Articles | Volume 19, issue 6
Atmos. Chem. Phys., 19, 4041–4059, 2019
https://doi.org/10.5194/acp-19-4041-2019
Atmos. Chem. Phys., 19, 4041–4059, 2019
https://doi.org/10.5194/acp-19-4041-2019

Research article 01 Apr 2019

Research article | 01 Apr 2019

Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem

Carsten Schaller et al.

Related authors

Estimating immediate post-fire carbon fluxes using the eddy-covariance technique
Bruna R. F. Oliveira, Carsten Schaller, J. Jacob Keizer, and Thomas Foken
Biogeosciences, 18, 285–302, https://doi.org/10.5194/bg-18-285-2021,https://doi.org/10.5194/bg-18-285-2021, 2021
Short summary
Quantifying the impact of emission outbursts and non-stationary flow on eddy-covariance CH4 flux measurements using wavelet techniques
Mathias Göckede, Fanny Kittler, and Carsten Schaller
Biogeosciences, 16, 3113–3131, https://doi.org/10.5194/bg-16-3113-2019,https://doi.org/10.5194/bg-16-3113-2019, 2019
Short summary
Flux calculation of short turbulent events – comparison of three methods
Carsten Schaller, Mathias Göckede, and Thomas Foken
Atmos. Meas. Tech., 10, 869–880, https://doi.org/10.5194/amt-10-869-2017,https://doi.org/10.5194/amt-10-869-2017, 2017
Short summary

Related subject area

Subject: Biosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020,https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Aboveground biomass in Inner Mongolian temperate grasslands decreases under climate warming
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Xi Deng, Jinhuan Zhu, and Wen Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1088,https://doi.org/10.5194/acp-2020-1088, 2020
Revised manuscript accepted for ACP
Short summary
Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks
Renato Kerches Braghiere, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, José de Souza Nogueira, and Alessandro Carioca de Araújo
Atmos. Chem. Phys., 20, 3439–3458, https://doi.org/10.5194/acp-20-3439-2020,https://doi.org/10.5194/acp-20-3439-2020, 2020
Short summary
New particle formation events observed at the King Sejong Station, Antarctic Peninsula – Part 2: Link with the oceanic biological activities
Eunho Jang, Ki-Tae Park, Young Jun Yoon, Tae-Wook Kim, Sang-Bum Hong, Silvia Becagli, Rita Traversi, Jaeseok Kim, and Yeontae Gim
Atmos. Chem. Phys., 19, 7595–7608, https://doi.org/10.5194/acp-19-7595-2019,https://doi.org/10.5194/acp-19-7595-2019, 2019
Short summary
Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes
Linlin Wang, Junkai Liu, Zhiqiu Gao, Yubin Li, Meng Huang, Sihui Fan, Xiaoye Zhang, Yuanjian Yang, Shiguang Miao, Han Zou, Yele Sun, Yong Chen, and Ting Yang
Atmos. Chem. Phys., 19, 6949–6967, https://doi.org/10.5194/acp-19-6949-2019,https://doi.org/10.5194/acp-19-6949-2019, 2019
Short summary

Cited articles

Aubinet, M.: Eddy covariance CO2 flux measurements in nocturnal conditions: An analysis of the problem, Ecol. Appl., 18, 1368–1378, https://doi.org/10.1890/06-1336.1, 2008. a
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance, A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, the Netherlands, 438 pp., 2012. a
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater Methane Emissions Offset the Continental Carbon Sink, Science, 331, p. 50, https://doi.org/10.1126/science.1196808, 2011. a
Berchet, A., Bousquet, P., Pison, I., Locatelli, R., Chevallier, F., Paris, J.-D., Dlugokencky, E. J., Laurila, T., Hatakka, J., Viisanen, Y., Worthy, D. E. J., Nisbet, E., Fisher, R., France, J., Lowry, D., Ivakhov, V., and Hermansen, O.: Atmospheric constraints on the methane emissions from the East Siberian Shelf, Atmos. Chem. Phys., 16, 4147–4157, https://doi.org/10.5194/acp-16-4147-2016, 2016. a
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press, Cambridge and New York, 465–570, 2013. a, b
Short summary
Methane emissions from biogenic sources, e.g. Arctic permafrost ecosystems, are associated with uncertainties due to the high variability of fluxes in both space and time. Besides the traditional eddy covariance method, we evaluated a method based on wavelet analysis, which does not require a stationary time series, to calculate fluxes. The occurrence of extreme methane flux events was strongly correlated with the soil temperature. They were triggered by atmospheric non-turbulent mixing.
Altmetrics
Final-revised paper
Preprint