Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-13131-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13131-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Estimating aqueous solubilities and activity coefficients of mono- and α,ω-dicarboxylic acids using COSMOtherm
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
Department of Chemistry and Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
Reyhaneh Heshmatnezhad
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
Jonas Elm
Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
Theo Kurtén
Department of Chemistry and Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
Related authors
Silvia M. Calderón, Noora Hyttinen, Harri Kokkola, Tomi Raatikainen, R. Paul Lawson, and Sami Romakkaniemi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2730, https://doi.org/10.5194/egusphere-2025-2730, 2025
Short summary
Short summary
Field campaigns suggest that secondary ice production (SIP) via millimeter-sized supercooled droplets is responsible for the rapid glaciation and precipitation development in summer cumulus congestus clouds that lack of ice nucleating particles. We used large-eddy-simulations with sectional representation of aerosol and hydrometeor microphysics that reproduced observed hydrometeor size distributions and explained how SIP boosted rates of aggregation processes that increase surface precipitation.
Arttu Ylisirniö, Noora Hyttinen, Zijun Li, Mitchell Alton, Aki Nissinen, Iida Pullinen, Pasi Miettinen, Taina Yli-Juuti, and Siegfried Schobesberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2219, https://doi.org/10.5194/egusphere-2025-2219, 2025
Short summary
Short summary
This study aims to increase knowledge of the low volatility organic compouds observed in ambient aerosol particles by providing new volatility information about compounds used for calibrating volatility measurement instruments. Previously, such information has was not available and calibration of the instrument had to be extrapolated to cover the whole measurement range. Results of this study will provide the scientific community better tools for investigating the complexity of ambient aerosols.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Noora Hyttinen
Atmos. Chem. Phys., 23, 13809–13817, https://doi.org/10.5194/acp-23-13809-2023, https://doi.org/10.5194/acp-23-13809-2023, 2023
Short summary
Short summary
Water activity in aerosol particles describes how particles respond to variations in relative humidity. Here, water activities were calculated for a set of 80 salts that may be present in aerosol particles using a state-of-the-art quantum-chemistry-based method. The effect of the dissociated salt on water activity varies with both the cation and anion. Most of the studied salts increase water uptake compared to pure water-soluble organic particles.
Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1415, https://doi.org/10.5194/egusphere-2023-1415, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols (SOA) form effectively from gaseous precursors via a process called autoxidation. While key chemical reaction types seem to be known, no general description of autoxidation chemistry exists. In the present work, we present a method to create autoxidation chemistry schemes for any atmospherically relevant hydrocarbon. We exemplarily investigate benzene and its potential to form aerosols. We found that autoxidation, under some conditions, can dominate the SOA formation.
Zijun Li, Noora Hyttinen, Miika Vainikka, Olli-Pekka Tikkasalo, Siegfried Schobesberger, and Taina Yli-Juuti
Atmos. Chem. Phys., 23, 6863–6877, https://doi.org/10.5194/acp-23-6863-2023, https://doi.org/10.5194/acp-23-6863-2023, 2023
Short summary
Short summary
The saturation vapor pressure (psat) of low-volatility organic compounds (LVOCs) governs their partitioning between the gas and particle phases. To estimate the psat of selected LVOCs, we performed particle evaporation measurements in a residence time chamber at a temperature setting relevant to atmospheric aerosol formation and conducted state-of-the-art computational calculations. We found good agreement between the experimentally measured and model-estimated psat values for most LVOCs.
Noora Hyttinen, Iida Pullinen, Aki Nissinen, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 1195–1208, https://doi.org/10.5194/acp-22-1195-2022, https://doi.org/10.5194/acp-22-1195-2022, 2022
Short summary
Short summary
Accurate saturation vapor pressure estimates of atmospherically relevant organic compounds are critical for modeling secondary organic aerosol (SOA) formation. We investigated vapor pressures of highly oxygenated SOA constituents using state-of-the-art computational and experimental methods. We found a good agreement between low and extremely low vapor pressures estimated using the two methods, and the smallest molecules detected in our experiment were likely products of thermal decomposition.
Robin Wollesen de Jonge, Jonas Elm, Bernadette Rosati, Sigurd Christiansen, Noora Hyttinen, Dana Lüdemann, Merete Bilde, and Pontus Roldin
Atmos. Chem. Phys., 21, 9955–9976, https://doi.org/10.5194/acp-21-9955-2021, https://doi.org/10.5194/acp-21-9955-2021, 2021
Short summary
Short summary
This study presents a detailed analysis of the OH-initiated oxidation of dimethyl sulfide (DMS) based on experiments performed in the Aarhus University Research on Aerosol (AURA) smog chamber and the gas- and particle-phase chemistry kinetic multilayer model (ADCHAM). We capture the formation, growth and chemical composition of aerosols in the chamber setup by an improved multiphase oxidation mechanism and utilize our results to reproduce the important role of DMS in the marine boundary layer.
