Research article 15 May 2019
Research article | 15 May 2019
Identification of jet lubrication oil as a major component of aircraft exhaust nanoparticles
Akihiro Fushimi et al.
Related authors
Nobuyuki Takegawa, Yoshiko Murashima, Akihiro Fushimi, Kentaro Misawa, Yuji Fujitani, Katsumi Saitoh, and Hiromu Sakurai
Atmos. Chem. Phys., 21, 1085–1104, https://doi.org/10.5194/acp-21-1085-2021, https://doi.org/10.5194/acp-21-1085-2021, 2021
Short summary
Short summary
The characterization of particle emissions from aircraft is important for the assessment of the aviation impacts on climate and human health. We conducted field observations of aerosols near a runway at Narita International Airport in February 2018. We investigated particle number emissions from in-use commercial aircraft under real-world operating conditions, and we found the significance of sub-10 nm size ranges in take-off plumes for both total and non-volatile particles.
Kei Sato, Yuji Fujitani, Satoshi Inomata, Yu Morino, Kiyoshi Tanabe, Toshihide Hikida, Akio Shimono, Akinori Takami, Akihiro Fushimi, Yoshinori Kondo, Takashi Imamura, Hiroshi Tanimoto, and Seiji Sugata
Atmos. Chem. Phys., 19, 14901–14915, https://doi.org/10.5194/acp-19-14901-2019, https://doi.org/10.5194/acp-19-14901-2019, 2019
Short summary
Short summary
The volatility distributions of secondary organic aerosol (SOA) formed from the photooxidation of 1,3,5-trimethylbenzene were investigated by composition, heating, and dilution measurements. Fresh SOA, formed from 1,3,5-trimethylbenzene, included low-volatility compounds with < 1 μg m–3 saturation concentrations, which are not assumed to exist in fresh SOA particles in the standard volatility basis-set approach. Improvements in the organic aerosol model will be necessary.
Kei Sato, Yuji Fujitani, Satoshi Inomata, Yu Morino, Kiyoshi Tanabe, Sathiyamurthi Ramasamy, Toshihide Hikida, Akio Shimono, Akinori Takami, Akihiro Fushimi, Yoshinori Kondo, Takashi Imamura, Hiroshi Tanimoto, and Seiji Sugata
Atmos. Chem. Phys., 18, 5455–5466, https://doi.org/10.5194/acp-18-5455-2018, https://doi.org/10.5194/acp-18-5455-2018, 2018
Short summary
Short summary
The volatility distribution of α-pinene secondary organic aerosols (SOAs) was evaluated with a wide range of techniques, including offline chemical analysis and dilution- and heat-induced evaporation. Compounds less volatile than semi-volatile products, i.e., highly oxygenated molecules and dimers, were identified as products, and the SOA evaporation with equilibration timescales of 24–46 min after dilution were observed.
Yuya Kobayashi and Nobuyuki Takegawa
Atmos. Meas. Tech., 15, 833–844, https://doi.org/10.5194/amt-15-833-2022, https://doi.org/10.5194/amt-15-833-2022, 2022
Short summary
Short summary
We propose a new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by using a refractory aerosol thermal desorption mass spectrometer (rTDMS). The combination of a graphite particle collector and a carbon dioxide laser enables high desorption temperature. Laboratory experiments showed that major ion signals originating from sodium or potassium salts were clearly detected, associated with the increase in the desorption temperature by laser heating.
Nobuyuki Takegawa, Yoshiko Murashima, Akihiro Fushimi, Kentaro Misawa, Yuji Fujitani, Katsumi Saitoh, and Hiromu Sakurai
Atmos. Chem. Phys., 21, 1085–1104, https://doi.org/10.5194/acp-21-1085-2021, https://doi.org/10.5194/acp-21-1085-2021, 2021
Short summary
Short summary
The characterization of particle emissions from aircraft is important for the assessment of the aviation impacts on climate and human health. We conducted field observations of aerosols near a runway at Narita International Airport in February 2018. We investigated particle number emissions from in-use commercial aircraft under real-world operating conditions, and we found the significance of sub-10 nm size ranges in take-off plumes for both total and non-volatile particles.
Kei Sato, Yuji Fujitani, Satoshi Inomata, Yu Morino, Kiyoshi Tanabe, Toshihide Hikida, Akio Shimono, Akinori Takami, Akihiro Fushimi, Yoshinori Kondo, Takashi Imamura, Hiroshi Tanimoto, and Seiji Sugata
Atmos. Chem. Phys., 19, 14901–14915, https://doi.org/10.5194/acp-19-14901-2019, https://doi.org/10.5194/acp-19-14901-2019, 2019
Short summary
Short summary
The volatility distributions of secondary organic aerosol (SOA) formed from the photooxidation of 1,3,5-trimethylbenzene were investigated by composition, heating, and dilution measurements. Fresh SOA, formed from 1,3,5-trimethylbenzene, included low-volatility compounds with < 1 μg m–3 saturation concentrations, which are not assumed to exist in fresh SOA particles in the standard volatility basis-set approach. Improvements in the organic aerosol model will be necessary.
