. Chem. Phys., 20, 9419–9440, https://doi.org/10.5194/acp-20-9419-2020, 2020.
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y., Perez Sirkin, Y. A.,
Molinero, V., Mahrt, F., Brühwiler, D., Lohmann, U., and Kanji, Z. A.:
Pore Condensation and Freezing Is Responsible for Ice Formation Below Water
Saturation for Porous Particles, P. Natl. Acad.
Sci. USA, 116, 8184–8189, https://doi.org/10.1073/pnas.1813647116, 2019.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-Deployable, High-Resolution, Time-of-Flight
Aerosol Mass Spectrometer, Anal. Chem., 78, 8281–8289,
https://doi.org/10.1021/ac061249n, 2006.
DeMott, P. J., Chen, Y., Kreidenweis, S. M., Rogers, D. C., and Sherman, D.
E.: Ice Formation by Black Carbon Particles, Geophys. Res. Lett.,
26, 2429–2432, https://doi.org/10.1029/1999GL900580, 1999.
DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S.
M., Thomson, D. S., Borys, R., and Rogers, D. C.: Measurements of the
Concentration and Composition of Nuclei for Cirrus Formation, P.
Natl. Acad. Sci. USA, 100, 14655–14660, https://doi.org/10.1073/pnas.2532677100,
2003.
DeRieux, W.-S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K., Nizkorodov, S. A., and Shiraiwa, M.: Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition, Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, 2018.
Diehl, K. and Mitra, S. K.: A Laboratory Study of the Effects of a
Kerosene-Burner Exhaust on Ice Nucleation and the Evaporation Rate of Ice
Crystals, Atmos. Environ., 32, 3145–3151, https://doi.org/10.1016/S1352-2310(97)00467-6, 1998.
Ding, X., He, Q.-F., Shen, R.-Q., Yu, Q.-Q., and Wang, X.-M.: Spatial
Distributions of Secondary Organic Aerosols from Isoprene, Monoterpenes,
β-Caryophyllene, and Aromatics over China During Summer, J.
Geophys. Res.-Atmos., 119, 11877–11891,
https://doi.org/10.1002/2014jd021748, 2014.
Docherty, K. S., Corse, E. W., Jaoui, M., Offenberg, J. H., Kleindienst, T.
E., Krug, J. D., Riedel, T. P., and Lewandowski, M.: Trends in the Oxidation
and Relative Volatility of Chamber-Generated Secondary Organic Aerosol,
Aerosol Sci. Tech., 52, 992–1004, https://doi.org/10.1080/02786826.2018.1500014,
2018.
Dooley, S., Won, S. H., Chaos, M., Heyne, J., Ju, Y., Dryer, F. L., Kumar,
K., Sung, C.-J., Wang, H., Oehlschlaeger, M. A., Santoro, R. J., and
Litzinger, T. A.: A Jet Fuel Surrogate Formulated by Real Fuel Properties,
Combustion and Flame, 157, 2333–2339, https://doi.org/10.1016/j.combustflame.2010.07.001, 2010.
Dooley, S., Won, S. H., Jahangirian, S., Ju, Y., Dryer, F. L., Wang, H., and
Oehlschlaeger, M. A.: The Combustion Kinetics of a Synthetic Paraffinic Jet
Aviation Fuel and a Fundamentally Formulated, Experimentally Validated
Surrogate Fuel, Combust. Flame, 159, 3014–3020,
https://doi.org/10.1016/j.combustflame.2012.04.010, 2012.
Dymarska, M., Murray, B. J., Sun, L., Eastwood, M. L., Knopf, D. A., and
Bertram, A. K.: Deposition Ice Nucleation on Soot at Temperatures Relevant
for the Lower Troposphere, J. Geophys. Res.-Atmos.,
111, D04204, https://doi.org/10.1029/2005JD006627, 2006.
Fioletov, V. E.: Ozone Climatology, Trends, and Substances That Control
Ozone, Atmos. Ocean, 46, 39–67, https://doi.org/10.3137/ao.460103, 2008.
Fisher, L. R., Gamble, R. A., and Middlehurst, J.: The Kelvin Equation and
the Capillary Condensation of Water, Nature, 290, 575–576, https://doi.org/10.1038/290575a0,
1981.
Fletcher, N. H.: Nucleation and Growth of Ice Crystals Upon Crystalline
Substrates, Aust. J. Phys., 13, 408–418, 1960.
Fletcher, N. H.: Active Sites and Ice Crystal Nucleation, J.
Atmos. Sci., 26, 1266–1271, https://doi.org/10.1175/1520-0469(1969)026<1266:asaicn>2.0.co;2, 1969.
Fornea, A. P., Brooks, S. D., Dooley, J. B., and Saha, A.: Heterogeneous
Freezing of Ice on Atmospheric Aerosols Containing Ash, Soot, and Soil,
J. Geophys. Res.-Atmos., 114, D13201, https://doi.org/10.1029/2009JD011958,
2009.
Friedman, B., Kulkarni, G., Beránek, J., Zelenyuk, A., Thornton, J. A.,
and Cziczo, D. J.: Ice Nucleation and Droplet Formation by Bare and Coated
Soot Particles, J. Geophys. Res., 116, D17203, https://doi.org/10.1029/2011jd015999,
2011.
Frosch, M., Bilde, M., Nenes, A., Praplan, A. P., Jurányi, Z., Dommen, J., Gysel, M., Weingartner, E., and Baltensperger, U.: CCN activity and volatility of β-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 13, 2283–2297, https://doi.org/10.5194/acp-13-2283-2013, 2013.
Fu, H., Zhang, M., Li, W., Chen, J., Wang, L., Quan, X., and Wang, W.: Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai, Atmos. Chem. Phys., 12, 693–707, https://doi.org/10.5194/acp-12-693-2012, 2012.
