Articles | Volume 18, issue 19
https://doi.org/10.5194/acp-18-14059-2018
https://doi.org/10.5194/acp-18-14059-2018
Research article
 | 
04 Oct 2018
Research article |  | 04 Oct 2018

Impact of urban canopy meteorological forcing on aerosol concentrations

Peter Huszar, Michal Belda, Jan Karlický, Tatsiana Bardachova, Tomas Halenka, and Petr Pisoft

Related authors

Impact of urban canopy parameters on urbanization induced modifications of climate
Jan Karlický, Jáchym Bareš, and Peter Huszár
EGUsphere, https://doi.org/10.5194/egusphere-2025-388,https://doi.org/10.5194/egusphere-2025-388, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The long-term impact of biogenic volatile organic compound emissions on urban ozone patterns over central Europe: contributions from urban and rural vegetation
Marina Liaskoni, Peter Huszár, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Kateřina Šindelářová
Atmos. Chem. Phys., 24, 13541–13569, https://doi.org/10.5194/acp-24-13541-2024,https://doi.org/10.5194/acp-24-13541-2024, 2024
Short summary
FUME 2.0 – Flexible Universal processor for Modeling Emissions
Michal Belda, Nina Benešová, Jaroslav Resler, Peter Huszár, Ondřej Vlček, Pavel Krč, Jan Karlický, Pavel Juruš, and Kryštof Eben
Geosci. Model Dev., 17, 3867–3878, https://doi.org/10.5194/gmd-17-3867-2024,https://doi.org/10.5194/gmd-17-3867-2024, 2024
Short summary
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024,https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Impact of urbanization on fine particulate matter concentrations over central Europe
Peter Huszar, Alvaro Patricio Prieto Perez​​​​​​​, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024,https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impacts of meteorology and emission reductions on haze pollution during the lockdown in the North China Plain
Lang Liu, Xin Long, Yi Li, Zengliang Zang, Fengwen Wang, Yan Han, Zhier Bao, Yang Chen, Tian Feng, and Jinxin Yang
Atmos. Chem. Phys., 25, 1569–1585, https://doi.org/10.5194/acp-25-1569-2025,https://doi.org/10.5194/acp-25-1569-2025, 2025
Short summary
Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect
Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, and Vlassis A. Karydis
Atmos. Chem. Phys., 25, 1333–1351, https://doi.org/10.5194/acp-25-1333-2025,https://doi.org/10.5194/acp-25-1333-2025, 2025
Short summary
The surface tension and cloud condensation nuclei (CCN) activation of sea spray aerosol particles
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
Atmos. Chem. Phys., 25, 881–903, https://doi.org/10.5194/acp-25-881-2025,https://doi.org/10.5194/acp-25-881-2025, 2025
Short summary
Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
Olivia G. Norman, Colette L. Heald, Solomon Bililign, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
Atmos. Chem. Phys., 25, 771–795, https://doi.org/10.5194/acp-25-771-2025,https://doi.org/10.5194/acp-25-771-2025, 2025
Short summary
Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025,https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary

Cited articles

Angevine, W. M., White, A. B., Senff, C. J., Trainer, M., Banta, R. M., and Ayoub, M. A.: Urban-rural contrasts in mixing height and cloudiness over Nashville in 1999, J. Geophys. Res., 108, 4092, https://doi.org/10.1029/2001JD001061, 2003. a
Basara, J. B., Hall Jr., P. K., Schroeder, A. J., Illston, B. G., and Nemunaitis, K. L.: Diurnal cycle of the Oklahoma City urban heat island, J. Geophys. Res., 113, D20109, https://doi.org/10.1029/2008JD010311, 2008. a
Byun, D. W. and Ching, J. K. S.: Science Algorithms of the EPA Model-3 Community Multiscale Air Quality (CMAQ) Modeling System, Office of Research and Development, U.S. EPA, North Carolina, 1999. a, b
Chen, B., Yang, S., Xu, X.D., and Zhang, W.: The impacts of urbanization on air quality over the Pearl River Delta in winter: roles of urban land use and emission distribution, Theor. Appl. Climatol., 117, 29–39, 2014. a
Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., Wang, K., Bressi, M., de Miranda, R. M., Jiang, J., Zhou, W., Fajardo, O., Yan, N., and Hao, J.: Status and characteristics of ambient PM2.5 pollution in global megacities, Environment International, 89–90, 212–221, 2016. a
Download
Short summary
The impact of meteorological changes introduced by urbanization on aerosol concentration using a regional climate model and a chemistry transport model over central Europe is investigated. We found a strong increase of temperature and turbulence and a decrease of humidity and wind speed due to urban surfaces. This resulted in a clear decrease of aerosol concentrations near the surface: PM2.5 concentrations were reduced by 3 μg/m3. The dominating effect is the increased turbulent transport.
Share
Altmetrics
Final-revised paper
Preprint