Kei Sato, Yuji Fujitani, Satoshi Inomata, Yu Morino, Kiyoshi Tanabe, Sathiyamurthi Ramasamy, Toshihide Hikida, Akio Shimono, Akinori Takami, Akihiro Fushimi, Yoshinori Kondo, Takashi Imamura, Hiroshi Tanimoto, and Seiji Sugata
Atmos. Chem. Phys., 18, 5455–5466, https://doi.org/10.5194/acp-18-5455-2018, https://doi.org/10.5194/acp-18-5455-2018, 2018
Short summary
Short summary
The volatility distribution of α-pinene secondary organic aerosols (SOAs) was evaluated with a wide range of techniques, including offline chemical analysis and dilution- and heat-induced evaporation. Compounds less volatile than semi-volatile products, i.e., highly oxygenated molecules and dimers, were identified as products, and the SOA evaporation with equilibration timescales of 24–46 min after dilution were observed.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Sources and processes of iron aerosols in a megacity in Eastern China
Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China’s marginal seas – Part 2: Spatiotemporal heterogeneity, causes, and hypothesis
Single-particle characterization of polycyclic aromatic hydrocarbons in background air in northern Europe
Regional heterogeneities in the emission of airborne primary sugar compounds and biogenic secondary organic aerosols in the East Asian outflow: evidence for coal combustion as a source of levoglucosan
Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing
The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer
Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
Measurement report: Particle-size-dependent fluorescence properties of water-soluble organic compounds (WSOCs) and their atmospheric implications for the aging of WSOCs
Impact of non-ideality on reconstructing spatial and temporal variations in aerosol acidity with multiphase buffer theory
Mercury isotopic compositions in fine particles and offshore surface seawater in a coastal area of East China: implications for Hg sources and atmospheric transformations
Urban aerosol chemistry at a land–water transition site during summer – Part 2: Aerosol pH and liquid water content
First insights into northern Africa high-altitude background aerosol chemical composition and source influences
Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA)
Diverse mixing states of amine-containing single particles in Nanjing, China
Long-range transport of anthropogenic air pollutants into the marine air: insight into fine particle transport and chloride depletion on sea salts
Response of atmospheric composition to COVID-19 lockdown measures during spring in the Paris region (France)
Transport-driven aerosol differences above and below the canopy of a mixed deciduous forest
Origin of water-soluble organic aerosols at the Maïdo high-altitude observatory, Réunion Island, in the tropical Indian Ocean
Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017
Spatiotemporal variability in the oxidative potential of ambient fine particulate matter in the Midwestern United States
Measurement report: Spatiotemporal and policy-related variations of PM2.5 composition and sources during 2015–2019 at multiple sites in a Chinese megacity
Contribution of combustion Fe in marine aerosols over the northwestern Pacific estimated by Fe stable isotope ratios
Fluorescent biological aerosol particles over the central Pacific Ocean: covariation with ocean surface biological activity indicators
Dramatic changes in Harbin aerosol during 2018–2020: the roles of open burning policy and secondary aerosol formation
Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window
Characterization of non-refractory (NR) PM1 and source apportionment of organic aerosol in Kraków, Poland
Sources of black carbon at residential and traffic environments obtained by two source apportionment methods
Reduced volatility of aerosols from surface emissions to the top of the planetary boundary layer
Measurement report: Receptor modeling for source identification of urban fine and coarse particulate matter using hourly elemental composition
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: seasonal trends and local anthropogenic influence
Seasonal Analysis of Reduced and Oxidized Nitrogen-Containing Organic Compounds at a Coastal Site
Measurement report: The chemical composition of and temporal variability in aerosol particles at Tuktoyaktuk, Canada, during the Year of Polar Prediction Second Special Observing Period
Pan-Arctic seasonal cycles and long-term trends of aerosol properties from ten observatories
Ammonium nitrate promotes sulfate formation through uptake kinetic regime
Measurement report: Indirect evidence for the controlling influence of acidity on the speciation of iodine in Atlantic aerosols
Urban aerosol chemistry at a land–water transition site during summer – Part 1: Impact of agricultural and industrial ammonia emissions
Measurement report: Vertical distribution of biogenic and anthropogenic secondary organic aerosols in the urban boundary layer over Beijing during late summer
Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements
Variability in black carbon mass concentration in surface snow at Svalbard
Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction
Measurement report: Saccharide composition in atmospheric fine particulate matter during spring at the remote sites of southwest China and estimates of source contributions
Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase
Measurement report: Source characteristics of water-soluble organic carbon in PM2.5 at two sites in Japan, as assessed by long-term observation and stable carbon isotope ratio
The importance of sesquiterpene oxidation products for secondary organic aerosol formation in a springtime hemiboreal forest
PM1 composition and source apportionment at two sites in Delhi, India, across multiple seasons
Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Year's Eve
Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard
Source apportionment of atmospheric PM10 oxidative potential: synthesis of 15 year-round urban datasets in France
Measurement report: Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact from biomass burning
Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Yating Gao, Dihui Chen, Yanjie Shen, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 1515–1528, https://doi.org/10.5194/acp-22-1515-2022, https://doi.org/10.5194/acp-22-1515-2022, 2022
Short summary
Short summary
This study focuses on spatiotemporal heterogeneity of observed gaseous amines, NH3, their particulate counterparts in PM2.5 over different sea zones, and the disproportional release of alkaline gases and corresponding particulate counterparts from seawater in the sea zones in terms of different extents of enrichment of TMAH+ and DMAH+ in the sea surface microlayer (SML). A novel hypothesis is delivered.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Md. Mozammel Haque, Yanlin Zhang, Srinivas Bikkina, Meehye Lee, and Kimitaka Kawamura
Atmos. Chem. Phys., 22, 1373–1393, https://doi.org/10.5194/acp-22-1373-2022, https://doi.org/10.5194/acp-22-1373-2022, 2022
Short summary
Short summary
We attempt to understand the current state of East Asian organic aerosols with both the molecular marker approach and 14° C data of carbonaceous components. A significant positive correlation of nonfossil- and fossil-derived organic carbon with levoglucosan suggests the importance of biomass burning (BB) and coal combustion sources in the East Asian outflow. Thus, attribution of ambient levoglucosan levels over the western North Pacific to the impact of BB emission may cause large uncertainty.
Jing Cai, Cheng Wu, Jiandong Wang, Wei Du, Feixue Zheng, Simo Hakala, Xiaolong Fan, Biwu Chu, Lei Yao, Zemin Feng, Yongchun Liu, Yele Sun, Jun Zheng, Chao Yan, Federico Bianchi, Markku Kulmala, Claudia Mohr, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 22, 1251–1269, https://doi.org/10.5194/acp-22-1251-2022, https://doi.org/10.5194/acp-22-1251-2022, 2022
Short summary
Short summary
This study investigates the connection between organic aerosol (OA) molecular composition and particle absorptive properties in autumn in Beijing. We find that the molecular properties of OA compounds in different episodes influence particle light absorption properties differently: the light absorption enhancement of black carbon and light absorption coefficient of brown carbon were mostly related to more oxygenated OA (low C number and four O atoms) and aromatics/nitro-aromatics, respectively.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Juanjuan Qin, Jihua Tan, Xueming Zhou, Yanrong Yang, Yuanyuan Qin, Xiaobo Wang, Shaoxuan Shi, Kang Xiao, and Xinming Wang
Atmos. Chem. Phys., 22, 465–479, https://doi.org/10.5194/acp-22-465-2022, https://doi.org/10.5194/acp-22-465-2022, 2022
Short summary
Short summary
Water-soluble organic compounds (WSOCs) play important roles in atmospheric particle formation, migration, and transformation processes. In this work, size-segregated atmospheric particles were collected in a rural area of Beijing, and 3D fluorescence spectroscopy was used to investigate the optical properties of WSOCs as a means of inferring information about their atmospheric sources. It was found that these data could efficiently reveal the secondary transformation processes of WSOCs.