Garimella, S., Kristensen, T. B., Ignatius, K., Welti, A., Voigtländer, J., Kulkarni, G. R., Sagan, F., Kok, G. L., Dorsey, J., Nichman, L., Rothenberg, D. A., Rösch, M., Kirchgäßner, A. C. R., Ladkin, R., Wex, H., Wilson, T. W., Ladino, L. A., Abbatt, J. P. D., Stetzer, O., Lohmann, U., Stratmann, F., and Cziczo, D. J.: The SPectrometer for Ice Nuclei (SPIN): an instrument to investigate ice nucleation, Atmos. Meas. Tech., 9, 2781–2795, https://doi.org/10.5194/amt-9-2781-2016, 2016.
Garimella, S., Rothenberg, D. A., Wolf, M. J., David, R. O., Kanji, Z. A., Wang, C., Rösch, M., and Cziczo, D. J.: Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers, Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, 2017.
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and
Birner, T.: The Extratropical Upper Troposphere and Lower Stratosphere,
Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355, 2011.
Griffin, R. J., Cocker III, D. R., Seinfeld, J. H., and Dabdub, D.: Estimate
of Global Atmospheric Organic Aerosol from Oxidation of Biogenic
Hydrocarbons, Geophys. Res. Lett., 26, 2721–2724,
https://doi.org/10.1029/1999gl900476, 1999.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Heald, C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J. F.,
Guenther, A., Hess, P. G., Vitt, F., Seinfeld, J. H., Goldstein, A. H., and
Fung, I.: Predicted Change in Global Secondary Organic Aerosol
Concentrations in Response to Future Climate, Emissions, and Land Use
Change, J. Geophys. Res.-Atmos., 113, D05211,
https://doi.org/10.1029/2007JD009092, 2008.
Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F.,
Aiken, A. C., Chen, Q., Martin, S. T., Farmer, D. K., and Artaxo, P.: A
Simplified Description of the Evolution of Organic Aerosol Composition in
the Atmosphere, Geophys. Res. Lett., 37, L08803, https://doi.org/10.1029/2010gl042737,
2010.
Helmig, D., Ortega, J., Guenther, A., Herrick, J. D., and Geron, C.:
Sesquiterpene Emissions from Loblolly Pine and Their Potential Contribution
to Biogenic Aerosol Formation in the Southeastern Us, Atmos.
Environ., 40, 4150–4157, https://doi.org/10.1016/j.atmosenv.2006.02.035, 2006.
Henrot, A.-J., Stanelle, T., Schröder, S., Siegenthaler, C., Taraborrelli, D., and Schultz, M. G.: Implementation of the MEGAN (v2.1) biogenic emission model in the ECHAM6-HAMMOZ chemistry climate model, Geosci. Model Dev., 10, 903–926, https://doi.org/10.5194/gmd-10-903-2017, 2017.
Heymsfield, A. J., Krämer, M., Luebke, A., Brown, P., Cziczo, D. J.,
Franklin, C., Lawson, P., Lohmann, U., McFarquhar, G., Ulanowski, Z., and
Van Tricht, K.: Cirrus Clouds, Meteor. Mon., 58, 2.1–2.26,
https://doi.org/10.1175/amsmonographs-d-16-0010.1, 2017.
Hildebrandt, L., Donahue, N. M., and Pandis, S. N.: High formation of secondary organic aerosol from the photo-oxidation of toluene, Atmos. Chem. Phys., 9, 2973–2986, https://doi.org/10.5194/acp-9-2973-2009, 2009.
Hildebrandt Ruiz, L., Paciga, A. L., Cerully, K. M., Nenes, A., Donahue, N. M., and Pandis, S. N.: Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity, Atmos. Chem. Phys., 15, 8301–8313, https://doi.org/10.5194/acp-15-8301-2015, 2015.
Hinks, M. L., Montoya-Aguilera, J., Ellison, L., Lin, P., Laskin, A., Laskin, J., Shiraiwa, M., Dabdub, D., and Nizkorodov, S. A.: Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene, Atmos. Chem. Phys., 18, 1643–1652, https://doi.org/10.5194/acp-18-1643-2018, 2018.
Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L., and Fast, J.: Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation, Atmos. Chem. Phys., 10, 5491–5514, https://doi.org/10.5194/acp-10-5491-2010, 2010.
Hodzic, A., Kasibhatla, P. S., Jo, D. S., Cappa, C. D., Jimenez, J. L., Madronich, S., and Park, R. J.: Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917–7941, https://doi.org/10.5194/acp-16-7917-2016, 2016.
Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R.
C., and Seinfeld, J. H.: Formation of Organic Aerosols from the Oxidation of
Biogenic Hydrocarbons, J. Atmos. Chem., 26, 189–222,
https://doi.org/10.1023/A:1005734301837, 1997.
Hu, D., Bian, Q., Li, T. W. Y., Lau, A. K. H., and Yu, J. Z.: Contributions
of Isoprene, Monoterpenes, β-Caryophyllene, and Toluene to Secondary
Organic Aerosols in Hong Kong During the Summer of 2006, J.
Geophys. Res.-Atmos., 113, D22206, https://doi.org/10.1029/2008jd010437, 2008.
Huang, C.-H. and Vander Wal, R. L.: Effect of Soot Structure Evolution from
Commercial Jet Engine Burning Petroleum Based Jp-8 and Synthetic Hrj and Ft
Fuels, Energy & Fuels, 27, 4946–4958, https://doi.org/10.1021/ef400576c, 2013.
IPCC: 2013: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2013.
Jacobson, M. Z.: Strong Radiative Heating Due to the Mixing State of Black
Carbon in Atmospheric Aerosols, Nature, 409, 695–697, https://doi.org/10.1038/35055518,
2001.
Jaoui, M., Lewandowski, M., Kleindienst, T. E., Offenberg, J. H., and Edney,
E. O.: β-Caryophyllinic Acid: An Atmospheric Tracer for β-Caryophyllene Secondary Organic Aerosol, Geophys. Res. Lett.,
34, L05816, https://doi.org/10.1029/2006GL028827, 2007.
Jaoui, M., Kleindienst, T. E., Docherty, K. S., Lewandowski, M., and
Offenberg, J. H.: Secondary Organic Aerosol Formation from the Oxidation of
a Series of Sesquiterpenes: α-Cedrene, β-Caryophyllene,
α-Humulene and α-Farnesene with O3, OH and NO3 Radicals,
Environ. Chem., 10, 178–193, https://doi.org/10.1071/EN13025, 2013.
