Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10667-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-20-10667-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of ship emissions on air quality and human health in the Gothenburg area – Part II: Scenarios for 2040
Martin O. P. Ramacher
CORRESPONDING AUTHOR
Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
Lin Tang
IVL, Swedish Environmental Research Institute, P.O. Box 53021, 40014 Gothenburg, Sweden
WSP Environment Sweden, P.O. Box 13033, 40251 Gothenburg, Sweden
Jana Moldanová
IVL, Swedish Environmental Research Institute, P.O. Box 53021, 40014 Gothenburg, Sweden
Volker Matthias
Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
Matthias Karl
Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
Erik Fridell
IVL, Swedish Environmental Research Institute, P.O. Box 53021, 40014 Gothenburg, Sweden
Lasse Johansson
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki,
Finland
Related authors
Hiram Abif Meza-Landero, Julia Bruckert, Ronny Petrick, Pascal Simon, Heike Vogel, Volker Matthias, Johannes Bieser, and Martin Ramacher
EGUsphere, https://doi.org/10.5194/egusphere-2025-2289, https://doi.org/10.5194/egusphere-2025-2289, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To understand how persistent hazardous industrial chemicals travel through the air and are deposited back on Earth's surface, we created a new computer model that combines meteorology and chemistry in clouds and clean air. Using the most recent global emissions data, this model represents the trajectory and changes of these chemicals, matching patterns in many areas and overlooking others. The work seeks to improve global monitoring and modeling of hazardous chemicals.
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236, https://doi.org/10.5194/essd-2024-236, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Per- and Polyfluorinated Alkyl Substances (PFAS) constitute a group of often toxic, persistent, and bioaccumulative substances. We constructed a global Emissions model and inventory based on multiple datasets for 23 widely used PFAS. The model computes temporally and spatially resolved model ready emissions distinguishing between emissions to air and emissions to water covering the time span from 1950 up until 2020 on an annual basis to be used for chemistry transport modelling.
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020, https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Short summary
EPISODE is an air quality model designed to give information on air pollution in cities down to distances measured in metres from the roadside and other pollution sources. We demonstrate that EPISODE can adequately describe nitrogen dioxide air pollution in a case study in six Norwegian cities. From this, we conclude that EPISODE can be used to provide air quality information to public bodies and society in order to help in the understanding and management of air pollution in urban environments.
Hiram Abif Meza-Landero, Julia Bruckert, Ronny Petrick, Pascal Simon, Heike Vogel, Volker Matthias, Johannes Bieser, and Martin Ramacher
EGUsphere, https://doi.org/10.5194/egusphere-2025-2289, https://doi.org/10.5194/egusphere-2025-2289, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To understand how persistent hazardous industrial chemicals travel through the air and are deposited back on Earth's surface, we created a new computer model that combines meteorology and chemistry in clouds and clean air. Using the most recent global emissions data, this model represents the trajectory and changes of these chemicals, matching patterns in many areas and overlooking others. The work seeks to improve global monitoring and modeling of hazardous chemicals.
Sami Daniel Harni, Lasse Johansson, Jarkko Ville Niemi, Ville Silvonen, Juan Andrés Casquero-Vera, Anu Kousa, Krista Luoma, Viet Le, David Brus, Konstantinos Doulgeris, Topi Rönkkö, Hanna Manninen, Tuukka Petäjä, and Hilkka Timonen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1423, https://doi.org/10.5194/egusphere-2025-1423, 2025
Short summary
Short summary
The 3-month measurement campaign at Espoo, Finland, in spring 2023. The measurement campaign studied the effect of the noise barrier on pollutant concentration gradients on one side of a major highway. The studied pollutants included PM10, PM2.5, lung deposited surface area (LDSA), particle number concentration (PNC), NO2, and black carbon (BC). The noise barrier was found to be effective in reducing, especially the concentration of particulate pollutants.