Guangjie Zheng, Hang Su, Siwen Wang, Andrea Pozzer, and Yafang Cheng
Atmos. Chem. Phys., 22, 47–63, https://doi.org/10.5194/acp-22-47-2022, https://doi.org/10.5194/acp-22-47-2022, 2022
Short summary
Short summary
The recently proposed multiphase buffer theory provides a framework to reconstruct long-term trends and spatial variations in aerosol pH, while non-ideality is a major limitation for its broad applications. Here we proposed a parameterization method to estimate the impact of non-ideality and validated it against long-term observations and global simulations. With this method, the multiphase buffer theory can reproduce well aerosol pH variations estimated by comprehensive thermodynamic models.
Lingling Xu, Jiayan Shi, Yuping Chen, Yanru Zhang, Mengrong Yang, Yanting Chen, Liqian Yin, Lei Tong, Hang Xiao, and Jinsheng Chen
Atmos. Chem. Phys., 21, 18543–18555, https://doi.org/10.5194/acp-21-18543-2021, https://doi.org/10.5194/acp-21-18543-2021, 2021
Short summary
Short summary
Mercury (Hg) isotopic compositions in aerosols are the mixed results of emission sources and atmospheric processes. This study presents Hg isotopic compositions in PM2.5 from different types of locations and total Hg from offshore surface seawater. The results indicate that atmospheric transformations induce significant mass independent fractionation of Hg isotopes, which obscures Hg isotopic signatures of initial emissions.
Michael A. Battaglia Jr., Nicholas Balasus, Katherine Ball, Vanessa Caicedo, Ruben Delgado, Annmarie G. Carlton, and Christopher J. Hennigan
Atmos. Chem. Phys., 21, 18271–18281, https://doi.org/10.5194/acp-21-18271-2021, https://doi.org/10.5194/acp-21-18271-2021, 2021
Short summary
Short summary
This study characterizes aerosol liquid water content and aerosol pH at a land–water transition site near Baltimore, Maryland. We characterize the effects of unique meteorology associated with the close proximity to the Chesapeake Bay and episodic NH3 events derived from industrial and agricultural sources on aerosol chemistry during the summer. We also examine two events where primary Bay emissions underwent aging in the polluted urban atmosphere.
Nabil Deabji, Khanneh Wadinga Fomba, Souad El Hajjaji, Abdelwahid Mellouki, Laurent Poulain, Sebastian Zeppenfeld, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 18147–18174, https://doi.org/10.5194/acp-21-18147-2021, https://doi.org/10.5194/acp-21-18147-2021, 2021
Short summary
Short summary
Mountain and high-altitude sites provide representative data for the lower free troposphere, various pathways for aerosol interactions, and changing boundary layer heights useful in understanding atmospheric composition. However, only few studies exist in African regions despite diversity in both natural and anthropogenic emissions. This study provides detailed atmospheric studies in the northern African high-altitude region.
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
Qi En Zhong, Chunlei Cheng, Zaihua Wang, Lei Li, Mei Li, Dafeng Ge, Lei Wang, Yuanyuan Li, Wei Nie, Xuguang Chi, Aijun Ding, Suxia Yang, Duohong Chen, and Zhen Zhou
Atmos. Chem. Phys., 21, 17953–17967, https://doi.org/10.5194/acp-21-17953-2021, https://doi.org/10.5194/acp-21-17953-2021, 2021
Short summary
Short summary
Particulate amines play important roles in new particle formation, aerosol acidity, and hygroscopicity. Most of the field observations did not distinguish the different behavior of each type amine under the same ambient influencing factors. In this study, two amine-containing single particles exhibited different mixing states and disparate enrichment of secondary organics, which provide insight into the discriminated fates of organics during the formation and evolution processes.
Liang Xu, Xiaohuan Liu, Huiwang Gao, Xiaohong Yao, Daizhou Zhang, Lei Bi, Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Qi Yuan, and Weijun Li
Atmos. Chem. Phys., 21, 17715–17726, https://doi.org/10.5194/acp-21-17715-2021, https://doi.org/10.5194/acp-21-17715-2021, 2021
Short summary
Short summary
We quantified different types of marine aerosols and explored the Cl depletion of sea salt aerosol (SSA) in the eastern China seas and the northwestern Pacific Ocean. We found that anthropogenic acidic gases in the troposphere were transported longer distances compared to the anthropogenic aerosols and could significantly impact remote marine aerosols. Meanwhile, variations of chloride depletion in SSA can serve as a potential indicator for anthropogenic gaseous pollutants in remote marine air.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Alexander A. T. Bui, Henry W. Wallace, Sarah Kavassalis, Hariprasad D. Alwe, James H. Flynn, Matt H. Erickson, Sergio Alvarez, Dylan B. Millet, Allison L. Steiner, and Robert J. Griffin
Atmos. Chem. Phys., 21, 17031–17050, https://doi.org/10.5194/acp-21-17031-2021, https://doi.org/10.5194/acp-21-17031-2021, 2021
Short summary
Short summary
Differences in atmospheric species above and below a forest canopy provide insight into the relative importance of local mixing, long-range transport, and chemical processes in determining vertical gradients in atmospheric particles in a forested environment. This helps in understanding the flux of climate-relevant material out of the forest to the atmosphere. We studied this in a remote forest using vertically resolved measurements of gases and particles.
Sharmine Akter Simu, Yuzo Miyazaki, Eri Tachibana, Henning Finkenzeller, Jérôme Brioude, Aurélie Colomb, Olivier Magand, Bert Verreyken, Stephanie Evan, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 17017–17029, https://doi.org/10.5194/acp-21-17017-2021, https://doi.org/10.5194/acp-21-17017-2021, 2021
Short summary
Short summary
The tropical Indian Ocean (IO) is expected to be a significant source of water-soluble organic carbon (WSOC), which is relevant to cloud formation. Our study showed that marine secondary organic formation dominantly contributed to the aerosol WSOC mass at the high-altitude observatory in the southwest IO in the wet season in both marine boundary layer and free troposphere (FT). This suggests that the effect of marine secondary sources is important up to FT, a process missing in climate models.