Johnson, J. E. and Belmont, J. A.: Modified Colored Pigments and Ink Jet Inks, Inks, and Coatings Containing Modified Colored Pigments: United States, U.S. Patent No. 5922118, 1999.
Joo, P. H., Gigone, B., Griffin, E. A., Christensen, M., and Gülder,
Ö. L.: Soot Primary Particle Size Dependence on Combustion Pressure in
Laminar Ethylene Diffusion Flames, Fuel, 220, 464–470, https://doi.org/10.1016/j.fuel.2018.02.025, 2018.
Joyce, G. A. and Henry, W. M.: Modeling the Equilibrium Compressed Void
Volume of Carbon Black, Rubber Chem. Technol., 79, 735–764,
https://doi.org/10.5254/1.3547964, 2006.
Kang, E., Root, M. J., Toohey, D. W., and Brune, W. H.: Introducing the concept of Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7, 5727–5744, https://doi.org/10.5194/acp-7-5727-2007, 2007.
Kanji, Z. A. and Abbatt, J. P. D.: Laboratory Studies of Ice Formation Via
Deposition Mode Nucleation onto Mineral Dust and n-Hexane Soot Samples,
J. Geophys. Res., 111, D16204, https://doi.org/10.1029/2005jd006766, 2006.
Kanji, Z. A., DeMott, P. J., Möhler, O., and Abbatt, J. P. D.: Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: instrument intercomparison and ice onsets for different aerosol types, Atmos. Chem. Phys., 11, 31–41, https://doi.org/10.5194/acp-11-31-2011, 2011.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles,
Meteor. Mon., 58, 1.1–1.33, https://doi.org/10.1175/amsmonographs-d-16-0006.1,
2017.
Kärcher, B.: Formation and Radiative Forcing of Contrail Cirrus, Nat.
Commun., 9, 1824, https://doi.org/10.1038/s41467-018-04068-0, 2018.
Kärcher, B., Möhler, O., DeMott, P. J., Pechtl, S., and Yu, F.: Insights into the role of soot aerosols in cirrus cloud formation, Atmos. Chem. Phys., 7, 4203–4227, https://doi.org/10.5194/acp-7-4203-2007, 2007.
Karlsson, M. N. A. and Martinsson, B. G.: Methods to Measure and Predict
the Transfer Function Size Dependence of Individual Dmas, J. Aerosol
Sci., 34, 603–625, https://doi.org/10.1016/S0021-8502(03)00020-X, 2003.
Khalizov, A. F., Zhang, R., Zhang, D., Xue, H., Pagels, J., and McMurry, P.
H.: Formation of Highly Hygroscopic Soot Aerosols Upon Internal Mixing with
Sulfuric Acid Vapor, J. Geophys. Res.-Atmos., 114, D05208,
https://doi.org/10.1029/2008JD010595, 2009.
Kinsey, J. S., Dong, Y., Williams, D. C., and Logan, R.: Physical
Characterization of the Fine Particle Emissions from Commercial Aircraft
Engines During the Aircraft Particle Emissions Experiment (APEX) 1–3,
Atmos. Environ., 44, 2147–2156, https://doi.org/10.1016/j.atmosenv.2010.02.010,
2010.
Kinsey, J. S., Hays, M. D., Dong, Y., Williams, D. C., and Logan, R.:
Chemical Characterization of the Fine Particle Emissions from Commercial
Aircraft Engines During the Aircraft Particle Emissions Experiment (APEX) 1
to 3, Environ. Sci. Technol., 45, 3415–3421,
https://doi.org/10.1021/es103880d, 2011.
Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A.,
Gerthsen, D., and Leisner, T.: Active Sites in Heterogeneous Ice
Nucleation-the Example of K-Rich Feldspars, Science, 355, 367–371,
https://doi.org/10.1126/science.aai8034, 2017.
Kittelson, D. B.: Engines and Nanoparticles: A Review, J. Aerosol
Sci., 29, 575–588, https://doi.org/10.1016/S0021-8502(97)10037-4, 1998.
Koehler, K. A., DeMott, P. J., Kreidenweis, S. M., Popovicheva, O. B.,
Petters, M. D., Carrico, C. M., Kireeva, E. D., Khokhlova, T. D., and
Shonija, N. K.: Cloud Condensation Nuclei and Ice Nucleation Activity of
Hydrophobic and Hydrophilic Soot Particles, Phys. Chem. Chem.
Phys., 11, 7906–7920, https://doi.org/10.1039/B905334B, 2009.
Koop, T., Luo, B., Tsias, A., and Peter, T.: Water Activity as the
Determinant for Homogeneous Ice Nucleation in Aqueous Solutions, Nature,
406, 611, https://doi.org/10.1038/35020537, 2000.
Köylü, Ü. Ö., Faeth, G. M., Farias, T. L., and Carvalho, M.
G.: Fractal and Projected Structure Properties of Soot Aggregates,
Combustion and Flame, 100, 621–633, https://doi.org/10.1016/0010-2180(94)00147-K, 1995.
Kulkarni, G., China, S., Liu, S., Nandasiri, M., Sharma, N., Wilson, J.,
Aiken, A. C., Chand, D., Laskin, A., Mazzoleni, C., Pekour, M., Shilling,
J., Shutthanandan, V., Zelenyuk, A., and Zaveri, R. A.: Ice Nucleation
Activity of Diesel Soot Particles at Cirrus Relevant Temperature Conditions:
Effects of Hydration, Secondary Organics Coating, Soot Morphology, and
Coagulation, Geophys. Res. Lett., 43, 3580–3588,
https://doi.org/10.1002/2016gl068707, 2016.
Kulkarni, G. R. and Kok, G. L.: Mobile Ice Nucleus Spectrometer; Pacific
Northwest National Lab. (PNNL), Richland, WA (United States) PNNL-21384, 600306000 United States 10.2172/1071991, 600306000 PNNL
English, Medium: ED, Size: PDFN, 2012.