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236, https://doi.org/10.5194/essd-2024-236, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Per- and Polyfluorinated Alkyl Substances (PFAS) constitute a group of often toxic, persistent, and bioaccumulative substances. We constructed a global Emissions model and inventory based on multiple datasets for 23 widely used PFAS. The model computes temporally and spatially resolved model ready emissions distinguishing between emissions to air and emissions to water covering the time span from 1950 up until 2020 on an annual basis to be used for chemistry transport modelling.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Jukka-Pekka Jalkanen, Elisa Majamäki, Lasse Johansson, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2521–2552, https://doi.org/10.5194/essd-14-2521-2022, https://doi.org/10.5194/essd-14-2521-2022, 2022
Short summary
Short summary
To control the spread of the COVID-19 disease, European governments implemented mobility restriction measures that resulted in an unprecedented drop in anthropogenic emissions. This work presents a dataset of emission adjustment factors that allows quantifying changes in 2020 European primary emissions per country and pollutant sector at the daily scale. The resulting dataset can be used as input in modelling studies aiming at quantifying the impact of COVID-19 on air quality levels.
Ronny Badeke, Volker Matthias, Matthias Karl, and David Grawe
Geosci. Model Dev., 15, 4077–4103, https://doi.org/10.5194/gmd-15-4077-2022, https://doi.org/10.5194/gmd-15-4077-2022, 2022
Short summary
Short summary
For air quality modeling studies, it is very important to distribute pollutants correctly into the model system. This has not yet been done for shipping pollution in great detail. We studied the effects of different vertical distributions of shipping pollutants on the urban air quality and derived advanced formulas for it. These formulas take weather conditions and ship-specific parameters like the exhaust gas temperature into account.
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808, https://doi.org/10.5194/acp-22-4801-2022, https://doi.org/10.5194/acp-22-4801-2022, 2022
Short summary
Short summary
Modern and up-to-date policies and air quality management strategies are instrumental in tackling global air pollution. As the European Union is preparing to revise Ambient Air Quality Directive 2008/50/EC, this paper initiates discussion on selected features of the directive that we believe would benefit from a reassessment. The scientific community has the most recent and deepest understanding of air pollution; thus, its contribution is essential.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Jukka-Pekka Jalkanen, Lasse Johansson, Magda Wilewska-Bien, Lena Granhag, Erik Ytreberg, K. Martin Eriksson, Daniel Yngsell, Ida-Maja Hassellöv, Kerstin Magnusson, Urmas Raudsepp, Ilja Maljutenko, Hulda Winnes, and Jana Moldanova
Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021, https://doi.org/10.5194/os-17-699-2021, 2021
Short summary
Short summary
This modelling study describes a methodology for describing pollutant discharges from ships to the sea. The pilot area used is the Baltic Sea area and discharges of bilge, ballast, sewage, wash water as well as stern tube oil are reported for the year 2012. This work also reports the release of SOx scrubber effluents. This technique may be used by ships to comply with tight sulfur limits inside Emission Control Areas, but it also introduces a new pollutant stream from ships to the sea.
Ronny Badeke, Volker Matthias, and David Grawe
Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, https://doi.org/10.5194/acp-21-5935-2021, 2021
Short summary
Short summary
This work aims to describe the physical distribution of ship exhaust gases in the near field, e.g., inside of a harbor. Results were calculated with a mathematical model for different meteorological and technical conditions. It has been shown that large vessels like cruise ships have a significant effect of up to 55 % downward movement of exhaust gas, as they can disturb the ground near wind circulation. This needs to be considered in urban air pollution studies.
Walter Schmidt, Ari-Matti Harri, Timo Nousiainen, Harri Hohti, Lasse Johansson, Olli Ojanperä, Erkki Viitala, Jarkko Niemi, Jani Turpeinen, Erkka Saukko, Topi Rönkkö, and Pekka Lahti
Geosci. Instrum. Method. Data Syst., 9, 397–406, https://doi.org/10.5194/gi-9-397-2020, https://doi.org/10.5194/gi-9-397-2020, 2020
Short summary
Short summary
Combining short-time forecast models, standardized interfaces to a wide range of environment detectors and a flexible user access interface, CITYZER provides decision-making authorities and private citizens with reliable information about the near-future development of critical environmental parameters like air quality and rain. The system can be easily adapted to different areas or different parameters. Alarms for critical situations can be set and used to support authority decisions.