Larissa Lacher, Hans-Christian Clemen, Xiaoli Shen, Stephan Mertes, Martin Gysel-Beer, Alireza Moallemi, Martin Steinbacher, Stephan Henne, Harald Saathoff, Ottmar Möhler, Kristina Höhler, Thea Schiebel, Daniel Weber, Jann Schrod, Johannes Schneider, and Zamin A. Kanji
Atmos. Chem. Phys., 21, 16925–16953, https://doi.org/10.5194/acp-21-16925-2021, https://doi.org/10.5194/acp-21-16925-2021, 2021
Short summary
Short summary
We investigate ice-nucleating particle properties at Jungfraujoch during the 2017 joint INUIT/CLACE field campaign, to improve the knowledge about those rare particles in a cloud-relevant environment. By quantifying ice-nucleating particles in parallel to single-particle mass spectrometry measurements, we find that mineral dust and aged sea spray particles are potential candidates for ice-nucleating particles. Our findings are supported by ice residual analysis and source region modeling.
Haoran Yu, Joseph Varghese Puthussery, Yixiang Wang, and Vishal Verma
Atmos. Chem. Phys., 21, 16363–16386, https://doi.org/10.5194/acp-21-16363-2021, https://doi.org/10.5194/acp-21-16363-2021, 2021
Short summary
Short summary
We assessed the oxidative potential (OP) of ambient PM2.5 collected from many sites in the US Midwest through multiple acellular endpoints. Compared to homogeneously distributed PM2.5, OP showed higher spatiotemporal variation. Poor correlations for the regression between mass and OP indicated a limited role of mass in determining the OP. Moreover, weak correlations among different OP endpoints justify the need for using multiple assays to determine oxidative levels of particles.
Xinyao Feng, Yingze Tian, Qianqian Xue, Danlin Song, Fengxia Huang, and Yinchang Feng
Atmos. Chem. Phys., 21, 16219–16235, https://doi.org/10.5194/acp-21-16219-2021, https://doi.org/10.5194/acp-21-16219-2021, 2021
Short summary
Short summary
This study focused on PM2.5 compositions and sources and explored their spatiotemporal and policy-related variations based on observation at 19 sites during wintertime of 2015–2019 in a fast-developing megacity. We found that PM2.5 compositions for the outermost zone in 2019 were similar to those for the core zone 2 or 3 years ago. Percentage contributions of coal and biomass combustion dramatically declined in the core zone, while the traffic source showed an increasing trend.
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary
Short summary
Aerosol iron (Fe) input can enhance oceanic primary production. We analyzed Fe isotope ratios of size-fractionated aerosols over the northwestern Pacific to evaluate the contribution of natural and combustion Fe. It was found that combustion Fe was an important soluble Fe source in marine aerosols and possibly in surface seawater when air masses were from East Asia. This study shows the applicability of Fe isotope ratios for a more quantitative understanding of the Fe cycle in the surface ocean.
Kaori Kawana, Kazuhiko Matsumoto, Fumikazu Taketani, Takuma Miyakawa, and Yugo Kanaya
Atmos. Chem. Phys., 21, 15969–15983, https://doi.org/10.5194/acp-21-15969-2021, https://doi.org/10.5194/acp-21-15969-2021, 2021
Short summary
Short summary
Atmospheric autofluorescent particles observed over the central Pacific Ocean were identified as bioaerosols from comparisons to a DNA-nuclear-staining method. Their number concentrations in the pristine marine air masses showed high correlations with concentrations of bacteria and transparent exopolymer particles in the surface seawater, providing strong evidence of their marine origins. We propose equations to derive the atmospheric bioaerosol number concentrations from oceanic parameters.
Yuan Cheng, Qin-qin Yu, Jiu-meng Liu, Xu-bing Cao, Ying-jie Zhong, Zhen-yu Du, Lin-lin Liang, Guan-nan Geng, Wan-li Ma, Hong Qi, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 21, 15199–15211, https://doi.org/10.5194/acp-21-15199-2021, https://doi.org/10.5194/acp-21-15199-2021, 2021
Short summary
Short summary
Open burning policies in Heilongjiang Province experienced a rapid transition during 2018 to 2020. This study evaluated the responses of PM2.5 pollution to this transition and suggested that neither of the policies could be considered successful. In addition, heterogeneous reactions were found to be at play in secondary aerosol formation, even in the frigid atmosphere in Heilongjiang. The unique haze in northeast China deserves more attention.
Gang Chen, Yulia Sosedova, Francesco Canonaco, Roman Fröhlich, Anna Tobler, Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Christoph Hueglin, Peter Graf, Urs Baltensperger, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 15081–15101, https://doi.org/10.5194/acp-21-15081-2021, https://doi.org/10.5194/acp-21-15081-2021, 2021
Short summary
Short summary
A novel, advanced source apportionment technique was applied to a dataset measured in Magadino. Rolling positive matrix factorisation (PMF) allows for retrieving more realistic, time-dependent, and detailed information on organic aerosol sources. The strength of the rolling PMF mechanism is highlighted by comparing it with results derived from conventional seasonal PMF. Overall, this comprehensive interpretation of aerosol chemical speciation monitor data could be a role model for similar work.
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021, https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Short summary
Kraków is among the cities with the highest particulate matter levels within Europe. We conducted long-term and highly time-resolved measurements of the chemical composition of submicron particlulate matter (PM1). Combined with advanced source apportionment techniques, which allow for time-dependent factor profiles, our results elucidate that traffic and residential heating (biomass burning and coal combustion) as well as oxygenated organic aerosol are the key PM sources in Kraków.