Lambe, A. T., Ahern, A. T., Williams, L. R., Slowik, J. G., Wong, J. P. S., Abbatt, J. P. D., Brune, W. H., Ng, N. L., Wright, J. P., Croasdale, D. R., Worsnop, D. R., Davidovits, P., and Onasch, T. B.: Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements, Atmos. Meas. Tech., 4, 445–461, https://doi.org/10.5194/amt-4-445-2011, 2011a.
Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P., Ahern, A. T., Williams, L. R., Worsnop, D. R., Brune, W. H., and Davidovits, P.: Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA), Atmos. Chem. Phys., 11, 8913–8928, https://doi.org/10.5194/acp-11-8913-2011, 2011b.
Lamkaddam, H., Gratien, A., Ropion, M., Pangui, E., and Doussin, J.-F.:
Kinetic Study of the Temperature Dependence of Oh-Initiated Oxidation of
N-Dodecane, J. Phys. Chem. A, 123, 9462–9468,
https://doi.org/10.1021/acs.jpca.9b07704, 2019.
Lapuerta, M., Martos, F. J., and Herreros, J. M.: Effect of Engine Operating
Conditions on the Size of Primary Particles Composing Diesel Soot
Agglomerates, J. Aerosol Sci., 38, 455–466, https://doi.org/10.1016/j.jaerosci.2007.02.001, 2007.
Lee, A., Goldstein, A. H., Kroll, J. H., Ng, N. L., Varutbangkul, V.,
Flagan, R. C., and Seinfeld, J. H.: Gas-Phase Products and Secondary Aerosol
Yields from the Photooxidation of 16 Different Terpenes, J.
Geophys. Res.-Atmos., 111, D17305, https://doi.org/10.1029/2006jd007050, 2006.
Lee, C. and Kramer, T. A.: Prediction of Three-Dimensional Fractal
Dimensions Using the Two-Dimensional Properties of Fractal Aggregates,
Adv. Colloid Interfac., 112, 49–57, https://doi.org/10.1016/j.cis.2004.07.001, 2004.
Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N., Lim,
L. L., Owen, B., and Sausen, R.: Aviation and Global Climate Change in the
21st Century, Atmos. Environ., 43, 3520–3537,
https://doi.org/10.1016/j.atmosenv.2009.04.024, 2009.
Lee, D. S., Pitari, G., Grewe, V., Gierens, K., Penner, J. E., Petzold, A.,
Prather, M. J., Schumann, U., Bais, A., Berntsen, T., Iachetti, D., Lim, L.
L., and Sausen, R.: Transport Impacts on Atmosphere and Climate: Aviation,
Atmos. Environ., 44, 4678–4734, https://doi.org/10.1016/j.atmosenv.2009.06.005, 2010.
Lee-Taylor, J., Madronich, S., Aumont, B., Baker, A., Camredon, M., Hodzic, A., Tyndall, G. S., Apel, E., and Zaveri, R. A.: Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume, Atmos. Chem. Phys., 11, 13219–13241, https://doi.org/10.5194/acp-11-13219-2011, 2011.
Lefebvre, A. H.: Gas Turbine Combustion, CRC press, Boca Raton, FL, USA, 1998.
Li, K., Chen, L., Han, K., Lv, B., Bao, K., Wu, X., Gao, X., and Cen, K.:
Smog Chamber Study on Aging of Combustion Soot in Isoprene/SO2/NOx System:
Changes of Mass, Size, Effective Density, Morphology and Mixing State,
Atmos. Res., 184, 139–148, https://doi.org/10.1016/j.atmosres.2016.10.011, 2017.
Li, K., Liggio, J., Lee, P., Han, C., Liu, Q., and Li, S.-M.: Secondary organic aerosol formation from α-pinene, alkanes, and oil-sands-related precursors in a new oxidation flow reactor, Atmos. Chem. Phys., 19, 9715–9731, https://doi.org/10.5194/acp-19-9715-2019, 2019.
Li, M., Karu, E., Brenninkmeijer, C., Fischer, H., Lelieveld, J., and
Williams, J.: Tropospheric OH and Stratospheric OH and Cl Concentrations
Determined from CH4, CH3Cl, and SF6 Measurements, Climate and
Atmospheric Science, 1, 29, https://doi.org/10.1038/s41612-018-0041-9, 2018.
Li, W., Shao, L., Zhang, D., Ro, C.-U., Hu, M., Bi, X., Geng, H., Matsuki,
A., Niu, H., and Chen, J.: A Review of Single Aerosol Particle Studies in
the Atmosphere of East Asia: Morphology, Mixing State, Source, and
Heterogeneous Reactions, J. Clean. Prod., 112, 1330–1349,
https://doi.org/10.1016/j.jclepro.2015.04.050, 2016.
Li, Y., Day, D. A., Stark, H., Jimenez, J. L., and Shiraiwa, M.: Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions, Atmos. Chem. Phys., 20, 8103–8122, https://doi.org/10.5194/acp-20-8103-2020, 2020.
Liati, A., Brem, B. T., Durdina, L., Vogtli, M., Dasilva, Y. A.,
Eggenschwiler, P. D., and Wang, J.: Electron Microscopic Study of Soot
Particulate Matter Emissions from Aircraft Turbine Engines, Environ.
Sci. Technol., 48, 10975–10983, https://doi.org/10.1021/es501809b, 2014.
Liati, A., Schreiber, D., Dimopoulos Eggenschwiler, P., Arroyo Rojas
Dasilva, Y., and Spiteri, A. C.: Electron Microscopic Characterization of
Soot Particulate Matter Emitted by Modern Direct Injection Gasoline Engines,
Combust. Flame, 166, 307–315, https://doi.org/10.1016/j.combustflame.2016.01.031,
2016.
Liu, T., Huang, D. D., Li, Z., Liu, Q., Chan, M., and Chan, C. K.: Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity, Atmos. Chem. Phys., 18, 5677–5689, https://doi.org/10.5194/acp-18-5677-2018, 2018.
Lobo, P., Durdina, L., Smallwood, G. J., Rindlisbacher, T., Siegerist, F.,
Black, E. A., Yu, Z., Mensah, A. A., Hagen, D. E., Miake-Lye, R. C.,
Thomson, K. A., Brem, B. T., Corbin, J. C., Abegglen, M., Sierau, B.,
Whitefield, P. D., and Wang, J.: Measurement of Aircraft Engine Non-Volatile
Pm Emissions: Results of the Aviation-Particle Regulatory Instrumentation
Demonstration Experiment (A-PRIDE) 4 Campaign, Aerosol Sci.