Lasse Johansson, Erik Ytreberg, Jukka-Pekka Jalkanen, Erik Fridell, K. Martin Eriksson, Maria Lagerström, Ilja Maljutenko, Urmas Raudsepp, Vivian Fischer, and Eva Roth
Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020, https://doi.org/10.5194/os-16-1143-2020, 2020
Short summary
Short summary
Very little is currently known about the activities and emissions of private leisure boats. To change this, a new model was created (BEAM). The model was used for the Baltic Sea to estimate leisure boat emissions, also considering antifouling paint leach. When compared to commercial shipping, the modeled leisure boat emissions were seen to be surprisingly large for some pollutant species, and these emissions were heavily concentrated on coastal inhabited areas during summer and early autumn.
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020, https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Short summary
EPISODE is an air quality model designed to give information on air pollution in cities down to distances measured in metres from the roadside and other pollution sources. We demonstrate that EPISODE can adequately describe nitrogen dioxide air pollution in a case study in six Norwegian cities. From this, we conclude that EPISODE can be used to provide air quality information to public bodies and society in order to help in the understanding and management of air pollution in urban environments.
Cited articles
Amman, M., Cofala, J., Heyes, C., Klimont, Z., Mechler, R., Posch, M., and
Schöpp, W.: The RAINS model: Documentation of the model approach
prepared for the RAINS peer review 2004, Interim Report IR-04-075, available at: http://pure.iiasa.ac.at/id/eprint/7307/1/IR-04-075.pdf, last access: 8 January 2020, 2004.
Azzi, M., Johnson, G. M., and Cope, M.: An introduction to the generic
reaction set photochemical smog mechanism, in: Proceedings of the 8th
International Clean Air Conference, Clean Air Society of Australia & New
Zealand (Ed.), 8th International Clean Air Conference, Melbourne, 6–11 May,
Melbourne, 1984.
Beckx, C., Int Panis, L., Arentze, T., Janssens, D., Torfs, R., Broekx, S.,
and Wets, G.: A dynamic activity-based population modelling approach to
evaluate exposure to air pollution: Methods and application to a Dutch urban
area, Euro. Env. Imp. Assess., 29, 179–185,
https://doi.org/10.1016/j.eiar.2008.10.001, 2009.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Builtjes, P.: SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe, Geosci. Model Dev., 4, 47–68, https://doi.org/10.5194/gmd-4-47-2011, 2011.
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational
Algorithms, and Other Components of the Models-3 Community Multiscale Air
Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77,
https://doi.org/10.1115/1.2128636, 2006.
Cofala, J., Amann, M., Borken-Kleefeld, J., Gomez-Sanabria, A., Heyes, C.,
Kiesewetter, G., Sander, R., Schoepp, W., Holland, M., Fagerli, H., and
Nyiri, A.: The potential for cost-effective air emission reductions from
international shipping through designation of further Emission Control Areas
in EU waters with focus on the Mediterranean Sea: IIASA Research Report,
International Institute for Applied Systems Analysis (IIASA), Laxenburg,
Austria, 2018.
Corbett, J. J., Fischbeck, P. S., and Pandis, S. N.: Global nitrogen and
sulfur inventories for oceangoing ships, J. Geophys. Res., 104, 3457–3470,
https://doi.org/10.1029/1998JD100040, 1999.
EU: DIRECTIVE 2005/33/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 6
July 2005 amending Directive 1999/32/EC as regards the sulphur content of
marine fuels:
available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:191:0059:0069:EN:PDF (last access: 25 March 2020), 2005.
EU: DIRECTIVE 2012/33/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21
November 2012 amending Directive 1999/32/EC as regards the sulphur content
of marine fuels:
available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:327:0001:0013:en:PDF (last access: 25 March 2020), 2012.
Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett, J. J.,
Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., and Stevenson,
D. S.: Transport impacts on atmosphere and climate: Shipping, Atmos.
Environ., 44, 4735–4771, https://doi.org/10.1016/j.atmosenv.2009.04.059, 2010.
Fridell, E. and Salo, K.: Measurements of abatement of particles and exhaust
gases in a marine gas scrubber, Proc. IMechE, 230, 154–162,
https://doi.org/10.1177/1475090214543716, 2016.
Fridell, E., Haeger-Eugensson, M., Moldanova, J., Forsberg, B., and
Sjöberg, K.: A modelling study of the impact on air quality and health
due to the emissions from E85 and petrol fuelled cars in Sweden, Atmos.
Environ., 82, 1–8, https://doi.org/10.1016/j.atmosenv.2013.10.002, 2014.
Fridell, E., Winnes, H., Parsmo, R., Boteler, B., Troeltzsch, J., Kowalczyk,
U., Piotrowicz, J., Jalkanen, J.-P., Johansson, L., Matthias, V., and
Ytreberg, E.: Sustainable Shipping and Environment of the Baltic Sea Region
(SHEBA) Deliverable 1.4, type RE: Future Scenarios:
available at: https://www.sheba-project.eu/imperia/md/content/sheba/deliverables/sheba_d1.4_final.pdf (last access: 7 September 2020), 2015.
Gallego, E., Roca, F. J., Perales, J. F., Guardino, X., Gadea, E., and
Garrote, P.: Impact of formaldehyde and VOCs from waste treatment plants
upon the ambient air nearby an urban area (Spain), The Sci. Total
Environ., 568, 369–380, https://doi.org/10.1016/j.scitotenv.2016.06.007, 2016.
Geyer, B.: High-resolution atmospheric reconstruction for Europe 1948–2012: coastDat2, Earth Syst. Sci. Data, 6, 147–164, https://doi.org/10.5194/essd-6-147-2014, 2014.
Heroux, M. E., Braubach, M., Korol, N., Krzyzanowski, M., Paunovic, E., and
Zastenskaya, I.: The main conclusions about the medical aspects of air
pollution: The projects REVIHAAP and HRAPIE WHO/EC, Gigiena i sanitariia,
9–14, 2013.
Holland, M. R., Pye, S., and Jones, G.: EC4MACS Modelling Methodology – The
ALPHA Benefit Assessment Model, 2013.
Hurley, P. J., Physick, W. L., and Luhar, A. K.: TAPM: A practical approach
to prognostic meteorological and air pollution modelling, Environ.
Modell. Softw., 20, 737–752, https://doi.org/10.1016/j.envsoft.2004.04.006,
2005.
IMO: Amendments to the Annex of the Protocol of 1997 to Amend the
International Convention for the Prevention of Pollution from Ships, 1973,
as Modified by the Protocol of 1978 Relating thereto (Revised MARPOL Annex
VI): Resolution MEPC 176 (58), availble at:
http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee-(MEPC)/Documents/MEPC.176(58).pdf
(last access: 25 March 2020), 2008.
IMO: Amendments to the Annex of the Protocol of 1997 to Amend the
International Convention for the Prevention of Pollution from Ships, 1973,
as Modified by the Protocol of 1978 Relating thereto. (Inclusion of
regulations on energy efficiency for ships in MARPOL Annex VI),
available at: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Technical and Operational Measures/Resolution MEPC.203(62).pdf
(last access: 25 March 2020), 2011.
IMO: Amendments to the Annex of the Protocol of 1997 to Amend the
International Convention for the Prevention of Pollution from Ships, 1973,
as Modified by the Protocol of 1978 Relating thereto. (Amendments to
regulations 2, 13, 19, 20 and 21 and the Supplement to the IAPP Certificate
under MARPOL Annex VI and certification of dual-fuel engines under the NOX
Technical Code 2008): Resolution MEPC 251(66):
available at: http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee-(MEPC)/Documents/MEPC.251(66).pdf
(last access: 25 March 2020), 2014.