Sanna Saarikoski, Jarkko V. Niemi, Minna Aurela, Liisa Pirjola, Anu Kousa, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 21, 14851–14869, https://doi.org/10.5194/acp-21-14851-2021, https://doi.org/10.5194/acp-21-14851-2021, 2021
Short summary
Short summary
This study presents the main sources of black carbon (BC) at two urban environments. The largest fraction of BC originated from biomass burning at the residential site (38 %) and from vehicular emissions (57 %) in the street canyon. Also, a significant fraction of BC was associated with urban background or long-range transport. The data are needed by modelers and authorities when assessing climate and air quality impact of BC as well as directing the emission legislation and mitigation actions.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Magdalena Reizer, Giulia Calzolai, Katarzyna Maciejewska, José A. G. Orza, Luca Carraresi, Franco Lucarelli, and Katarzyna Juda-Rezler
Atmos. Chem. Phys., 21, 14471–14492, https://doi.org/10.5194/acp-21-14471-2021, https://doi.org/10.5194/acp-21-14471-2021, 2021
Short summary
Short summary
The elemental composition of atmospheric PM2.5 and PM2.5–10 was measured during wintertime, with 1 h resolution, using a streaker sampler for the first time at a Central European urban background site. A set of multivariate and wind- and trajectory-based receptor models identified the main sources of ambient aerosol. Fine PM fraction was mainly comprised of regionally transported aged secondary sulfate from residential solid fuel combustion, while the coarse mode showed traffic-related origins.
Tatiana Drotikova, Alena Dekhtyareva, Roland Kallenborn, and Alexandre Albinet
Atmos. Chem. Phys., 21, 14351–14370, https://doi.org/10.5194/acp-21-14351-2021, https://doi.org/10.5194/acp-21-14351-2021, 2021
Short summary
Short summary
A total of 86 polycyclic aromatic compounds (PACs), toxic compounds mainly emitted after fossil fuel combustion, were measured during 8 months in the urban air of Longyearbyen (78° N, 15° E), the most populated settlement in Svalbard. Contrary to a stereotype of pristine Arctic conditions with very low human activity, considerable PAC concentrations were detected, with spring levels comparable to European levels. Air pollution was caused by local snowmobiles in spring and shipping in summer.
Jenna C. Ditto, Jo Machesky, and Drew R. Gentner
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-791, https://doi.org/10.5194/acp-2021-791, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
We analyzed gases and aerosols sampled in summer and winter in a coastal region, and observed a high contribution of nitrogen-containing species from a wide range of biogenic, anthropogenic, and marine sources, as well as formed via photochemical and aqueous-phase reactions in the atmosphere. We demonstrate the prevalence of key reduced and oxidized nitrogen functional groups, which develops our understanding of the chemical structure of nitrogen-containing compounds and their ultimate impacts.
John MacInnis, Jai Prakash Chaubey, Crystal Weagle, David Atkinson, and Rachel Ying-Wen Chang
Atmos. Chem. Phys., 21, 14199–14213, https://doi.org/10.5194/acp-21-14199-2021, https://doi.org/10.5194/acp-21-14199-2021, 2021
Short summary
Short summary
This study measured particulate matter in the western Canadian Arctic during 2018 as part of the Year of Polar Prediction. It was found that the particles were likely from the ocean, soil, road dust, and combustion. The concentrations of small aerosol particles, which can affect human health, were low, suggesting they had little impact on local air quality. These results can be used to understand future changes in local aerosol particle sources and concentrations.
Julia Schmale, Sangeeta Sharma, Stefano Decesari, Jakob Pernov, Andreas Massling, Hans-Christen Hansson, Knut von Salzen, Henrik Skov, Elisabeth Andrews, Patricia K. Quinn, Lucia M. Upchurch, Konstantinos Eleftheriadis, and Rita Traversi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-756, https://doi.org/10.5194/acp-2021-756, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Long-term data sets of Arctic aerosol properties from ten stations across the Arctic provide evidence that anthropogenic influence on the Arctic atmospheric chemical composition has declined in winter, a season which is typically dominated by mid-latitude emissions. The number of significant trends in summer trends is small and overall the pattern is ambiguous with some significant positive and negative trends. This reflects the mixed influence of natural and anthropogenic emissions.
Yongchun Liu, Zemin Feng, Feixue Zheng, Xiaolei Bao, Pengfei Liu, Yanli Ge, Yan Zhao, Tao Jiang, Yunwen Liao, Yusheng Zhang, Xiaolong Fan, Chao Yan, Biwu Chu, Yonghong Wang, Wei Du, Jing Cai, Federico Bianchi, Tuukka Petäjä, Yujing Mu, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 21, 13269–13286, https://doi.org/10.5194/acp-21-13269-2021, https://doi.org/10.5194/acp-21-13269-2021, 2021
Short summary
Short summary
The mechanisms and kinetics of particulate sulfate formation in the atmosphere are still open questions although they have been extensively discussed. We found that uptake of SO2 is the rate-determining step for the conversion of SO2 to particulate sulfate. NH4NO3 plays an important role in AWC, the phase state of aerosol particles, and subsequently the uptake kinetics of SO2 under high-RH conditions. This work is a good example of the feedback between aerosol physics and aerosol chemistry.
Alex R. Baker and Chan Yodle
Atmos. Chem. Phys., 21, 13067–13076, https://doi.org/10.5194/acp-21-13067-2021, https://doi.org/10.5194/acp-21-13067-2021, 2021
Short summary
Short summary
Iodine is emitted from the ocean and helps to destroy ozone in the lower atmosphere before being taken up into aerosol particles. We measured the chemical forms of iodine in aerosols over the Atlantic Ocean, because some of these forms can return to the gas phase and destroy more ozone. Our results indicate that aerosol acidity exerts a strong control on iodine speciation and therefore on its recycling behaviour and impact on ozone concentrations.
Nicholas Balasus, Michael A. Battaglia Jr., Katherine Ball, Vanessa Caicedo, Ruben Delgado, Annmarie G. Carlton, and Christopher J. Hennigan
Atmos. Chem. Phys., 21, 13051–13065, https://doi.org/10.5194/acp-21-13051-2021, https://doi.org/10.5194/acp-21-13051-2021, 2021
Short summary
Short summary
Measurements of aerosol and gas composition were carried out at a land–water transition site near Baltimore, MD. Gas-phase ammonia concentrations were highly elevated compared to measurements at a nearby inland site. Our analysis reveals that NH2 was from both industrial and agricultural sources. This had a pronounced effect on aerosol chemical composition at the site, most notably contributing to episodic spikes of aerosol nitrate.