Tech., 49, 472–484, https://doi.org/10.1080/02786826.2015.1047012, 2015.
Loza, C. L., Craven, J. S., Yee, L. D., Coggon, M. M., Schwantes, R. H., Shiraiwa, M., Zhang, X., Schilling, K. A., Ng, N. L., Canagaratna, M. R., Ziemann, P. J., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol yields of 12-carbon alkanes, Atmos. Chem. Phys., 14, 1423–1439, https://doi.org/10.5194/acp-14-1423-2014, 2014.
Lund, M. T., Samset, B. H., Skeie, R. B., Watson-Parris, D., Katich, J. M.,
Schwarz, J. P., and Weinzierl, B.: Short Black Carbon Lifetime Inferred from
a Global Set of Aircraft Observations, Climate and Atmospheric Science,
1, 31, https://doi.org/10.1038/s41612-018-0040-x, 2018.
Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U.: Experimental
Study on the Ice Nucleation Ability of Size-Selected Kaolinite Particles in
the Immersion Mode, J. Geophys. Res.-Atmos., 115, D14201,
https://doi.org/10.1029/2009jd012959, 2010.
Mahrt, F., Kilchhofer, K., Marcolli, C., Grönquist, P., David, R. O.,
Rösch, M., Lohmann, U., and Kanji, Z. A.: The Impact of Cloud Processing
on the Ice Nucleation Abilities of Soot Particles at Cirrus Temperatures,
J. Geophys. Res.-Atmos., 125, e2019JD030922,
https://doi.org/10.1029/2019jd030922, 2020.
Mahrt, F., Marcolli, C., David, R. O., Grönquist, P., Barthazy Meier, E. J., Lohmann, U., and Kanji, Z. A.: Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber, Atmos. Chem. Phys., 18, 13363–13392, https://doi.org/10.5194/acp-18-13363-2018, 2018.
Mandelbrot, B. B.: The Fractal Geometry of Nature, W. H. Freeman and
Company, San Francisco, 1982.
Marcolli, C.: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities, Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, 2014.
Mason, R. H., Si, M., Chou, C., Irish, V. E., Dickie, R., Elizondo, P., Wong, R., Brintnell, M., Elsasser, M., Lassar, W. M., Pierce, K. M., Leaitch, W. R., MacDonald, A. M., Platt, A., Toom-Sauntry, D., Sarda-Estève, R., Schiller, C. L., Suski, K. J., Hill, T. C. J., Abbatt, J. P. D., Huffman, J. A., DeMott, P. J., and Bertram, A. K.: Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe, Atmos. Chem. Phys., 16, 1637–1651, https://doi.org/10.5194/acp-16-1637-2016, 2016.
Moffet, R. C., O'Brien, R. E., Alpert, P. A., Kelly, S. T., Pham, D. Q., Gilles, M. K., Knopf, D. A., and Laskin, A.: Morphology and mixing of black carbon particles collected in central California during the CARES field study, Atmos. Chem. Phys., 16, 14515–14525, https://doi.org/10.5194/acp-16-14515-2016, 2016.
Möhler, O., Büttner, S., Linke, C., Schnaiter, M., Saathoff, H.,
Stetzer, O., Wagner, R., Krämer, M., Mangold, A., Ebert, V., and
Schurath, U.: Effect of Sulfuric Acid Coating on Heterogeneous Ice
Nucleation by Soot Aerosol Particles, J. Geophys. Res.-Atmos., 110, D11210, https://doi.org/10.1029/2004JD005169, 2005a.
Möhler, O., Linke, C., Saathoff, H., Schnaiter, M., Wagner, R., Mangold,
A., Krämer, M., and Schurath, U.: Ice Nucleation on Flame Soot Aerosol
of Different Organic Carbon Content, Meteorol. Z., 14,
477–484, https://doi.org/10.1127/0941-2948/2005/0055, 2005b.
Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D'Ascoli, E., Kim,
J., Lichtenstern, M., Scheibe, M., Beaton, B., Beyersdorf, A. J., Barrick,
J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick,
D., Shook, M., Slover, G., Voigt, C., White, R., Winstead, E., Yasky, R.,
Ziemba, L. D., Brown, A., Schlager, H., and Anderson, B. E.: Biofuel
Blending Reduces Particle Emissions from Aircraft Engines at Cruise
Conditions, Nature, 543, 411–415, https://doi.org/10.1038/nature21420, 2017.
Murphy, D. M., Thomson, D. S., Middlebrook, A. M., and Schein, M. E.: In
Situ Single-Particle Characterization at Cape Grim, J. Geophys.
Res.-Atmos., 103, 16485–16491, https://doi.org/10.1029/97JD03281, 1998.
Murray, B. J., Wilson, T. W., Dobbie, S., Cui, Z., Al-Jumur, S. M. R. K.,
Möhler, O., Schnaiter, M., Wagner, R., Benz, S., Niemand, M., Saathoff,
H., Ebert, V., Wagner, S., and Kärcher, B.: Heterogeneous Nucleation of
Ice Particles on Glassy Aerosols under Cirrus Conditions, Nat. Geosci.,
3, 233–237, https://doi.org/10.1038/ngeo817, 2010.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop, D. R.: Changes in organic aerosol composition with aging inferred from aerosol mass spectra, Atmos. Chem. Phys., 11, 6465–6474, https://doi.org/10.5194/acp-11-6465-2011, 2011.
Nguyen, T. L., Winterhalter, R., Moortgat, G., Kanawati, B., Peeters, J.,
and Vereecken, L.: The Gas-Phase Ozonolysis of β-Caryophyllene
(C15H24). Part Ii: A Theoretical Study, Phys. Chem. Chem. Phys.,
11, 4173–4183, https://doi.org/10.1039/B817913A, 2009.
