Articles | Volume 20, issue 20
Atmos. Chem. Phys., 20, 11683–11695, 2020
https://doi.org/10.5194/acp-20-11683-2020
Atmos. Chem. Phys., 20, 11683–11695, 2020
https://doi.org/10.5194/acp-20-11683-2020

Research article 15 Oct 2020

Research article | 15 Oct 2020

Pollutant emission reductions deliver decreased PM2.5-caused mortality across China during 2015–2017

Ben Silver et al.

Related authors

Exploring the impacts of anthropogenic emission sectors on PM2.5 and human health in South and East Asia
Carly L. Reddington, Luke Conibear, Christoph Knote, Ben J. Silver, Yong J. Li, Chak K. Chan, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 19, 11887–11910, https://doi.org/10.5194/acp-19-11887-2019,https://doi.org/10.5194/acp-19-11887-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxidations in both summer and winter
Huan Song, Keding Lu, Can Ye, Huabin Dong, Shule Li, Shiyi Chen, Zhijun Wu, Mei Zheng, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 13713–13727, https://doi.org/10.5194/acp-21-13713-2021,https://doi.org/10.5194/acp-21-13713-2021, 2021
Short summary
Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021,https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
Development of a new emission reallocation method for industrial sources in China
Yun Fat Lam, Chi Chiu Cheung, Xuguo Zhang, Joshua S. Fu, and Jimmy Chi Hung Fung
Atmos. Chem. Phys., 21, 12895–12908, https://doi.org/10.5194/acp-21-12895-2021,https://doi.org/10.5194/acp-21-12895-2021, 2021
Short summary
Projections of shipping emissions and the related impact on air pollution and human health in the Nordic region
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021,https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
A predictive model for salt nanoparticle formation using heterodimer stability calculations
Sabrina Chee, Kelley Barsanti, James N. Smith, and Nanna Myllys
Atmos. Chem. Phys., 21, 11637–11654, https://doi.org/10.5194/acp-21-11637-2021,https://doi.org/10.5194/acp-21-11637-2021, 2021
Short summary

Cited articles

Ansari, T. U., Wild, O., Li, J., Yang, T., Xu, W., Sun, Y., and Wang, Z.: Effectiveness of short-term air quality emission controls: a high-resolution model study of Beijing during the Asia-Pacific Economic Cooperation (APEC) summit period, Atmos. Chem. Phys., 19, 8651–8668, https://doi.org/10.5194/acp-19-8651-2019, 2019. 
Apte, J. S., Marshall, J. D., Cohen, A. J., and Brauer, M.: Addressing Global Mortality from Ambient PM2.5, Environ. Sci. Technol., 49, 8057–8066, https://doi.org/10.1021/acs.est.5b01236, 2015. 
Butt, E. W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S., Regayre, L. A., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Global and regional trends in particulate air pollution and attributable health burden over the past 50 years, Environ. Res. Lett., 12, 104017, https://doi.org/10.1088/1748-9326/aa87be, 2017. 
Carslaw, D.: The openair manual open-source tools for analysing air pollution data, King's Coll. London, (January), 287, available at: https://davidcarslaw.com/files/openairmanual.pdf (last access: 6 October 2020.), 2015 
Download
Short summary
China suffers from serious air pollution, which is thought to cause millions of early deaths each year. Measurements on the ground show that overall air quality is improving. Air quality is also affected by weather conditions, which can vary from year to year. We conduct computer simulations to show it is the reduction of the amount of pollution emitted, rather than weather conditions, which caused air quality to improve during 2015–2017. We then estimate that 150 000 fewer people die early.
Altmetrics
Final-revised paper
Preprint