Hong Ren, Wei Hu, Lianfang Wei, Siyao Yue, Jian Zhao, Linjie Li, Libin Wu, Wanyu Zhao, Lujie Ren, Mingjie Kang, Qiaorong Xie, Sihui Su, Xiaole Pan, Zifa Wang, Yele Sun, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 21, 12949–12963, https://doi.org/10.5194/acp-21-12949-2021, https://doi.org/10.5194/acp-21-12949-2021, 2021
Short summary
Short summary
This study presents vertical profiles of biogenic and anthropogenic secondary organic aerosols (SOAs) in the urban boundary layer based on a 325 m tower in Beijing in late summer. The increases in the isoprene and toluene SOAs with height were found to be more related to regional transport, whereas the decrease in those from monoterpenes and sesquiterpene were more subject to local emissions. Such complicated vertical distributions of SOA should be considered in future modeling work.
Vaios Moschos, Martin Gysel-Beer, Robin L. Modini, Joel C. Corbin, Dario Massabò, Camilla Costa, Silvia G. Danelli, Athanasia Vlachou, Kaspar R. Daellenbach, Sönke Szidat, Paolo Prati, André S. H. Prévôt, Urs Baltensperger, and Imad El Haddad
Atmos. Chem. Phys., 21, 12809–12833, https://doi.org/10.5194/acp-21-12809-2021, https://doi.org/10.5194/acp-21-12809-2021, 2021
Short summary
Short summary
This study provides a holistic approach to studying the spectrally resolved light absorption by atmospheric brown carbon (BrC) and black carbon using long time series of daily samples from filter-based measurements. The obtained results provide (1) a better understanding of the aerosol absorption profile and its dependence on BrC and on lensing from less absorbing coatings and (2) an estimation of the most important absorbers at typical European locations.
Michele Bertò, David Cappelletti, Elena Barbaro, Cristiano Varin, Jean-Charles Gallet, Krzysztof Markowicz, Anna Rozwadowska, Mauro Mazzola, Stefano Crocchianti, Luisa Poto, Paolo Laj, Carlo Barbante, and Andrea Spolaor
Atmos. Chem. Phys., 21, 12479–12493, https://doi.org/10.5194/acp-21-12479-2021, https://doi.org/10.5194/acp-21-12479-2021, 2021
Short summary
Short summary
We present the daily and seasonal variability in black carbon (BC) in surface snow inferred from two specific experiments based on the hourly and daily time resolution sampling during the Arctic spring in Svalbard. These unique data sets give us, for the first time, the opportunity to evaluate the associations between the observed surface snow BC mass concentration and a set of predictors corresponding to the considered meteorological and snow physico-chemical parameters.
Zhuohui Lin, Yonghong Wang, Feixue Zheng, Ying Zhou, Yishuo Guo, Zemin Feng, Chang Li, Yusheng Zhang, Simo Hakala, Tommy Chan, Chao Yan, Kaspar R. Daellenbach, Biwu Chu, Lubna Dada, Juha Kangasluoma, Lei Yao, Xiaolong Fan, Wei Du, Jing Cai, Runlong Cai, Tom V. Kokkonen, Putian Zhou, Lili Wang, Tuukka Petäjä, Federico Bianchi, Veli-Matti Kerminen, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 12173–12187, https://doi.org/10.5194/acp-21-12173-2021, https://doi.org/10.5194/acp-21-12173-2021, 2021
Short summary
Short summary
We find that ammonium nitrate and aerosol water content contributed most during low mixing layer height conditions; this may further trigger enhanced formation of sulfate and organic aerosol via heterogeneous reactions. The results of this study contribute towards a more detailed understanding of the aerosol–chemistry–radiation–boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.
Zhenzhen Wang, Di Wu, Zhuoyu Li, Xiaona Shang, Qing Li, Xiang Li, Renjie Chen, Haidong Kan, Huiling Ouyang, Xu Tang, and Jianmin Chen
Atmos. Chem. Phys., 21, 12227–12241, https://doi.org/10.5194/acp-21-12227-2021, https://doi.org/10.5194/acp-21-12227-2021, 2021
Short summary
Short summary
This study firstly investigates the composition of sugars in the fine fraction of aerosol over three sites in southwest China. The result suggested no significant reduction in biomass burning emissions in southwest Yunnan Province to some extent. The result shown sheds light on the contributions of biomass burning and the characteristics of biogenic saccharides in these regions, which could be further applied to regional source apportionment models and global climate models.
Chao Qin, Yafeng Gou, Yuhang Wang, Yuhao Mao, Hong Liao, Qin'geng Wang, and Mingjie Xie
Atmos. Chem. Phys., 21, 12141–12153, https://doi.org/10.5194/acp-21-12141-2021, https://doi.org/10.5194/acp-21-12141-2021, 2021
Short summary
Short summary
In this study, we found that the aqueous solution in aerosols is an important absorbing phase for gaseous polyols in the atmosphere, indicating that the dissolution in aerosol liquid water should not be ignored when investigating gas–particle partitioning of water-soluble organics. The exponential increase in effective partitioning coefficients of polyol tracers with sulfate ion concentrations could be attributed to organic–inorganic interactions in the particle phase.
Nana Suto and Hiroto Kawashima
Atmos. Chem. Phys., 21, 11815–11828, https://doi.org/10.5194/acp-21-11815-2021, https://doi.org/10.5194/acp-21-11815-2021, 2021
Short summary
Short summary
The sources and seasonal trends of water-soluble organic carbon (WSOC) in PM2.5 on long-term trends at two sites in Japan are investigated by carbon isotope ratio (δ13C) of WSOC. At the rural site, the δ13C of WSOC from autumn to spring was concluded to reflect mainly the biomass burning of rice straw. The heaviest δ13C of WSOC from February to April 2019 might reflect long-range transport of particles resulting from the overseas burning of C4 plants such as corn.
