Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-10217-2019
https://doi.org/10.5194/acp-19-10217-2019
Research article
 | 
13 Aug 2019
Research article |  | 13 Aug 2019

The MetVed model: development and evaluation of emissions from residential wood combustion at high spatio-temporal resolution in Norway

Henrik Grythe, Susana Lopez-Aparicio, Matthias Vogt, Dam Vo Thanh, Claudia Hak, Anne Karine Halse, Paul Hamer, and Gabriela Sousa Santos

Related authors

Aerosol optical properties calculated from size distributions, filter samples and absorption photometer data at Dome C, Antarctica, and their relationships with seasonal cycles of sources
Aki Virkkula, Henrik Grythe, John Backman, Tuukka Petäjä, Maurizio Busetto, Christian Lanconelli, Angelo Lupi, Silvia Becagli, Rita Traversi, Mirko Severi, Vito Vitale, Patrick Sheridan, and Elisabeth Andrews
Atmos. Chem. Phys., 22, 5033–5069, https://doi.org/10.5194/acp-22-5033-2022,https://doi.org/10.5194/acp-22-5033-2022, 2022
Short summary
A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10
Henrik Grythe, Nina I. Kristiansen, Christine D. Groot Zwaaftink, Sabine Eckhardt, Johan Ström, Peter Tunved, Radovan Krejci, and Andreas Stohl
Geosci. Model Dev., 10, 1447–1466, https://doi.org/10.5194/gmd-10-1447-2017,https://doi.org/10.5194/gmd-10-1447-2017, 2017
Short summary
Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping lane
N. Kivekäs, A. Massling, H. Grythe, R. Lange, V. Rusnak, S. Carreno, H. Skov, E. Swietlicki, Q. T. Nguyen, M. Glasius, and A. Kristensson
Atmos. Chem. Phys., 14, 8255–8267, https://doi.org/10.5194/acp-14-8255-2014,https://doi.org/10.5194/acp-14-8255-2014, 2014
A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements
H. Grythe, J. Ström, R. Krejci, P. Quinn, and A. Stohl
Atmos. Chem. Phys., 14, 1277–1297, https://doi.org/10.5194/acp-14-1277-2014,https://doi.org/10.5194/acp-14-1277-2014, 2014
The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?
S. Eckhardt, O. Hermansen, H. Grythe, M. Fiebig, K. Stebel, M. Cassiani, A. Baecklund, and A. Stohl
Atmos. Chem. Phys., 13, 8401–8409, https://doi.org/10.5194/acp-13-8401-2013,https://doi.org/10.5194/acp-13-8401-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Regional variability of aerosol impacts on clouds and radiation in global kilometer-scale simulations
Ross J. Herbert, Andrew I. L. Williams, Philipp Weiss, Duncan Watson-Parris, Elisabeth Dingley, Daniel Klocke, and Philip Stier
Atmos. Chem. Phys., 25, 7789–7814, https://doi.org/10.5194/acp-25-7789-2025,https://doi.org/10.5194/acp-25-7789-2025, 2025
Short summary
A novel method to quantify the uncertainty contribution of aerosol–radiation interaction factors
Bishuo He and Chunsheng Zhao
Atmos. Chem. Phys., 25, 7765–7776, https://doi.org/10.5194/acp-25-7765-2025,https://doi.org/10.5194/acp-25-7765-2025, 2025
Short summary
Exploring the aerosol activation properties in coastal shallow convection using cloud- and particle-resolving models
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
Atmos. Chem. Phys., 25, 7527–7542, https://doi.org/10.5194/acp-25-7527-2025,https://doi.org/10.5194/acp-25-7527-2025, 2025
Short summary
Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025,https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Modeling CMAQ dry deposition treatment over the western Pacific: a distinct characteristic of mineral dust and anthropogenic aerosols
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
Atmos. Chem. Phys., 25, 7245–7268, https://doi.org/10.5194/acp-25-7245-2025,https://doi.org/10.5194/acp-25-7245-2025, 2025
Short summary

Cited articles

Aasestad, K.: Vedforbruk, fyringsvaner og svevestøv Dokumentasjon og resultater fra undersøkelse i Drammen 2006/2007 Statistics Norway, Oslo, Norway, ISBN 978-82-537-7823-5, 2010. a, b, c
ACAP: Reduction of Black Carbon Emissions from Residential Wood Combustion in the Arctic – Black Carbon Inventory, Abatement Instruments and Measures. Arctic Contaminants Action Program (ACAP), Oslo, Norway, ISBN 978-82-999755-1-3, 164 pp., 2014. a, b
Andersson, S., Arvelius, J., Brodl, L., Verbova, M., Ortiz, C., Jonsson, M., Svanström, S., Gerner, A., Danielsson, H., and Yaramenka, K.: Metod- och kvalitetsbeskrivning för geografiskt fördelade emissioner till luft (submission 2018). SMED Rapport Nr10 2018, Sveriges Meteorologiska och Hydrologiska Institut, Norrköping, Sweden, 2015. a
Bloch, V. V. H.: Registerbasert boligstatistikk, Dokumentasjon og videre arbeid. 2018/2 Statistcs Norway ISBN 978-82-537-9676-5, available at: http://www.ssb.no/natur-og-miljo, last access: 9 December 2018. a
Denby, B.: Source-Receptor and Inverse Modelling to quantify urban PARTiculate emissions (SRIMPART). Nordic Council of Ministers, Copenhagen, Denmark, 2009. a
Download
Short summary
Emissions from residential wood combustion are a major contributor to human exposure to air pollution. In this study, we develop a highly detailed and scalable emission inventory for Norway applicable also to local air quality studies. Emissions are based on novel highly detailed input data that offer unprecedented spatial (and temporal) resolution. We also show that the emissions presented improve model accuracy and we highlight that the principles are applicable in other sectors and countries.
Share
Altmetrics
Final-revised paper
Preprint