Silvia M. Calderón, Noora Hyttinen, Harri Kokkola, Tomi Raatikainen, R. Paul Lawson, and Sami Romakkaniemi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2730, https://doi.org/10.5194/egusphere-2025-2730, 2025
Short summary
Short summary
Field campaigns suggest that secondary ice production (SIP) via millimeter-sized supercooled droplets is responsible for the rapid glaciation and precipitation development in summer cumulus congestus clouds that lack of ice nucleating particles. We used large-eddy-simulations with sectional representation of aerosol and hydrometeor microphysics that reproduced observed hydrometeor size distributions and explained how SIP boosted rates of aggregation processes that increase surface precipitation.
Alison Bain, Kunal Ghosh, Konstantin Tumashevich, Nønne L. Prisle, and Bryan R. Bzdek
Atmos. Chem. Phys., 25, 5633–5645, https://doi.org/10.5194/acp-25-5633-2025, https://doi.org/10.5194/acp-25-5633-2025, 2025
Short summary
Short summary
We measure the surface tension of picoliter-volume droplets containing strong ionic surfactants and cosolutes and compare this to surface tension predictions using two independent surfactant partitioning models. Under high-water-activity conditions, experimental measurements and model predictions show no change when NaCl cosolute is replaced with sea salt. Model predictions show that total surfactant concentrations in the range of tens to hundreds of millimolar are required to lower the surface tension of accumulation-mode aerosol.
Arttu Ylisirniö, Noora Hyttinen, Zijun Li, Mitchell Alton, Aki Nissinen, Iida Pullinen, Pasi Miettinen, Taina Yli-Juuti, and Siegfried Schobesberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2219, https://doi.org/10.5194/egusphere-2025-2219, 2025
Short summary
Short summary
This study aims to increase knowledge of the low volatility organic compouds observed in ambient aerosol particles by providing new volatility information about compounds used for calibrating volatility measurement instruments. Previously, such information has was not available and calibration of the instrument had to be extrapolated to cover the whole measurement range. Results of this study will provide the scientific community better tools for investigating the complexity of ambient aerosols.
Yosef Knattrup, Ivo Neefjes, Jakub Kubečka, and Jonas Elm
Aerosol Research, 3, 237–251, https://doi.org/10.5194/ar-3-237-2025, https://doi.org/10.5194/ar-3-237-2025, 2025
Short summary
Short summary
Aerosols, a large uncertainty in climate modeling, can be formed when gas vapors and particles begin sticking together. Traditionally, these particles are assumed to behave like hard spheres that only stick together upon head-on collisions. In reality, particles can attract each other over distances, leading to more frequent sticking events. We found that traditional models significantly undercount these events, with real sticking rates being up to 2.4 times higher.
Alfred W. Mayhew, Lauri Franzon, Kelvin H. Bates, Theo Kurtén, Felipe D. Lopez-Hilfiker, Claudia Mohr, Andrew R. Rickard, Joel A. Thornton, and Jessica D. Haskins
EGUsphere, https://doi.org/10.5194/egusphere-2025-1922, https://doi.org/10.5194/egusphere-2025-1922, 2025
Short summary
Short summary
This work outlines an investigation into an understudied atmospheric chemical reaction pathway with the potential to form particulate pollution that has important impacts on air quality and climate. We suggest that this chemical pathway is responsible for a large fraction of the atmospheric particulate matter observed in tropical forested regions, but we also highlight the need for further ambient and lab investigations to inform an accurate representation of this process in atmospheric models.
Yuanyuan Luo, Lauri Franzon, Jiangyi Zhang, Nina Sarnela, Neil M. Donahue, Theo Kurtén, and Mikael Ehn
Atmos. Chem. Phys., 25, 4655–4664, https://doi.org/10.5194/acp-25-4655-2025, https://doi.org/10.5194/acp-25-4655-2025, 2025
Short summary
Short summary
This study explores the formation of accretion products from reactions involving highly reactive compounds, Criegee intermediates. We focused on three types of terpenes, common in nature, and their reactions with specific acids. Our findings reveal that these reactions efficiently produce expected compounds. This research enhances our understanding of how these reactions affect air quality and climate by contributing to aerosol formation, crucial for atmospheric chemistry.
Yosef Knattrup and Jonas Elm
Aerosol Research, 3, 125–137, https://doi.org/10.5194/ar-3-125-2025, https://doi.org/10.5194/ar-3-125-2025, 2025
Short summary
Short summary
Using quantum chemical methods, we studied the uptake of first-generation oxidation products onto freshly nucleated particles (FNPs). We find that pinic acid can condense on these small FNPs at realistic atmospheric conditions, thereby contributing to early particle growth. The mechanism involves two pinic acid molecules interacting with each other, showing that direct organic–organic interactions during co-condensation onto the particle contribute to the growth.
