Articles | Volume 18, issue 18
https://doi.org/10.5194/acp-18-13547-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-13547-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reanalysis intercomparisons of stratospheric polar processing diagnostics
Zachary D. Lawrence
CORRESPONDING AUTHOR
New Mexico Institute of Mining and Technology, Socorro, NM, USA
NorthWest Research Associates, Socorro, NM, USA
Gloria L. Manney
NorthWest Research Associates, Socorro, NM, USA
New Mexico Institute of Mining and Technology, Socorro, NM, USA
Krzysztof Wargan
NASA/Goddard Space Flight Center, Greenbelt, MD, USA
Science Systems and Applications Inc., Lanham, MD, USA
Related authors
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021, https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Short summary
We assess how consistently reanalyses represent potential vorticity (PV) among each other. PV helps describe dynamical processes in the stratosphere because it acts approximately as a tracer of the movement of air parcels; it is extensively used to identify the location of the tropopause and to identify and characterize the stratospheric polar vortex. Overall, PV from all reanalyses agrees well with the reanalysis ensemble mean.
Gloria L. Manney, Michaela I. Hegglin, Zachary D. Lawrence, Krzysztof Wargan, Luis F. Millán, Michael J. Schwartz, Michelle L. Santee, Alyn Lambert, Steven Pawson, Brian W. Knosp, Ryan A. Fuller, and William H. Daffer
Atmos. Chem. Phys., 17, 11541–11566, https://doi.org/10.5194/acp-17-11541-2017, https://doi.org/10.5194/acp-17-11541-2017, 2017
Short summary
Short summary
The upper tropospheric–lower stratospheric (UTLS) jet stream and multiple tropopause distributions are compared among five state-of-the-art reanalyses. The reanalyses show very similar global distributions of UTLS jets, reflecting their overall high quality; slightly larger differences are seen in tropopause characteristics. Regional and seasonal differences, albeit small, may have implications for using these reanalyses for quantitative dynamical and transport studies focusing on the UTLS.
Gloria L. Manney and Zachary D. Lawrence
Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, https://doi.org/10.5194/acp-16-15371-2016, 2016
Short summary
Short summary
The 2015/16 Arctic winter stratosphere was the coldest on record through late February, raising the possibility of extensive chemical ozone loss. However, a major final sudden stratospheric warming in early March curtailed ozone destruction. We used Aura MLS satellite trace gas data and MERRA-2 meteorological data to show the details of transport, mixing, and dispersal of chemically processed air during the major final warming, and how these processes limited Arctic chemical ozone loss.
G. L. Manney, Z. D. Lawrence, M. L. Santee, N. J. Livesey, A. Lambert, and M. C. Pitts
Atmos. Chem. Phys., 15, 5381–5403, https://doi.org/10.5194/acp-15-5381-2015, https://doi.org/10.5194/acp-15-5381-2015, 2015
Short summary
Short summary
Sudden stratospheric warmings (SSWs) cause a rapid rise in lower stratospheric temperatures, terminating conditions favorable to chemical ozone loss. We show that although temperatures rose precipitously during the vortex split SSW in early Jan 2013, because the offspring vortices each remained isolated and in regions that received sunlight, chemical ozone loss continued for over 1 month after the SSW. Dec/Jan Arctic ozone loss was larger than any previously observed during that period.
Z. D. Lawrence, G. L. Manney, K. Minschwaner, M. L. Santee, and A. Lambert
Atmos. Chem. Phys., 15, 3873–3892, https://doi.org/10.5194/acp-15-3873-2015, https://doi.org/10.5194/acp-15-3873-2015, 2015
Short summary
Short summary
We use a comprehensive set of diagnostics to investigate how two widely used modern reanalysis data sets might affect studies of lower stratospheric polar processing and ozone loss. Our results show that the agreement in temperature diagnostics between the two reanalyses improves over time in both hemispheres with increasing assimilation model inputs. This suggests that both data sets are appropriate choices for studies of polar processing in recent winters.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022, https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Short summary
The upper troposphere–lower stratosphere is one of the most variable regions in the atmosphere. To improve our understanding of water vapour and ozone concentrations in this region, climatologies have been developed from 14 years of measurements from three Canadian satellite instruments. Horizontal and vertical coordinates have been chosen to minimize the effects of variability. To aid in analysis, model simulations have been used to characterize differences between instrument climatologies.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Irina Petropavlovskikh, Koji Miyagawa, Audra McClure-Beegle, Bryan Johnson, Jeannette Wild, Susan Strahan, Krzysztof Wargan, Richard Querel, Lawrence Flynn, Eric Beach, Gerard Ancellet, and Sophie Godin-Beekmann
Atmos. Meas. Tech., 15, 1849–1870, https://doi.org/10.5194/amt-15-1849-2022, https://doi.org/10.5194/amt-15-1849-2022, 2022
Short summary
Short summary
The Montreal Protocol and its amendments assure the recovery of the stratospheric ozone layer that protects the Earth from harmful ultraviolet radiation. To monitor ozone recovery, multiple satellites and ground-based observational platforms collect ozone data. The changes in instruments can influence the continuation of the ozone data. We discuss a method to remove instrumental artifacts from ozone records to improve the internal consistency among multiple observational records.