IMO: Amendments to the Annex of the Protocol of 1997 to Amend the
International Convention for the Prevention of Pollution from Ships, 1973,
as Modified by the Protocol of 1978 Relating thereto. (Designation of the
Baltic Sea and the North Sea Emission Control Areas for NOX Tier III
control): Resolution MEPC 286(71),
available at: http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee-(MEPC)/Documents/MEPC.286(71).pdf
(last access: 25 March 2020), 2017.
IMO: Initial IMO strategy on reduction of GHG emissions from ships:
Resolution MEPC 304(72):
available at: http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee-(MEPC)/Documents/MEPC.304(72).pdf
(last access: 25 March 2020), 2018.
Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T.: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, https://doi.org/10.5194/acp-9-9209-2009, 2009.
Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and Stipa, T.: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12, 2641–2659, https://doi.org/10.5194/acp-12-2641-2012, 2012.
Johansson, L., Jalkanen, J.-P., Kalli, J., and Kukkonen, J.: The evolution of shipping emissions and the costs of regulation changes in the northern EU area, Atmos. Chem. Phys., 13, 11375–11389, https://doi.org/10.5194/acp-13-11375-2013, 2013.
Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M., and Denier van der Gon, H. A. C.: Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea, Atmos. Chem. Phys., 15, 783–798, https://doi.org/10.5194/acp-15-783-2015, 2015.
Jonson, J. E., Gauss, M., Jalkanen, J.-P., and Johansson, L.: Effects of strengthening the Baltic Sea ECA regulations, Atmos. Chem. Phys., 19, 13469–13487, https://doi.org/10.5194/acp-19-13469-2019, 2019.
Kalli, J., Jalkanen, J.-P., Johansson, L., and Repka, S.: Atmospheric
emissions of European SECA shipping: long-term projections, WMU J. Marit.
Affairs, 12, 129–145, https://doi.org/10.1007/s13437-013-0050-9, 2013.
Karl, M., Bieser, J., Geyer, B., Matthias, V., Jalkanen, J.-P., Johansson, L., and Fridell, E.: Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region, Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, 2019a.
Karl, M., Jonson, J. E., Uppstu, A., Aulinger, A., Prank, M., Sofiev, M., Jalkanen, J.-P., Johansson, L., Quante, M., and Matthias, V.: Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models, Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, 2019b.
Keller, M., Hausberger, S., Matzer, C., Wüthrich, P., and Notter, B.:
HBEFA Version 3.3: Background Documentation,
available at: http://www.hbefa.net/e/documents/HBEFA33_Documentation_20170425.pdf (last access: 8 January 2020), 2017.
Kiesewetter, G., Borken-Kleefeld, J., Schöpp, W., Heyes, C., Thunis, P., Bessagnet, B., Terrenoire, E., Gsella, A., and Amann, M.: Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation, Atmos. Chem. Phys., 14, 813–829, https://doi.org/10.5194/acp-14-813-2014, 2014.
Matthaios, V. N., Triantafyllou, A. G., Albanis, T. A., Sakkas, V., and
Garas, S.: Performance and evaluation of a coupled prognostic model TAPM
over a mountainous complex terrain industrial area, Theor. Appl. Climatol.,
132, 885–903, https://doi.org/10.1007/s00704-017-2122-9, 2018.
Miljöförvaltningen: Luften i Göteborg: Årsrapport 2019, available at: https://goteborg.se/wps/wcm/connect/10808596-7471-4e9e-af8a-2f7f517140af/R+2020_12+Luften+i+G 6teborg+-+ rsrapport+2019.pdf?MOD=AJPERES,
last access: 29 June 2020.
Ramacher, M. O. P. and Karl, M.: Integrating Modes of Transport in a Dynamic
Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5
Pollution in Urban Areas, IJERPH, 17, 2099, 1–35, https://doi.org/10.3390/ijerph17062099,
2020.