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research, 3, 101–111, https://doi.org/10.5194/ar-3-101-2025, https://doi.org/10.5194/ar-3-101-2025, 2025
Short summary
Short summary
Aerosol formation is an important process for our global climate. However, there are high uncertainties associated with the formation of new aerosol particles. We present quantum chemical calculations of large atmospheric molecular clusters composed of sulfuric acid (SA), ammonia (AM), and dimethylamine (DMA). We find that mixed SA–AM–DMA systems cluster more efficiently for freshly nucleated particles compared to pure SA–AM and SA–DMA systems.
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024, https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary
Short summary
The exact point at which a given assembly of molecules represents an atmospheric molecular cluster or a particle remains ambiguous. Using quantum chemical methods, here we explore a cluster-to-particle transition point. Based on our results, we deduce a property-based criterion for defining freshly nucleated particles (FNPs) that act as a boundary between discrete cluster configurations and bulk particles.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Astrid Nørskov Pedersen, Yosef Knattrup, and Jonas Elm
Aerosol Research, 2, 123–134, https://doi.org/10.5194/ar-2-123-2024, https://doi.org/10.5194/ar-2-123-2024, 2024
Short summary
Short summary
Aerosol formation is an important process for our global climate. While inorganic species have been shown to be important for aerosol formation, there remains a large gap in our knowledge about the exact involvement of organics. We present a new quantum chemical procedure for screening relevant organics that for the first time allows us to obtain direct molecular-level insight into the organics involved in aerosol formation.
Gargi Sengupta, Minjie Zheng, and Nønne L. Prisle
Atmos. Chem. Phys., 24, 1467–1487, https://doi.org/10.5194/acp-24-1467-2024, https://doi.org/10.5194/acp-24-1467-2024, 2024
Short summary
Short summary
The effect of organic acid aerosol on sulfur chemistry and cloud properties was investigated in an atmospheric model. Organic acid dissociation was considered using both bulk and surface-related properties. We found that organic acid dissociation leads to increased hydrogen ion concentrations and sulfate aerosol mass in aqueous aerosols, increasing cloud formation. This could be important in large-scale climate models as many organic aerosol components are both acidic and surface-active.
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 23, 15149–15164, https://doi.org/10.5194/acp-23-15149-2023, https://doi.org/10.5194/acp-23-15149-2023, 2023
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six models to surface activity of strongly surface active aerosol and find significant differences between the models, especially with large fractions of surfactant in the dry particles.
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057, https://doi.org/10.5194/gmd-16-7037-2023, https://doi.org/10.5194/gmd-16-7037-2023, 2023
Short summary
Short summary
The radionuclides 7Be and 10Be are useful tracers for atmospheric transport studies. Here we use the GEOS-Chem to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem and two from the state-of-the-art beryllium production model. We demonstrate that reduced uncertainties in the production rates can enhance the utility of 7Be and 10Be as tracers for evaluating transport and scavenging processes in global models.
Noora Hyttinen
Atmos. Chem. Phys., 23, 13809–13817, https://doi.org/10.5194/acp-23-13809-2023, https://doi.org/10.5194/acp-23-13809-2023, 2023
Short summary
Short summary
Water activity in aerosol particles describes how particles respond to variations in relative humidity. Here, water activities were calculated for a set of 80 salts that may be present in aerosol particles using a state-of-the-art quantum-chemistry-based method. The effect of the dissociated salt on water activity varies with both the cation and anion. Most of the studied salts increase water uptake compared to pure water-soluble organic particles.
Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1415, https://doi.org/10.5194/egusphere-2023-1415, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols (SOA) form effectively from gaseous precursors via a process called autoxidation. While key chemical reaction types seem to be known, no general description of autoxidation chemistry exists. In the present work, we present a method to create autoxidation chemistry schemes for any atmospherically relevant hydrocarbon. We exemplarily investigate benzene and its potential to form aerosols. We found that autoxidation, under some conditions, can dominate the SOA formation.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Zijun Li, Noora Hyttinen, Miika Vainikka, Olli-Pekka Tikkasalo, Siegfried Schobesberger, and Taina Yli-Juuti
Atmos. Chem. Phys., 23, 6863–6877, https://doi.org/10.5194/acp-23-6863-2023, https://doi.org/10.5194/acp-23-6863-2023, 2023
Short summary
Short summary
The saturation vapor pressure (psat) of low-volatility organic compounds (LVOCs) governs their partitioning between the gas and particle phases. To estimate the psat of selected LVOCs, we performed particle evaporation measurements in a residence time chamber at a temperature setting relevant to atmospheric aerosol formation and conducted state-of-the-art computational calculations. We found good agreement between the experimentally measured and model-estimated psat values for most LVOCs.
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 23, 5993–6009, https://doi.org/10.5194/acp-23-5993-2023, https://doi.org/10.5194/acp-23-5993-2023, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, accounting for long-range interactions. The model is verified against atomistic simulations of typical acid–base clusters participating in atmospheric new particle formation (NPF). Compared to non-interacting models, accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such interactions in NPF modeling.