Luis M. F. Barreira, Arttu Ylisirniö, Iida Pullinen, Angela Buchholz, Zijun Li, Helina Lipp, Heikki Junninen, Urmas Hõrrak, Steffen M. Noe, Alisa Krasnova, Dmitrii Krasnov, Kaia Kask, Eero Talts, Ülo Niinemets, Jose Ruiz-Jimenez, and Siegfried Schobesberger
Atmos. Chem. Phys., 21, 11781–11800, https://doi.org/10.5194/acp-21-11781-2021, https://doi.org/10.5194/acp-21-11781-2021, 2021
Short summary
Short summary
We present results from PM1 atmospheric composition and concentration measurements performed in a springtime hemiboreal forest. Sesquiterpene mixing ratios and particle-phase concentrations of corresponding oxidation products were rapidly increasing on some early mornings. The particle volatility suggested that condensable sesquiterpene oxidation products are rapidly formed in the atmosphere. The results revealed the importance of sesquiterpenes for secondary organic aerosol particulate mass.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 11317–11335, https://doi.org/10.5194/acp-21-11317-2021, https://doi.org/10.5194/acp-21-11317-2021, 2021
Short summary
Short summary
We present a cluster analysis of relatively long-term (2015–2019) aerosol aerodynamic volume size distributions up to 20 μm in the Arctic for the first time. The study found that anthropogenic and natural aerosols comprised 27 % and 73 % of the occurrence of the coarse-mode aerosols, respectively. Our study shows that about two-thirds of the coarse-mode aerosols are related to two sea-spray-related aerosol clusters, indicating that sea spray aerosol may more complex in the Arctic environment.
Samuël Weber, Gaëlle Uzu, Olivier Favez, Lucille Joanna S. Borlaza, Aude Calas, Dalia Salameh, Florie Chevrier, Julie Allard, Jean-Luc Besombes, Alexandre Albinet, Sabrina Pontet, Boualem Mesbah, Grégory Gille, Shouwen Zhang, Cyril Pallares, Eva Leoz-Garziandia, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 21, 11353–11378, https://doi.org/10.5194/acp-21-11353-2021, https://doi.org/10.5194/acp-21-11353-2021, 2021
Short summary
Short summary
Oxidative potential (OP) of aerosols is apportioned to the main PM sources found in 15 sites over France. The sources present clear distinct intrinsic OPs at a large geographic scale, and a drastic redistribution between the mass concentration and OP measured by both ascorbic acid and dithiothreitol is highlighted. Moreover, the high discrepancy between the mean and median contributions of the sources to the given metrics raises some important questions when dealing with health endpoints.
Jiao Tang, Jiaqi Wang, Guangcai Zhong, Hongxing Jiang, Yangzhi Mo, Bolong Zhang, Xiaofei Geng, Yingjun Chen, Jianhui Tang, Congguo Tian, Surat Bualert, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 21, 11337–11352, https://doi.org/10.5194/acp-21-11337-2021, https://doi.org/10.5194/acp-21-11337-2021, 2021
Short summary
Short summary
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how excitation–emission matrix (EEM) chromophores influence BrC light absorption in soluble organic matter. The application enables us to deduce that BrC absorption is mainly dependent on longer-emission-wavelength chromophores largely associated with biomass burning emissions. This method promotes the application of EEM spectroscopy and helps us understand the light absorption of BrC in the atmosphere.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Cited articles
Agrawal, H., Malloy, Q. G. J., Welch, W. A., Miller, J. W., and Cocker, D.
R.: In-use gaseous and particulate matter emissions from a modern ocean going
container vessel, Atmos. Environ., 42, 5504–5510,
https://doi.org/10.1016/j.atmosenv.2008.02.053, 2008.
Bae, M.-S., Schauer, J. J., and Turner, J. R.: Estimation of the Monthly
Average Ratios of Organic Mass to Organic Carbon for Fine Particulate Matter
at an Urban Site, Aerosol Sci. Tech., 40, 1123–1139,
https://doi.org/10.1080/02786820601004085, 2006.
Biswas, P. and Wu, C. Y.: Nanoparticles and the environment, J. Air Waste
Manage. Assoc., 55, 708–746, https://doi.org/10.1080/10473289.2005.10464656, 2005.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A.,
and Purcell, R. G.: The DRI thermal/optical reflectance carbon analysis
system: description, evaluation and applications in US air quality studies,
Atmos. Environ., 27, 1185–1201, https://doi.org/10.1016/0960-1686(93)90245-t, 1993.
Fujitani, Y., Hasegawa, S., Fushimi, A., Kondo, Y., Tanabe, K., Kobayashi,
S., and Kobayashi, T.: Collection characteristics of low-pressure impactors
with various impaction substrate materials, Atmos. Environ., 40, 3221–3229,
https://doi.org/10.1016/j.atmosenv.2006.02.001, 2006.
Fujitani, Y., Kumar, P., Tamura, K., Fushimi, A., Hasegawa, S., Takahashi,
K., Tanabe, K., Kobayashi, S., and Hirano, S.: Seasonal differences of the
atmospheric particle size distribution in a metropolitan area in Japan, Sci.
Total Environ., 437, 339–347, https://doi.org/10.1016/j.scitotenv.2012.07.085, 2012.
Fushimi, A., Hasegawa, S., Takahashi, K., Fujitani, Y., Tanabe, K., and
Kobayashi, S.: Atmospheric fate of nuclei-mode particles estimated from the
number concentrations and chemical composition of particles measured at
roadside and background sites, Atmos. Environ., 42, 949–959,
https://doi.org/10.1016/j.atmosenv.2007.10.019, 2008.
Fushimi, A., Saitoh, K., Fujitani, Y., Hasegawa, S., Takahashi, K., Tanabe,
K., and Kobayashi, S.: Organic-rich nanoparticles (diameter: 10–30 nm) in
diesel exhaust: Fuel and oil contribution based on chemical composition,
Atmos. Environ., 45, 6326–6336, https://doi.org/10.1016/j.atmosenv.2011.08.053, 2011.
Fushimi, A., Kondo, Y., Kobayashi, S., Fujitani, Y., Saitoh, K., Takami, A.,
and Tanabe, K.: Chemical composition and source of fine and nanoparticles
from recent direct injection gasoline passenger cars: Effects of fuel and
ambient temperature, Atmos. Environ., 124, 77–84,
https://doi.org/10.1016/j.atmosenv.2015.11.017, 2016.
Gormley, P. G. and Kennedy, M.: Diffusion from a stream flowing through a
cylindrical tube, Proc. Roy. Irish Acad., 52, 163–169, 1949.