Nichman, L., Wolf, M., Davidovits, P., Onasch, T. B., Zhang, Y., Worsnop, D. R., Bhandari, J., Mazzoleni, C., and Cziczo, D. J.: Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol, Atmos. Chem. Phys., 19, 12175–12194, https://doi.org/10.5194/acp-19-12175-2019, 2019
Oh, C. and Sorensen, C. M.: The Effect of Overlap between Monomers on the
Determination of Fractal Cluster Morphology, J. Colloid
Interfac., 193, 17–25, https://doi.org/10.1006/jcis.1997.5046, 1997.
Onasch, T. B., Jayne, J. T., Herndon, S., Worsnop, D. R., Miake-Lye, R. C.,
Mortimer, I. P., and Anderson, B. E.: Chemical Properties of Aircraft Engine
Particulate Exhaust Emissions, J. Propul. Power, 25,
1121–1137, https://doi.org/10.2514/1.36371, 2009.
Onasch, T. B., Trimborn, A., Fortner, E. C., Jayne, J. T., Kok, G. L.,
Williams, L. R., Davidovits, P., and Worsnop, D. R.: Soot Particle Aerosol
Mass Spectrometer: Development, Validation, and Initial Application, Aerosol
Sci. Tech., 46, 804–817, https://doi.org/10.1080/02786826.2012.663948, 2012.
Pandis, S. N., Harley, R. A., Cass, G. R., and Seinfeld, J. H.: Secondary
Organic Aerosol Formation and Transport, Atmos. Environ. A-Gen., 26, 2269–2282, https://doi.org/10.1016/0960-1686(92)90358-R, 1992.
Pereira, K. L., Rovelli, G., Song, Y. C., Mayhew, A. W., Reid, J. P., and Hamilton, J. F.: A new aerosol flow reactor to study secondary organic aerosol, Atmos. Meas. Tech., 12, 4519–4541, https://doi.org/10.5194/amt-12-4519-2019, 2019.
Persiantseva, N. M., Popovicheva, O. B., and Shonija, N. K.: Wetting and
Hydration of Insoluble Soot Particles in the Upper Troposphere, J.
Environ. Monitor., 6, 939–945, https://doi.org/10.1039/B407770A, 2004.
Petzold, A., Ström, J., Ohlsson, S., and Schröder, F. P.: Elemental
Composition and Morphology of Ice-Crystal Residual Particles in Cirrus
Clouds and Contrails, Atmos. Res., 49, 21–34, https://doi.org/10.1016/S0169-8095(97)00083-5, 1998.
Pison, I. and Menut, L.: Quantification of the Impact of Aircraft Traffic
Emissions on Tropospheric Ozone over Paris Area, Atmos. Environ.,
38, 971–983, https://doi.org/10.1016/j.atmosenv.2003.10.056,
2004.
Popovicheva, O. B., Persiantseva, N. M., Lukhovitskaya, E. E., Shonija, N.
K., Zubareva, N. A., Demirdjian, B., Ferry, D., and Suzanne, J.: Aircraft
Engine Soot as Contrail Nuclei, Geophys. Res. Lett., 31, L11104,
https://doi.org/10.1029/2003GL018888, 2004.
Presto, A. A., Miracolo, M. A., Donahue, N. M., and Robinson, A. L.:
Secondary Organic Aerosol Formation from High-NOx Photo-Oxidation of Low
Volatility Precursors: N-Alkanes, Environ. Sci. Technol., 44,
2029–2034, https://doi.org/10.1021/es903712r, 2010.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and
Precipitation, 2nd Edn., Atmospheric and Oceanographic Sciences Library, 18,
Springer Netherlands, XXII, 954 pp., 2010.
Pusechel, R. F., Blake, D. F., Snetsinger, K. G., Hansen, A. D. A., Verma,
S., and Kato, K.: Black Carbon (Soot) Aerosol in the Lower Stratosphere and
Upper Troposphere, Geophys. Res. Lett., 19, 1659–1662,
https://doi.org/10.1029/92GL01801, 1992.
Ramachandran, G. and Reist, P. C.: Characterization of Morphological
Changes in Agglomerates Subject to Condensation and Evaporation Using
Multiple Fractal Dimensions, Aerosol Sci. Tech., 23, 431–442,
https://doi.org/10.1080/02786829508965326, 1995.
Raza, M., Chen, L., Leach, F., and Ding, S.: A Review of Particulate Number
(PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their
Control Techniques, Energies, 11, 1417, https://doi.org/10.3390/en11061417, 2018.
Sakulyanontvittaya, T., Duhl, T., Wiedinmyer, C., Helmig, D., Matsunaga, S.,
Potosnak, M., Milford, J., and Guenther, A.: Monoterpene and Sesquiterpene
Emission Estimates for the United States, Environ. Sci.
Technol., 42, 1623–1629, https://doi.org/10.1021/es702274e, 2008.
Samson, R. J., Mulholland, G. W., and Gentry, J. W.: Structural Analysis of
Soot Agglomerates, Langmuir, 3, 272–281, https://doi.org/10.1021/la00074a022, 1987.
Schilling, K. A., Yee, L. D., Loza, C. L., Coggon, M. M., Schwantes, R.,
Zhang, X., Dalleska, N. F., and Seinfeld, J. H.: Secondary Organic Aerosol
Composition from C12 Alkanes, J. Phys. Chem. A, 119,
4281–4297, https://doi.org/10.1021/jp501779w, 2015.
Seinfeld, J. H.: Clouds, Contrails and Climate, Nature, 391, 837–838, 1998.
Shu, Y. and Atkinson, R.: Rate Constants for the Gas-Phase Reactions of O3
with a Series of Terpenes and OH Radical Formation from the O3 Reactions
with Sesquiterpenes at 296±2 K, Int. J. Chem.
Kinet., 26, 1193–1205, https://doi.org/10.1002/kin.550261207, 1994.
Shu, Y. and Atkinson, R.: Atmospheric Lifetimes and Fates of a Series of
Sesquiterpenes, J. Geophys. Res.-Atmos., 100,
7275–7281, https://doi.org/10.1029/95JD00368, 1995.