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie
Atmos. Chem. Phys., 22, 11543–11555, https://doi.org/10.5194/acp-22-11543-2022, https://doi.org/10.5194/acp-22-11543-2022, 2022
Short summary
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, and Nønne L. Prisle
Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022, https://doi.org/10.5194/acp-22-2669-2022, 2022
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six different model approaches to surface activity of organic aerosols and find significant differences between the models, especially with large fractions of organics in the dry particles.
Rongjie Zhang, Jiewen Shen, Hong-Bin Xie, Jingwen Chen, and Jonas Elm
Atmos. Chem. Phys., 22, 2639–2650, https://doi.org/10.5194/acp-22-2639-2022, https://doi.org/10.5194/acp-22-2639-2022, 2022
Short summary
Short summary
Formic acid is screened out as the species that can effectively catalyze the new particle formation (NPF) of the methanesulfonic acid (MSA)–methylamine system, indicating organic acids might be required to facilitate MSA-driven NPF in the atmosphere. The results are significant to comprehensively understand the MSA-driven NPF and expand current knowledge of the contribution of OAs to NPF.
Noora Hyttinen, Iida Pullinen, Aki Nissinen, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 1195–1208, https://doi.org/10.5194/acp-22-1195-2022, https://doi.org/10.5194/acp-22-1195-2022, 2022
Short summary
Short summary
Accurate saturation vapor pressure estimates of atmospherically relevant organic compounds are critical for modeling secondary organic aerosol (SOA) formation. We investigated vapor pressures of highly oxygenated SOA constituents using state-of-the-art computational and experimental methods. We found a good agreement between low and extremely low vapor pressures estimated using the two methods, and the smallest molecules detected in our experiment were likely products of thermal decomposition.
Nønne L. Prisle
Atmos. Chem. Phys., 21, 16387–16411, https://doi.org/10.5194/acp-21-16387-2021, https://doi.org/10.5194/acp-21-16387-2021, 2021
Short summary
Short summary
A mass-based Gibbs adsorption model is presented to enable predictive Köhler calculations of droplet growth and activation with considerations of surface partitioning, surface tension, and non-ideal water activity for chemically complex and unresolved surface active aerosol mixtures, including actual atmospheric samples. The model is used to calculate cloud condensation nuclei (CCN) activity of aerosol particles comprising strongly surface-active model atmospheric humic-like substances (HULIS).
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021, https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
Short summary
The study of climate change relies on climate models, which require an understanding of aerosol formation. We train a machine-learning model to predict the partitioning coefficients of atmospheric molecules, which govern condensation into aerosols. The model can make instant predictions based on molecular structures with accuracy surpassing that of standard computational methods. This will allow the screening of low-volatility molecules that contribute most to aerosol formation.
Xiaolong Fan, Jing Cai, Chao Yan, Jian Zhao, Yishuo Guo, Chang Li, Kaspar R. Dällenbach, Feixue Zheng, Zhuohui Lin, Biwu Chu, Yonghong Wang, Lubna Dada, Qiaozhi Zha, Wei Du, Jenni Kontkanen, Theo Kurtén, Siddhart Iyer, Joni T. Kujansuu, Tuukka Petäjä, Douglas R. Worsnop, Veli-Matti Kerminen, Yongchun Liu, Federico Bianchi, Yee Jun Tham, Lei Yao, and Markku Kulmala
Atmos. Chem. Phys., 21, 11437–11452, https://doi.org/10.5194/acp-21-11437-2021, https://doi.org/10.5194/acp-21-11437-2021, 2021
Short summary
Short summary
We observed significant concentrations of gaseous HBr and HCl throughout the winter and springtime in urban Beijing, China. Our results indicate that gaseous HCl and HBr are most likely originated from anthropogenic emissions such as burning activities, and the gas–aerosol partitioning may play a crucial role in contributing to the gaseous HCl and HBr. These observations suggest that there is an important recycling pathway of halogen species in inland megacities.
Robin Wollesen de Jonge, Jonas Elm, Bernadette Rosati, Sigurd Christiansen, Noora Hyttinen, Dana Lüdemann, Merete Bilde, and Pontus Roldin
Atmos. Chem. Phys., 21, 9955–9976, https://doi.org/10.5194/acp-21-9955-2021, https://doi.org/10.5194/acp-21-9955-2021, 2021
Short summary
Short summary
This study presents a detailed analysis of the OH-initiated oxidation of dimethyl sulfide (DMS) based on experiments performed in the Aarhus University Research on Aerosol (AURA) smog chamber and the gas- and particle-phase chemistry kinetic multilayer model (ADCHAM). We capture the formation, growth and chemical composition of aerosols in the chamber setup by an improved multiphase oxidation mechanism and utilize our results to reproduce the important role of DMS in the marine boundary layer.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Jack J. Lin, Kamal Raj R Mundoli, Stella Wang, Esko Kokkonen, Mikko-Heikki Mikkelä, Samuli Urpelainen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 4709–4727, https://doi.org/10.5194/acp-21-4709-2021, https://doi.org/10.5194/acp-21-4709-2021, 2021
Short summary
Short summary
We used surface-sensitive X-ray photoelectron spectroscopy (XPS) to study laboratory-generated nanoparticles of atmospheric interest at 0–16 % relative humidity. XPS gives direct information about changes in the chemical state from the binding energies of probed elements. Our results indicate water adsorption and associated chemical changes at the particle surfaces well below deliquescence, with distinct features for different particle components and implications for atmospheric chemistry.