Harrison, R. M., Jones, A. M., Beddows, D. C. S., Dall'Osto, M., and
Nikolova, I.: Evaporation of traffic-generated nanoparticles during advection
from source, Atmos. Environ., 125, 1–7, https://doi.org/10.1016/j.atmosenv.2015.10.077,
2016.
Hudda, N., Gould, T., Hartin, K., Larson, T. V., and Fruin, S. A.: Emissions
from an international airport increase particle number concentrations 4-fold
at 10 km downwind, Environ. Sci. Technol., 48, 6628–6635,
https://doi.org/10.1021/es5001566, 2014.
International Civil Aviation Organization: Assembly Resolutions in Force (as
of 6 October 2016), Doc 10075, 2017.
Kinsey, J. S.: Characterization of Emissions from Commercial Aircraft Engines
during the Aircraft Particle Emissions EXperiment (APEX) 1 to 3,
EPA-600/R-09/130, United States Environmental Protection Agency, 2009.
Kinsey, J. S., Hays, M. D., Dong, Y., Williams, D. C., and Logan, R.:
Chemical characterization of the fine particle emissions from commercial
aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1
to 3, Environ. Sci. Technol., 45, 3415–3421, https://doi.org/10.1021/es103880d, 2011.
Masiol, M. and Harrison, R. M.: Aircraft engine exhaust emissions and other
airport-related contributions to ambient air pollution: A review, Atmos.
Environ., 95, 409–455, https://doi.org/10.1016/j.atmosenv.2014.05.070, 2014.
Oberdörster, G., Finkelstein, J. N., Johnston, C., Gelein, R., Cox, C.,
Baggs, R., and Elder, A. C.: Acute pulmonary effects of ultrafine particles
in rats and mice, Res Rep Health Eff Inst, 5-74; disc 75–86, 2000.
Presto, A. A., Nguyen, N. T., Ranjan, M., Reeder, A. J., Lipsky, E. M.,
Hennigan, C. J., Miracolo, M. A., Riemer, D. D., and Robinson, A. L.: Fine
particle and organic vapor emissions from staged tests of an in-use aircraft
engine, Atmos. Environ., 45, 3603–3612, https://doi.org/10.1016/j.atmosenv.2011.03.061,
2011.
Righi, M., Hendricks, J., and Sausen, R.: The global impact of the transport
sectors on atmospheric aerosol in 2030; Part 2: Aviation, Atmos. Chem. Phys.,
16, 4481–4495, https://doi.org/10.5194/acp-16-4481-2016, 2016.
Saitoh, K. and Sera, K.: Examination of quantitative accuracy of PIXE
analysis for atmospheric aerosol particle samples: PIXE analysis of NIST air
particulate on filter media, Int. J. PIXE, 15, 59–63,
https://doi.org/10.1142/s0129083505000301, 2005.
Sera, K., Yanagisawa, T., Tsunoda, H., Futatsugawa, S., Hatakeyama, S.,
Saitoh, Y., Suzuki, S., and Orihara, H.: Bio-PIXE at the Takizawa facility
(Bio-PIXE with a baby cyclotron), Int. J. PIXE, 2, 325–330,
https://doi.org/10.1142/s0129083592000348, 1992.
Sera, K., Futatsugawa, S., and Saitoh, K.: Method of quantitative analyis
making use of bromine in a nuclepore filter, Int. J. PIXE, 7, 71–85,
https://doi.org/10.1142/s0129083597000096, 1997.
Stettler, M. E. J., Eastham, S., and Barrett, S. R. H.: Air quality and
public health impacts of UK airports. Part I: Emissions, Atmos. Environ., 45,
5415–5424, https://doi.org/10.1016/j.atmosenv.2011.07.012, 2011.
Timko, M. T., Onasch, T. B., Northway, M. J., Jayne, J. T., Canagaratna, M.
R., Herndon, S. C., Wood, E. C., Miake-Lye, R. C., and Knighton, W. B.: Gas
Turbine Engine Emissions – Part II: Chemical Properties of Particulate
Matter, J. Eng. Gas Turbines Power, 132, 061505-1–061505-15,
https://doi.org/10.1115/1.4000132, 2010.
Wey, C. C., Anderson, B. E., Hudgins, C., Wey, C., Li-Jones, X., Winstead,
E., Thornhill, L. K., Lobo, P., Hagen, D., and Whitefield, P.: Aircraft
Particle Emissions eXperiment (APEX), NASA/TM-2006-214382, ARL-TR-3903, 2006.
Winder, C. and Balouet, J.-C.: The Toxicity of Commercial Jet Oils, Environ.
Res., 89, 146–164, https://doi.org/10.1006/enrs.2002.4346, 2002.
Yu, Z., Herndon, S. C., Ziemba, L. D., Timko, M. T., Liscinsky, D. S.,
Anderson, B. E., and Miake-Lye, R. C.: Identification of lubrication oil in
the particulate matter emissions from engine exhaust of in-service commercial
aircraft, Environ. Sci. Technol., 46, 9630–9637, https://doi.org/10.1021/es301692t,
2012.
Yu, Z., Liscinsky, D. S., Fortner, E. C., Yacovitch, T. I., Croteau, P.,
Herndon, S. C., and Miake-Lye, R. C.: Evaluation of PM emissions from two
in-service gas turbine general aviation aircraft engines, Atmos. Environ.,
160, 9–18, https://doi.org/10.1016/j.atmosenv.2017.04.007, 2017.
Zhu, Y., Fanning, E., Yu, R. C., Zhang, Q., and Froines, J. R.: Aircraft
emissions and local air quality impacts from takeoff activities at a large
International Airport, Atmos. Environ., 45, 6526–6533,
https://doi.org/10.1016/j.atmosenv.2011.08.062, 2011.
Short summary
Jet engine aircraft are significant sources of atmospheric nanoparticles. Using size-resolved particulate samples collected near a runway of the Narita International Airport, Japan, we clearly demonstrate for the first time that organic compounds in aircraft exhaust nanoparticles (diameter: < 30 nm) were dominated by nearly intact forms of jet engine lubrication oil. This finding has an implication for their environmental impacts near airports and in the upper troposphere.
Jet engine aircraft are significant sources of atmospheric nanoparticles. Using size-resolved...
Altmetrics
Final-revised paper
Preprint