Ramacher, M. O. P., Karl, M., Bieser, J., Jalkanen, J.-P., and Johansson, L.: Urban population exposure to NOx emissions from local shipping in three Baltic Sea harbour cities – a generic approach, Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, 2019.
Ramacher, M. O. P., Karl, M., Aulinger, A., and Bieser, J.: Population
Exposure to Emissions from Industry, Traffic, Shipping and Residential
Heating in the Urban Area of Hamburg, in: Air Pollution Modeling and its
Application XXVI, edited by: Mensink, C., Gong, W., and Hakami, A., Springer
Proceedings in Complexity, Springer International Publishing, Cham,
177–183, 2020.
Reis, S., Liška, T., Vieno, M., Carnell, E. J., Beck, R., Clemens, T.,
Dragosits, U., Tomlinson, S. J., Leaver, D., and Heal, M. R.: The influence
of residential and workday population mobility on exposure to air pollution
in the UK, Environ. Int., 121, 803–813,
https://doi.org/10.1016/j.envint.2018.10.005, 2018.
Rockel, B., Will, A., and Hense, A.: The Regional Climate Model COSMO-CLM
(CCLM), Metz, 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008.
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments, Atmos. Environ., 33, 1821–1845,
https://doi.org/10.1016/S1352-2310(98)00345-8, 1999.
Smith, J. D., Mitsakou, C., Kitwiroon, N., Barratt, B. M., Walton, H. A.,
Taylor, J. G., Anderson, H. R., Kelly, F. J., and Beevers, S. D.: London
Hybrid Exposure Model: Improving Human Exposure Estimates to NO2 and PM2.5
in an Urban Setting, Environ. Sci. Technol., 50,
11760–11768, https://doi.org/10.1021/acs.est.6b01817, 2016.
Soares, J., Kousa, A., Kukkonen, J., Matilainen, L., Kangas, L., Kauhaniemi, M., Riikonen, K., Jalkanen, J.-P., Rasila, T., Hänninen, O., Koskentalo, T., Aarnio, M., Hendriks, C., and Karppinen, A.: Refinement of a model for evaluating the population exposure in an urban area, Geosci. Model Dev., 7, 1855–1872, https://doi.org/10.5194/gmd-7-1855-2014, 2014.
Sofiev, M., Winebrake, J. J., Johansson, L., Carr, E. W., Prank, M., Soares,
J., Vira, J., Kouznetsov, R., Jalkanen, J.-P., and Corbett, J. J.: Cleaner
fuels for ships provide public health benefits with climate tradeoffs,
Nat. Commun., 9, 406, 1–12, https://doi.org/10.1038/s41467-017-02774-9, 2018.
Tang, L., Ramacher, M. O. P., Moldanová, J., Matthias, V., Karl, M., Johansson, L., Jalkanen, J.-P., Yaramenka, K., Aulinger, A., and Gustafsson, M.: The impact of ship emissions on air quality and human health in the Gothenburg area – Part 1: 2012 emissions, Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020, 2020.
Transport administration: Prognos för persontrafiken 2040: Trafikverkets
Basprognoser 2016, Report 2016:062, Transport administration (Trafikverket),
2016.
Transport administration: Prognos för persontrafiken 2040: Trafikverkets
Basprognoser 2018-04-01, Report 2018:089, Transport administration
(Trafikverket), 2018.
Zandersen, M., Hyytiäinen, K., Meier, H. E. M., Tomczak, M. T., Bauer,
B., Haapasaari, P. E., Olesen, J. E., Gustafsson, B. G., Refsgaard, J. C.,
Fridell, E., Pihlainen, S., Le Tissier, M. D. A., Kosenius, A.-K., and van
Vuuren, D. P.: Shared socio-economic pathways extended for the Baltic Sea:
exploring long-term environmental problems, Reg. Environ. Change, 19,
1073–1086, https://doi.org/10.1007/s10113-018-1453-0, 2019.
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg...
Altmetrics
Final-revised paper
Preprint