Georgia Michailoudi, Jack J. Lin, Hayato Yuzawa, Masanari Nagasaka, Marko Huttula, Nobuhiro Kosugi, Theo Kurtén, Minna Patanen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 2881–2894, https://doi.org/10.5194/acp-21-2881-2021, https://doi.org/10.5194/acp-21-2881-2021, 2021
Short summary
Short summary
This study provides insight into hydration of two significant atmospheric compounds, glyoxal and methylglyoxal. Using synchrotron radiation excited X-ray absorption spectroscopy, we confirm that glyoxal is fully hydrated in water, and for the first time, we experimentally detect enol structures in aqueous methylglyoxal. Our results support the contribution of these compounds to secondary organic aerosol formation, known to have a large uncertainty in atmospheric models and climate predictions.
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020, https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Kasper Kristensen, Louise N. Jensen, Lauriane L. J. Quéléver, Sigurd Christiansen, Bernadette Rosati, Jonas Elm, Ricky Teiwes, Henrik B. Pedersen, Marianne Glasius, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 20, 12549–12567, https://doi.org/10.5194/acp-20-12549-2020, https://doi.org/10.5194/acp-20-12549-2020, 2020
Short summary
Short summary
Atmospheric particles are important in relation to human health and the global climate. As the global temperature changes, so may the atmospheric chemistry controlling the formation of particles from reactions of naturally emitted volatile organic compounds (VOCs). In the current work, we show how temperatures influence the formation and chemical composition of atmospheric particles from α-pinene: a biogenic VOC largely emitted in high-latitude environments such as the boreal forests.
Cited articles
Aloisio, S., Hintze, P. E., and Vaida, V.: The hydration of formic acid, J.
Phys. Chem. A, 106, 363–370, https://doi.org/10.1021/jp012190l, 2002. a
Apelblat, A. and Manzurola, E.: Solubility of oxalic, malonic, succinic,
adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to
338.15 K, J. Chem. Thermodyn., 19, 317–320,
https://doi.org/10.1016/0021-9614(87)90139-X, 1987. a, b
Apelblat, A. and Manzurola, E.: Solubility of ascorbic, 2-furancarboxylic,
glutaric, pimelic, salicylic, and o-phthalic acids in water from 279.15 to
342.15 K, and apparent molar volumes of ascorbic, glutaric, and pimelic acids in water at 298.15 K, J. Chem. Thermodyn., 21, 1005–1008,
https://doi.org/10.1016/0021-9614(89)90161-4, 1989. a, b
Apelblat, A. and Manzurola, E.: Solubility of suberic, azelaic, levulinic,
glycolic, and diglycolic acids in water from 278.25 K to 361.35 K, J. Chem.
Thermodyn., 22, 289–292, https://doi.org/10.1016/0021-9614(90)90201-Z, 1990. a, b
Ben-Naim, A.: Standard thermodynamics of transfer. Uses and misuses, J. Phys.
Chem., 82, 792–803, https://doi.org/10.1021/j100496a008, 1978. a
Ben-Naim, A.: Solvation Thermodynamics, Plenum Press, New York, London,
1987. a
Bilde, M., Svenningsson, B., Mønster, J., and Rosenørn, T.: Even-odd
alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic
acid aerosols, Environ. Sci. Technol., 37, 1371–1378,
https://doi.org/10.1021/es0201810, 2003. a
Booth, A. M., Barley, M. H., Topping, D. O., McFiggans, G., Garforth, A., and Percival, C. J.: Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry, Atmos. Chem. Phys., 10, 4879–4892, https://doi.org/10.5194/acp-10-4879-2010, 2010. a, b
Braban, C. F., Carroll, M. F., Styler, S. A., and Abbatt, J. P. D.: Phase
transitions of malonic and oxalic acid aerosols, J. Phys. Chem. A, 107,
6594–6602, https://doi.org/10.1021/jp034483f, 2003. a, b
Brooks, S. D., Wise, M. E., Cushing, M., and Tolbert, M. A.: Deliquescence
behavior of organic/ammonium sulfate aerosol, Geophys. Res. Lett., 29, 1917,
https://doi.org/10.1029/2002GL014733, 2002. a, b
Choi, M. Y. and Chan, C. K.: Continuous measurements of the water activities of aqueous droplets of water-soluble organic compounds, J. Phys. Chem. A, 106, 4566–4572, https://doi.org/10.1021/jp013875o, 2002. a