Simonen, P., Saukko, E., Karjalainen, P., Timonen, H., Bloss, M., Aakko-Saksa, P., Rönkkö, T., Keskinen, J., and Dal Maso, M.: A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources, Atmos. Meas. Tech., 10, 1519–1537, https://doi.org/10.5194/amt-10-1519-2017, 2017.
Slowik, J. G., Cross, E. S., Han, J.-H., Kolucki, J., Davidovits, P.,
Williams, L. R., Onasch, T. B., Jayne, J. T., Kolb, C. E., and Worsnop, D.
R.: Measurements of Morphology Changes of Fractal Soot Particles Using
Coating and Denuding Experiments: Implications for Optical Absorption and
Atmospheric Lifetime, Aerosol Sci. Tech., 41, 734–750,
https://doi.org/10.1080/02786820701432632, 2007.
Smekens, A., Godoi, R. H. M., Berghmans, P., and Van Grieken, R.:
Characterisation of Soot Emitted by Domestic Heating, Aircraft and Cars
Using Diesel or Biodiesel, J. Atmos. Chem., 52, 45–62,
https://doi.org/10.1007/s10874-005-6903-7, 2005.
Steane, A. M.: Phase Change, in: Thermodynamics: A Complete Undergraduate
Course, Oxford University Press, 2016.
Timko, M. T., Albo, S. E., Onasch, T. B., Fortner, E. C., Yu, Z., Miake-Lye,
R. C., Canagaratna, M. R., Ng, N. L., and Worsnop, D. R.: Composition and
Sources of the Organic Particle Emissions from Aircraft Engines, Aerosol
Sci. Tech., 48, 61–73, https://doi.org/10.1080/02786826.2013.857758, 2014.
Tritscher, T., Jurányi, Z., Martin, M., Chirico, R., Gysel, M., Heringa,
M. F., DeCarlo, P. F., Sierau, B., Prévôt, A. S. H., Weingartner,
E., and Baltensperger, U.: Changes of Hygroscopicity and Morphology During
Ageing of Diesel Soot, Environ. Res. Lett., 6, 034026,
https://doi.org/10.1088/1748-9326/6/3/034026, 2011.
Tsigaridis, K. and Kanakidou, M.: Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis, Atmos. Chem. Phys., 3, 1849–1869, https://doi.org/10.5194/acp-3-1849-2003, 2003.
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525–546, https://doi.org/10.5194/acp-10-525-2010, 2010.
Tully, F. P., Ravishankara, A. R., Thompson, R. L., Nicovich, J. M., Shah,
R. C., Kreutter, N. M., and Wine, P. H.: Kinetics of the Reactions of
Hydroxyl Radical with Benzene and Toluene, J. Phys.
Chem., 85, 2262–2269, https://doi.org/10.1021/j150615a025, 1981.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Vander Wal, R. L., Bryg, V. M., and Huang, C.-H.: Aircraft Engine
Particulate Matter: Macro- Micro- and Nanostructure by Hrtem and Chemistry
by Xps, Combustion and Flame, 161, 602–611,
https://doi.org/10.1016/j.combustflame.2013.09.003, 2014.
Volkamer, R., Platt, U., and Wirtz, K.: Primary and Secondary Glyoxal
Formation from Aromatics: Experimental Evidence for the
Bicycloalkyl-Radical Pathway from Benzene, Toluene, and P-Xylene,
J. Phys. Chem. A, 105, 7865–7874, https://doi.org/10.1021/jp010152w, 2001.
Wang, Y., Liu, H., and Lee, C.-F. F.: Particulate Matter Emission
Characteristics of Diesel Engines with Biodiesel or Biodiesel Blending: A
Review, Renew. Sustain. Energ. Rev., 64, 569–581, https://doi.org/10.1016/j.rser.2016.06.062, 2016.
Wang, Y., Liu, F., He, C., Bi, L., Cheng, T., Wang, Z., Zhang, H., Zhang,
X., Shi, Z., and Li, W.: Fractal Dimensions and Mixing Structures of Soot
Particles During Atmospheric Processing, Environ. Sci.
Tech. Let., 4, 487–493, https://doi.org/10.1021/acs.estlett.7b00418, 2017.
Welti, A., Lüönd, F., Stetzer, O., and Lohmann, U.: Influence of particle size on the ice nucleating ability of mineral dusts, Atmos. Chem. Phys., 9, 6705–6715, https://doi.org/10.5194/acp-9-6705-2009, 2009.
Wey, C., Anderson, B., Hudgins, C., Wey, C., Li-Jones, X., Winstead, E.,
Thornhill, L., Lobo, P., Hagen, D., and Whitefield, P.: Aircraft Particle
Emissions Experiment (APEX), NASA, Hanover, MD, USA, 2006.
Winterhalter, R., Herrmann, F., Kanawati, B., Nguyen, T. L., Peeters, J.,
Vereecken, L., and Moortgat, G. K.: The Gas-Phase Ozonolysis of β-Caryophyllene (C15H24). Part I: An Experimental Study, Phys.
Chem. Chem. Phys., 11, 4152–4172, https://doi.org/10.1039/B817824K, 2009.
Wolf, M. J., Coe, A., Dove, L. A., Zawadowicz, M. A., Dooley, K., Biller, S.
J., Zhang, Y., Chisholm, S. W., and Cziczo, D. J.: Investigating the
Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as
a Model Source of Marine Organic Matter, Environ. Sci.
Technol., 53, 1139–1149, https://doi.org/10.1021/acs.est.8b05150, 2019.
Yee, L. D., Craven, J. S., Loza, C. L., Schilling, K. A., Ng, N. L., Canagaratna, M. R., Ziemann, P. J., Flagan, R. C., and Seinfeld, J. H.: Effect of chemical structure on secondary organic aerosol formation from C12 alkanes, Atmos. Chem. Phys., 13, 11121–11140, https://doi.org/10.5194/acp-13-11121-2013, 2013.
Yu, P., Toon, O. B., Bardeen, C. G., Zhu, Y., Rosenlof, K. H., Portmann, R.