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021, https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Short summary
We assess how consistently reanalyses represent potential vorticity (PV) among each other. PV helps describe dynamical processes in the stratosphere because it acts approximately as a tracer of the movement of air parcels; it is extensively used to identify the location of the tropopause and to identify and characterize the stratospheric polar vortex. Overall, PV from all reanalyses agrees well with the reanalysis ensemble mean.
Susann Tegtmeier, James Anstey, Sean Davis, Rossana Dragani, Yayoi Harada, Ioana Ivanciu, Robin Pilch Kedzierski, Kirstin Krüger, Bernard Legras, Craig Long, James S. Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, https://doi.org/10.5194/acp-20-753-2020, 2020
Short summary
Short summary
The tropical tropopause layer is an important atmospheric region right in between the troposphere and the stratosphere. We evaluate the representation of this layer in reanalyses data sets, which create a complete picture of the state of Earth's atmosphere using atmospheric modeling and available observations. The recent reanalyses show realistic temperatures in the tropical tropopause layer. However, where the temperature is lowest, the so-called cold point, the reanalyses are too cold.
Xiaoyi Zhao, Kristof Bognar, Vitali Fioletov, Andrea Pazmino, Florence Goutail, Luis Millán, Gloria Manney, Cristen Adams, and Kimberly Strong
Atmos. Meas. Tech., 12, 2463–2483, https://doi.org/10.5194/amt-12-2463-2019, https://doi.org/10.5194/amt-12-2463-2019, 2019
Short summary
Short summary
Ozone is one of the most widely monitored trace gases in the atmosphere. It can be measured via its strong absorption bands in the ultraviolet (UV), visible (Vis) and infrared (IR) portions of the spectrum. Using multiple ground-based measurements and modeled data, this work provides a measurement-based evaluation of the impact of clouds on UV-visible total column ozone measurements in the high Arctic.
Kenneth Minschwaner, Anthony T. Giljum, Gloria L. Manney, Irina Petropavlovskikh, Bryan J. Johnson, and Allen F. Jordan
Atmos. Chem. Phys., 19, 1853–1865, https://doi.org/10.5194/acp-19-1853-2019, https://doi.org/10.5194/acp-19-1853-2019, 2019
Short summary
Short summary
We analyzed balloon measurements of ozone between the surface and 25 km altitude above Boulder, Colorado, and developed an algorithm to detect and classify layers of either unusually high or unusually low ozone. These layers range in vertical thickness from a few hundred meters to a few kilometers. We found that these laminae are an important contributor to the overall variability in ozone, especially in the transition region between the troposphere and stratosphere.
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019, https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary
Short summary
Ozone in the stratosphere is important to protect the Earth from UV radiation. Using measurements taken by the Atmospheric Chemistry Experiment satellite between 2005 and 2013, we examine different methods to calculate the ozone loss in the high Arctic and establish the altitude at which most of the ozone is destroyed. Our results show that the different methods agree within the uncertainties. Recommendations are made on which methods are most appropriate to use.
Felicia Kolonjari, David A. Plummer, Kaley A. Walker, Chris D. Boone, James W. Elkins, Michaela I. Hegglin, Gloria L. Manney, Fred L. Moore, Diane Pendlebury, Eric A. Ray, Karen H. Rosenlof, and Gabriele P. Stiller
Atmos. Chem. Phys., 18, 6801–6828, https://doi.org/10.5194/acp-18-6801-2018, https://doi.org/10.5194/acp-18-6801-2018, 2018
Short summary
Short summary
We used satellite observations and model simulations of CFC-11, CFC-12, and N2O to investigate stratospheric transport, which is important for predicting the recovery of the ozone layer and future climate. We found that sampling can impact results and that the model consistently overestimates concentrations of these gases in the lower stratosphere, consistent with a too rapid Brewer–Dobson circulation. An issue with mixing in the tropical lower stratosphere in June–July–August was also found.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Larry W. Thomason, Nicholas Ernest, Luis Millán, Landon Rieger, Adam Bourassa, Jean-Paul Vernier, Gloria Manney, Beiping Luo, Florian Arfeuille, and Thomas Peter
Earth Syst. Sci. Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, https://doi.org/10.5194/essd-10-469-2018, 2018
Short summary
Short summary
We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979 to 2014) and is now extended through 2016. GloSSAC focuses on the the SAGE series of instruments through mid-2005 and on OSIRIS and CALIPSO after that time.