COSMObase: version 17.01, COSMOlogic GmbH & Co. KG.,
Leverkusen, Germany, 2011. a
COSMOconf: version 4.3, COSMOlogic GmbH & Co. KG.,
Leverkusen, Germany, 2013. a
Cysewski, P.: Prediction of ethenzamide solubility in organic solvents by
explicit inclusions of intermolecular interactions within the framework of
COSMO-RS-DARE, J. Mol. Liq., 290, 111163, https://doi.org/10.1016/j.molliq.2019.111163,
2019. a
Davies, M. and Thomas, D. K.: Isopiestic Studies of Aqueous Dicarboxylic Acid
Solutions, J. Phys. Chem., 60, 41–44, https://doi.org/10.1021/j150535a011, 1956. a, b
Eckert, F. and Klamt, A.: Fast solvent screening via quantum chemistry:
COSMO-RS approach, AIChE J., 48, 369–385, https://doi.org/10.1002/aic.690480220, 2002. a
Eckert, F. and Klamt, A.: COSMOtherm Reference Manual, version C30,
Release 19, COSMOlogic GmbH & Co, KG., Leverkusen, Germany, 2019. a
Elm, J., Kurtén, T., Bilde, M., and Mikkelsen, K. V.: Molecular interaction
of pinic acid with sulfuric acid: Exploring the thermodynamic landscape of
cluster growth, J. Phys. Chem. A, 118, 7892–7900, https://doi.org/10.1021/jp503736s,
2014. a
Elm, J., Hyttinen, N., Lin, J. J., Kurtén, T., and Prisle, N. L.: Strong
Even/Odd Pattern in the Computed Gas-Phase Stability of Dicarboxylic Acid
Dimers: Implications for Condensation Thermodynamics, J. Phys. Chem. A, 123,
9594–9599, https://doi.org/10.1021/acs.jpca.9b08020, 2019. a, b, c, d
Fisseha, R., Dommen, J., Gaeggeler, K., Weingartner, E., Samburova, V.,
Kalberer, M., and Baltensperger, U.: Online gas and aerosol measurement of
water soluble carboxylic acids in Zurich, J. Geophys. Res.-Atmos., 111,
D12316, https://doi.org/10.1029/2005JD006782, 2006. a, b, c, d
Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-contribution
estimation of activity coefficients in nonideal liquid mixtures, AIChE J.,
21, 1086–1099, https://doi.org/10.1002/aic.690210607, 1975. a
Guo, H., Zhou, J., Wang, L., Zhou, Y., Yuan, J., and Zhao, R.: Seasonal
variations and sources of carboxylic acids in PM2.5 in Wuhan, China,
Aerosol Air Qual. Res., 15, 517–528, https://doi.org/10.4209/aaqr.2014.02.0040, 2015. a, b, c
Hyder, M., Genberg, J., Sandahl, M., Swietlicki, E., and Jönsson,
J. Å.: Yearly trend of dicarboxylic acids in organic aerosols from south
of Sweden and source attribution, Atmos. Environ., 57, 197–204,
https://doi.org/10.1016/j.atmosenv.2012.04.027, 2012. a
Hyttinen, N. and Prisle, N. L.: Improving solubility and activity estimates of multifunctional atmospheric organics by selecting conformers in
COSMOtherm, J. Phys. Chem. A, 124, 4801–4812,
https://doi.org/10.1021/acs.jpca.0c04285, 2020. a, b, c, d
Hyttinen, N., Heshmatnezhad, R., Elm, J., Kurtén, T., and Prisle, N. L.:
Supplementary data for the manuscript ”Technical note: Estimating aqueous
solubilities and activity coefficients of mono- and
α,ω-dicarboxylic acids using COSMO-RS-DARE” (Version 1), Data
set, Zenodo, https://doi.org/10.5281/zenodo.3842593, 2020. a
Jones, E. R. and Bury, C. R.: LXXVII. The freezing-points of concentrated
solutions – Part II. Solutions of formic, acetic, propionic, and butyric
acids, London, Edinburgh Dublin Philos. Mag. J. Sci., 4, 841–848,
https://doi.org/10.1080/14786441008564388, 1927. a
Jung, J., Tsatsral, B., Kim, Y. J., and Kawamura, K.: Organic and inorganic
aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007
to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls,
J. Geophys. Res.-Atmos., 115, D22203, https://doi.org/10.1029/2010JD014339, 2010. a, b
Kawamura, K. and Sakaguchi, F.: Molecular distributions of water soluble
dicarboxylic acids in marine aerosols over the Pacific Ocean including
tropics, J. Geophys. Res.-Atmos., 104, 3501–3509,
https://doi.org/10.1029/1998JD100041, 1999. a
Kawamura, K., Seméré, R., Imai, Y., Fujii, Y., and Hayashi, M.: Water
soluble dicarboxylic acids and related compounds in Antarctic aerosols, J.