W., Thornberry, T. D., Gao, R.-S., Davis, S. M., Wolf, E. T., de Gouw, J.,
Peterson, D. A., Fromm, M. D., and Robock, A.: Black Carbon Lofts Wildfire
Smoke High into the Stratosphere to Form a Persistent Plume, Science, 365,
587–590, https://doi.org/10.1126/science.aax1748, 2019.
Zawadowicz, M. A., Abdelmonem, A., Mohr, C., Saathoff, H., Froyd, K. D.,
Murphy, D. M., Leisner, T., and Cziczo, D. J.: Single-Particle
Time-of-Flight Mass Spectrometry Utilizing a Femtosecond Desorption and
Ionization Laser, Anal. Chem., 87, 12221–12229,
https://doi.org/10.1021/acs.analchem.5b03158, 2015.
Zhang, C., Hui, X., Lin, Y., and Sung, C.-J.: Recent Development in Studies
of Alternative Jet Fuel Combustion: Progress, Challenges, and Opportunities,
Renew. Sust. Energ. Rev., 54, 120–138,
https://doi.org/10.1016/j.rser.2015.09.056, 2016.
Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P.
H.: Variability in Morphology, Hygroscopicity, and Optical Properties of
Soot Aerosols During Atmospheric Processing, P. Natl. Acad. Sci. USA, 105,
10291–10296, https://doi.org/10.1073/pnas.0804860105, 2008.
Zhang, X., Chen, X., and Wang, J.: A Number-Based Inventory of Size-Resolved
Black Carbon Particle Emissions by Global Civil Aviation, Nat.
Commun., 10, 534, https://doi.org/10.1038/s41467-019-08491-9, 2019.
Zhang, Y., Sanchez, M. S., Douet, C., Wang, Y., Bateman, A. P., Gong, Z., Kuwata, M., Renbaum-Wolff, L., Sato, B. B., Liu, P. F., Bertram, A. K., Geiger, F. M., and Martin, S. T.: Changing shapes and implied viscosities of suspended submicron particles, Atmos. Chem. Phys., 15, 7819–7829, https://doi.org/10.5194/acp-15-7819-2015, 2015.
Zhang, Y., Chen, Y., Lambe, A. T., Olson, N. E., Lei, Z., Craig, R. L.,
Zhang, Z., Gold, A., Onasch, T. B., Jayne, J. T., Worsnop, D. R., Gaston, C.
J., Thornton, J. A., Vizuete, W., Ault, A. P., and Surratt, J. D.: Effect of
the Aerosol-Phase State on Secondary Organic Aerosol Formation from the
Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX), Environ.
Sci. Tech. Let., 5, 167–174, https://doi.org/10.1021/acs.estlett.8b00044,
2018a.
Zhang, Y., Favez, O., Canonaco, F., Liu, D., Močnik, G., Amodeo, T.,
Sciare, J., Prévôt, A. S. H., Gros, V., and Albinet, A.: Evidence of
Major Secondary Organic Aerosol Contribution to Lensing Effect Black Carbon
Absorption Enhancement, Climate and Atmospheric Science, 1, 47,
https://doi.org/10.1038/s41612-018-0056-2, 2018b.
Zhang, Y., Katira, S., Lee, A., Lambe, A. T., Onasch, T. B., Xu, W., Brooks, W. A., Canagaratna, M. R., Freedman, A., Jayne, J. T., Worsnop, D. R., Davidovits, P., Chandler, D., and Kolb, C. E.: Kinetically controlled glass transition measurement of organic aerosol thin films using broadband dielectric spectroscopy, Atmos. Meas. Tech., 11, 3479–3490, https://doi.org/10.5194/amt-11-3479-2018, 2018c.
Zhang, Y., Liu, F., Clavel, D., Smallwood, G. J., and Lou, C.: Measurement
of Soot Volume Fraction and Primary Particle Diameter in Oxygen Enriched
Ethylene Diffusion Flames Using the Laser-Induced Incandescence Technique,
Energy, 177, 421–432, https://doi.org/10.1016/j.energy.2019.04.062, 2019a.
Zhang, Y., Nichman, L., Spencer, P., Jung, J. I., Lee, A., Heffernan, B. K.,
Gold, A., Zhang, Z., Chen, Y., Canagaratna, M. R., Jayne, J. T., Worsnop, D.
R., Onasch, T. B., Surratt, J. D., Chandler, D., Davidovits, P., and Kolb,
C. E.: The Cooling Rate- and Volatility-Dependent Glass-Forming Properties
of Organic Aerosols Measured by Broadband Dielectric Spectroscopy,
Environ. Sci. Technol., 53, 12366–12378,
https://doi.org/10.1021/acs.est.9b03317, 2019b.
Zhao, D. F., Buchholz, A., Kortner, B., Schlag, P., Rubach, F., Fuchs, H., Kiendler-Scharr, A., Tillmann, R., Wahner, A., Watne, Å. K., Hallquist, M., Flores, J. M., Rudich, Y., Kristensen, K., Hansen, A. M. K., Glasius, M., Kourtchev, I., Kalberer, M., and Mentel, Th. F.: Cloud condensation nuclei activity, droplet growth kinetics, and hygroscopicity of biogenic and anthropogenic secondary organic aerosol (SOA), Atmos. Chem. Phys., 16, 1105–1121, https://doi.org/10.5194/acp-16-1105-2016, 2016.
Zhao, L., Yang, T., Kaiser, R. I., Troy, T. P., Ahmed, M., Ribeiro, J. M.,
Belisario-Lara, D., and Mebel, A. M.: Combined Experimental and
Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel
Surrogates. Ii: n-Dodecane (n-C12H26), J. Phys. Chem. A,
121, 1281–1297, https://doi.org/10.1021/acs.jpca.6b11817, 2017.
Short summary
Black carbon (BC) is considered the second most important global warming agent. However, the role of BC aerosol–cloud–climate interactions in the cirrus formation remains uncertain. Our study of selected BC types and sizes suggests that increases in diameter, compactness, and/or surface oxidation of BC particles lead to more efficient ice nucleation (IN) via pore condensation freezing (PCF) pathways,and that coatings of common secondary organic aerosol (SOA) materials can inhibit ice formation.
Black carbon (BC) is considered the second most important global warming agent. However, the...
Altmetrics
Final-revised paper
Preprint