Xiaoyi Zhao, Dan Weaver, Kristof Bognar, Gloria Manney, Luis Millán, Xin Yang, Edwin Eloranta, Matthias Schneider, and Kimberly Strong
Atmos. Chem. Phys., 17, 14955–14974, https://doi.org/10.5194/acp-17-14955-2017, https://doi.org/10.5194/acp-17-14955-2017, 2017
Short summary
Short summary
Few scientific questions about surface ozone depletion have been addressed, using a variety of measurements and atmospheric models. The lifetime of reactive bromine is only a few hours in the absence of recycling. Evidence of this recycling over aerosol or blowing-snow/ice particles was found at Eureka. The blowing snow sublimation process is a key step in producing bromine-enriched sea-salt aerosol. Ground-based FTIR isotopologue measurements at Eureka provided evidence of this key step.
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
Gloria L. Manney, Michaela I. Hegglin, Zachary D. Lawrence, Krzysztof Wargan, Luis F. Millán, Michael J. Schwartz, Michelle L. Santee, Alyn Lambert, Steven Pawson, Brian W. Knosp, Ryan A. Fuller, and William H. Daffer
Atmos. Chem. Phys., 17, 11541–11566, https://doi.org/10.5194/acp-17-11541-2017, https://doi.org/10.5194/acp-17-11541-2017, 2017
Short summary
Short summary
The upper tropospheric–lower stratospheric (UTLS) jet stream and multiple tropopause distributions are compared among five state-of-the-art reanalyses. The reanalyses show very similar global distributions of UTLS jets, reflecting their overall high quality; slightly larger differences are seen in tropopause characteristics. Regional and seasonal differences, albeit small, may have implications for using these reanalyses for quantitative dynamical and transport studies focusing on the UTLS.
Debora Griffin, Kaley A. Walker, Stephanie Conway, Felicia Kolonjari, Kimberly Strong, Rebecca Batchelor, Chris D. Boone, Lin Dan, James R. Drummond, Pierre F. Fogal, Dejian Fu, Rodica Lindenmaier, Gloria L. Manney, and Dan Weaver
Atmos. Meas. Tech., 10, 3273–3294, https://doi.org/10.5194/amt-10-3273-2017, https://doi.org/10.5194/amt-10-3273-2017, 2017
Short summary
Short summary
Measurements in the high Arctic from two ground-based and one space-borne infrared Fourier transform spectrometer agree well over an 8-year time period (2006–2013). These comparisons show no notable degradation, indicating the consistency of these data sets and suggesting that the space-borne measurements have been stable. Increasing ozone, as well as increases of some other atmospheric gases, has been found over this same time period.
Luis F. Millán and Gloria L. Manney
Atmos. Chem. Phys., 17, 9277–9289, https://doi.org/10.5194/acp-17-9277-2017, https://doi.org/10.5194/acp-17-9277-2017, 2017
Short summary
Short summary
An ozone mini-hole is a synoptic-scale region with strongly decreased total column ozone resulting from dynamical processes. Using total column measurements from the Ozone Monitoring Instrument and ozone profile measurements from the Microwave Limb Sounder, we evaluate the accuracy of mini-hole representation in five reanalyses.
Junhua Liu, Jose M. Rodriguez, Stephen D. Steenrod, Anne R. Douglass, Jennifer A. Logan, Mark A. Olsen, Krzysztof Wargan, and Jerald R. Ziemke
Atmos. Chem. Phys., 17, 3279–3299, https://doi.org/10.5194/acp-17-3279-2017, https://doi.org/10.5194/acp-17-3279-2017, 2017
Short summary
Short summary
We quantify the relative contribution of processes controlling the interannual variability (IAV) of tropospheric ozone over the southern hemispheric tropospheric ozone maximum (SHTOM) with GMI chemistry transport model. We use various GMI tracer diagnostics, including a StratO3 tracer to quantify the stratospheric impact, and tagged CO tracers to track the emission sources. Our result shows that the stratospheric contribution is the most important factor driving the IAV of upper tropospheric O3.