Geophys. Res.-Atmos., 101, 18721–18728, https://doi.org/10.1029/96JD01541, 1996. a
Kawamura, K., Steinberg, S., and Kaplan, I. R.: Homologous series of C1–C10
monocarboxylic acids and C1–C6 carbonyls in Los Angeles air and motor
vehicle exhausts, Atmos. Environ., 34, 4175–4191,
https://doi.org/10.1016/S1352-2310(00)00212-0, 2000. a, b, c
Kildgaard, J. V., Mikkelsen, K. V., Bilde, M., and Elm, J.: Hydration of
Atmospheric Molecular Clusters II: Organic Acid–Water Clusters, J. Phys.
Chem. A, 122, 8549–8556, https://doi.org/10.1021/acs.jpca.8b07713, 2018. a
Klamt, A.: Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena, J. Phys. Chem., 99,
2224–2235, https://doi.org/10.1021/j100007a062, 1995. a
Klamt, A. and Schüürmann, G.: COSMO: a new approach to dielectric
screening in solvents with explicit expressions for the screening energy and
its gradient, J. Chem. Soc. Perkin Trans., 2, 799–805,
https://doi.org/10.1039/P29930000799, 1993. a
Klamt, A., Jonas, V., Bürger, T., and Lohrenz, J. C. W.: Refinement and
parametrization of COSMO-RS, J. Phys. Chem. A, 102, 5074–5085,
https://doi.org/10.1021/jp980017s, 1998. a, b
Kurtén, T., Hyttinen, N., D'Ambro, E. L., Thornton, J., and Prisle, N. L.: Estimating the saturation vapor pressures of isoprene oxidation products C5H12O6 and C5H10O6 using COSMO-RS, Atmos. Chem. Phys., 18, 17589–17600, https://doi.org/10.5194/acp-18-17589-2018, 2018. a, b
Levine, I. N.: Physical Chemistry, McGraw-Hill, New York, USA, 6th edn., 2009. a
Maffia, M. C. and Meirelles, A. J. A.: Water activity and pH in aqueous
polycarboxylic acid systems, J. Chem. Eng. Data, 46, 582–587,
https://doi.org/10.1021/je0002890, 2001. a, b
Marsh, A., Miles, R. E. H., Rovelli, G., Cowling, A. G., Nandy, L., Dutcher, C. S., and Reid, J. P.: Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, sugars and amino acids, Atmos. Chem. Phys., 17, 5583–5599, https://doi.org/10.5194/acp-17-5583-2017, 2017. a, b, c
McNeill, V. F., Yatavelli, R. L. N., Thornton, J. A., Stipe, C. B., and Landgrebe, O.: Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase, Atmos. Chem. Phys., 8, 5465–5476, https://doi.org/10.5194/acp-8-5465-2008, 2008. a
Michailoudi, G., Hyttinen, N., Kurtén, T., and Prisle, N. L.: Solubility
and Activity Coefficients of Atmospheric Surfactants in Aqueous Solution
Evaluated using COSMOtherm, J. Phys. Chem. A, 124, 430–443,
https://doi.org/10.1021/acs.jpca.9b09780, 2020. a, b
Mochida, M., Kawamura, K., Umemoto, N., Kobayashi, M., Matsunaga, S., Lim,
H.-J., Turpin, B. J., Bates, T. S., and Simoneit, B. R.: Spatial
distributions of oxygenated organic compounds (dicarboxylic acids, fatty
acids, and levoglucosan) in marine aerosols over the western Pacific and off
the coast of East Asia: Continental outflow of organic aerosols during the
ACE-Asia campaign, J. Geophys. Res.-Atmos., 108, 8638,
https://doi.org/10.1029/2002JD003249, 2003. a
Omar, W. and Ulrich, J.: Solid liquid equilibrium, metastable zone, and
nucleation parameters of the oxalic acid- water system, Cryst. Growth Des.,
6, 1927–1930, https://doi.org/10.1021/cg060112n, 2006. a, b, c, d
O'Neil, M. J.: The Merck index: an encyclopedia of chemicals, drugs, and
biologicals, RSC Publishing, 2013. a
Peng, C., Chan, M. N., and Chan, C. K.: The hygroscopic properties of
dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions,
Environ. Sci. Technol., 35, 4495–4501, https://doi.org/10.1021/es0107531, 2001. a, b, c, d
Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell,
L. M., and Ming, Y.: The effects of low molecular weight dicarboxylic acids
on cloud formation, J. Phys. Chem. A, 105, 11240–11248,
https://doi.org/10.1021/jp012427d, 2001. a
Prigogine, I. and Defay, R.: Chemical Thermodynamics, Longmans Green, 1st
edn., 1954. a
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020. a
Romero, C. M. and Suárez, F.: Effect of temperature on the solubility of
short-chain carboxylic acids in water, J. Solution Chem., 38, 315–320,
https://doi.org/10.1007/s10953-009-9375-6, 2009. a, b
Rossignol, S., Tinel, L., Bianco, A., Passananti, M., Brigante, M., Donaldson, D. J., and George, C.: Atmospheric photochemistry at a fatty acid–coated
air-water interface, Science, 353, 699–702, https://doi.org/10.1126/science.aaf3617,
2016. a
Roux, M. V., Temprado, M., and Chickos, J. S.: Vaporization, fusion and
sublimation enthalpies of the dicarboxylic acids from C4 to C14 and
C16, J. Chem. Thermodyn., 37, 941–953, https://doi.org/10.1016/j.jct.2004.12.011,
2005. a
Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric
particles: A critical review of the literature and application of
thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109,
https://doi.org/10.1007/BF00053823, 1996. a, b, c, d
Schröder, B., Santos, L. M. N. B. F., Marrucho, I. M., and Coutinho, J.