Niall J. Ryan, Mathias Palm, Uwe Raffalski, Richard Larsson, Gloria Manney, Luis Millán, and Justus Notholt
Earth Syst. Sci. Data, 9, 77–89, https://doi.org/10.5194/essd-9-77-2017, https://doi.org/10.5194/essd-9-77-2017, 2017
Short summary
Short summary
We present a self-consistent data set of carbon monoxide (CO) in the Arctic middle atmosphere above Kiruna, Sweden, between 2008 and 2015. The data are retrieved from measurements made by the ground-based radiometer, KIMRA, and are compared to coincident CO data measured by the satellite instrument MLS. KIMRA shows agreement with MLS over the altitude range in which KIMRA is sensitive (48–84 km) and the data show the signatures of dynamic processes such as sudden stratospheric warmings.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Gloria L. Manney and Zachary D. Lawrence
Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, https://doi.org/10.5194/acp-16-15371-2016, 2016
Short summary
Short summary
The 2015/16 Arctic winter stratosphere was the coldest on record through late February, raising the possibility of extensive chemical ozone loss. However, a major final sudden stratospheric warming in early March curtailed ozone destruction. We used Aura MLS satellite trace gas data and MERRA-2 meteorological data to show the details of transport, mixing, and dispersal of chemically processed air during the major final warming, and how these processes limited Arctic chemical ozone loss.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Luis F. Millán, Nathaniel J. Livesey, Michelle L. Santee, Jessica L. Neu, Gloria L. Manney, and Ryan A. Fuller
Atmos. Chem. Phys., 16, 11521–11534, https://doi.org/10.5194/acp-16-11521-2016, https://doi.org/10.5194/acp-16-11521-2016, 2016
Short summary
Short summary
This paper describes the impact of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from different satellites. We find that coarse nonuniform sampling patterns may introduce non-negligible errors into the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection.
Niall J. Ryan, Kaley A. Walker, Uwe Raffalski, Rigel Kivi, Jochen Gross, and Gloria L. Manney
Atmos. Meas. Tech., 9, 4503–4519, https://doi.org/10.5194/amt-9-4503-2016, https://doi.org/10.5194/amt-9-4503-2016, 2016
Short summary
Short summary
Atmospheric ozone concentrations above Kiruna, Sweden, within 16–54 km altitude, were obtained using measurements from two ground-based instruments, KIMRA and MIRA 2. The results were compared to satellite and balloon data for validation, revealing an oscillatory offset in KIMRA data between 18 and 35 km. KIMRA data from 2008 to 2013 show a local minimum in mid-stratospheric winter ozone concentrations that is likely due to dynamics related to the polar vortex.
Mark A. Olsen, Krzysztof Wargan, and Steven Pawson
Atmos. Chem. Phys., 16, 7091–7103, https://doi.org/10.5194/acp-16-7091-2016, https://doi.org/10.5194/acp-16-7091-2016, 2016
Short summary
Short summary
Ozone observations from instruments on NASA’s Aura satellite are used to investigate the ENSO impact on tropospheric column ozone (TCO). This study provides the first explicit spatially resolved characterization of the ENSO influence in the mid-latitudes and shows coherent patterns and connections impacting the TCO in the extratropics. The TCO response to ENSO is large enough over some midlatitude regions that it must be considered when attributing the sources of variability and trends in TCO.
N. J. Livesey, M. L. Santee, and G. L. Manney
Atmos. Chem. Phys., 15, 9945–9963, https://doi.org/10.5194/acp-15-9945-2015, https://doi.org/10.5194/acp-15-9945-2015, 2015
Short summary
Short summary
Employing the well-established "Match" technique, we quantify polar
stratospheric ozone loss during multiple Arctic and Antarctic winters,
based on observations from the spaceborne Aura Microwave Limb Sounder
(MLS) instrument. The dense MLS spatial coverage enables many more
matches than is possible for balloon-based observations. Applying the
same technique to MLS observations of the long-lived N2O molecule gives
an measure of the impact of transport errors on our ozone loss
estimates.
G. L. Manney, Z. D. Lawrence, M. L. Santee, N. J. Livesey, A. Lambert, and M. C. Pitts
Atmos. Chem. Phys., 15, 5381–5403, https://doi.org/10.5194/acp-15-5381-2015, https://doi.org/10.5194/acp-15-5381-2015, 2015
Short summary
Short summary
Sudden stratospheric warmings (SSWs) cause a rapid rise in lower stratospheric temperatures, terminating conditions favorable to chemical ozone loss. We show that although temperatures rose precipitously during the vortex split SSW in early Jan 2013, because the offspring vortices each remained isolated and in regions that received sunlight, chemical ozone loss continued for over 1 month after the SSW. Dec/Jan Arctic ozone loss was larger than any previously observed during that period.