A. P.: Prediction of aqueous solubilities of solid carboxylic acids with
COSMO-RS, Fluid Phase Equilib., 289, 140–147,
https://doi.org/10.1016/j.fluid.2009.11.018, 2010. a
Schwier, A., Mitroo, D., and McNeill, V. F.: Surface tension depression by
low-solubility organic material in aqueous aerosol mimics, Atmos. Environ.,
54, 490–495, https://doi.org/10.1016/j.atmosenv.2012.02.032, 2012. a
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, Atmos. Chem. Phys., 12, 2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012. a, b
Soonsin, V., Zardini, A. A., Marcolli, C., Zuend, A., and Krieger, U. K.: The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol, Atmos. Chem. Phys., 10, 11753–11767, https://doi.org/10.5194/acp-10-11753-2010, 2010. a, b
Sordo, J. Á.: Solvation thermodynamics: two formulations and some
misunderstandings, RSC Adv., 5, 96105–96116, https://doi.org/10.1039/c5ra17305a,
2015. a
Tsai, Y. I. and Kuo, S.-C.: Contributions of low molecular weight carboxylic
acids to aerosols and wet deposition in a natural subtropical broad-leaved
forest environment, Atmos. Environ., 81, 270–279,
https://doi.org/10.1016/j.atmosenv.2013.08.061, 2013.
a, b
TURBOMOLE: Version 7.11, a development of University of Karlsruhe and
Forschungszentrum Karlsruhe GmbH, TURBOMOLE GmbH, 2010. a
Vawdrey, A. C., Oscarson, J. L., Rowley, R. L., and Wilding, W. V.: Vapor-phase association of n-aliphatic carboxylic acids, Fluid Phase Equilib., 222, 239–245, https://doi.org/10.1016/j.fluid.2004.06.043, 2004. a, b
Verma, N., Satsangi, A., Lakhani, A., and Kumari, K. M.: Low molecular weight
monocarboxylic acids in PM2.5 and PM10: Quantification, seasonal
variation and source apportionment, Aerosol Air Qual. Res., 17, 485–498,
https://doi.org/10.4209/aaqr.2016.05.0183, 2017. a, b
Wavefunction Inc.: Spartan'14, Irvine, CA, 2014. a
Wavefunction Inc.: Spartan'16, Irvine, CA, 2016. a
Weber, K. H., Morales, F. J., and Tao, F.-M.: Theoretical study on the
structure and stabilities of molecular clusters of oxalic acid with water, J.
Phys. Chem. A, 116, 11601–11617, https://doi.org/10.1021/jp308499f, 2012. a
Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity
despite declining atmospheric sulfate concentrations over the past 15 years,
Nat. Geosci., 9, 282–285, https://doi.org/10.1038/ngeo2665, 2016. a
Wise, M. E., Surratt, J. D., Curtis, D. B., Shilling, J. E., and Tolbert,
M. A.: Hygroscopic growth of ammonium sulfate/dicarboxylic acids, J. Geophys.
Res.-Atmos., 108, 4638–4642, https://doi.org/10.1029/2003JD003775, 2003. a
Zhang, H., Xie, C., Liu, Z., Gong, J., Bao, Y., Zhang, M., Hao, H., Hou, B.,
and Yin, Q.-x.: Identification and molecular understanding of the odd–even
effect of dicarboxylic acids aqueous solubility, Ind. Eng. Chem. Res., 52,
18458–18465, https://doi.org/10.1021/ie4030837, 2013. a, b
Zhao, W., Kawamura, K., Yue, S., Wei, L., Ren, H., Yan, Y., Kang, M., Li, L., Ren, L., Lai, S., Li, J., Sun, Y., Wang, Z., and Fu, P.: Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China, Atmos. Chem. Phys., 18, 2749–2767, https://doi.org/10.5194/acp-18-2749-2018, 2018. a, b
Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559–4593, https://doi.org/10.5194/acp-8-4559-2008, 2008. a, b
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups, Atmos. Chem. Phys., 11, 9155–9206, https://doi.org/10.5194/acp-11-9155-2011, 2011. a
Short summary
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids (C1–C6 and C2–C8, respectively) estimated using the COSMOtherm program. In addition, we have calculated effective equilibrium constants of dimerization and hydration of the same acids in the condensed phase. We were also able to improve the agreement between experimental and estimated properties of monocarboxylic acids in aqueous solutions by including clustering reactions in COSMOtherm calculations.
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids...
Altmetrics
Final-revised paper
Preprint