Z. D. Lawrence, G. L. Manney, K. Minschwaner, M. L. Santee, and A. Lambert
Atmos. Chem. Phys., 15, 3873–3892, https://doi.org/10.5194/acp-15-3873-2015, https://doi.org/10.5194/acp-15-3873-2015, 2015
Short summary
Short summary
We use a comprehensive set of diagnostics to investigate how two widely used modern reanalysis data sets might affect studies of lower stratospheric polar processing and ozone loss. Our results show that the agreement in temperature diagnostics between the two reanalyses improves over time in both hemispheres with increasing assimilation model inputs. This suggests that both data sets are appropriate choices for studies of polar processing in recent winters.
I. Petropavlovskikh, R. Evans, G. McConville, G. L. Manney, and H. E. Rieder
Atmos. Chem. Phys., 15, 1585–1598, https://doi.org/10.5194/acp-15-1585-2015, https://doi.org/10.5194/acp-15-1585-2015, 2015
K. Miyagawa, I. Petropavlovskikh, R. D. Evans, C. Long, J. Wild, G. L. Manney, and W. H. Daffer
Atmos. Chem. Phys., 14, 3945–3968, https://doi.org/10.5194/acp-14-3945-2014, https://doi.org/10.5194/acp-14-3945-2014, 2014
T. Sugita, Y. Kasai, Y. Terao, S. Hayashida, G. L. Manney, W. H. Daffer, H. Sagawa, M. Suzuki, M. Shiotani, K. A. Walker, C. D. Boone, and P. F. Bernath
Atmos. Meas. Tech., 6, 3099–3113, https://doi.org/10.5194/amt-6-3099-2013, https://doi.org/10.5194/amt-6-3099-2013, 2013
C. Adams, A. E. Bourassa, A. F. Bathgate, C. A. McLinden, N. D. Lloyd, C. Z. Roth, E. J. Llewellyn, J. M. Zawodny, D. E. Flittner, G. L. Manney, W. H. Daffer, and D. A. Degenstein
Atmos. Meas. Tech., 6, 1447–1459, https://doi.org/10.5194/amt-6-1447-2013, https://doi.org/10.5194/amt-6-1447-2013, 2013
C. Adams, K. Strong, X. Zhao, A. E. Bourassa, W. H. Daffer, D. Degenstein, J. R. Drummond, E. E. Farahani, A. Fraser, N. D. Lloyd, G. L. Manney, C. A. McLinden, M. Rex, C. Roth, S. E. Strahan, K. A. Walker, and I. Wohltmann
Atmos. Chem. Phys., 13, 611–624, https://doi.org/10.5194/acp-13-611-2013, https://doi.org/10.5194/acp-13-611-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Chemical ozone loss and chlorine activation in the Antarctic winters of 2013–2020
Effects of Arctic ozone on the stratospheric spring onset and its surface impact
Three-dimensional simulation of stratospheric gravitational separation using the NIES global atmospheric tracer transport model
Retrieving the age of air spectrum from tracers: principle and method
An upper-branch Brewer–Dobson circulation index for attribution of stratospheric variability and improved ozone and temperature trend analysis
Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012
Interannual variability of the boreal summer tropical UTLS in observations and CCMVal-2 simulations
A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone
Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season
Forcing of stratospheric chemistry and dynamics during the Dalton Minimum
Drivers of hemispheric differences in return dates of mid-latitude stratospheric ozone to historical levels
Comparison of three vertically resolved ozone data sets: climatology, trends and radiative forcings
A model study of the impact of source gas changes on the stratosphere for 1850–2100
Raina Roy, Pankaj Kumar, Jayanarayanan Kuttippurath, and Franck Lefevre
Atmos. Chem. Phys., 24, 2377–2386, https://doi.org/10.5194/acp-24-2377-2024, https://doi.org/10.5194/acp-24-2377-2024, 2024
Short summary
Short summary
We assess the interannual variability of ozone loss and chlorine activation in the Antarctic winters of 2013–2020. The analysis shows significant interannual variability in the Antarctic ozone during this period as compared to the previous decade (2000–2010). Dynamics and chemistry of the winters play their respective roles in the ozone loss process. The winter of 2019 is an example of favourable chemistry helping in the large loss of ozone, though the dynamical conditions were unfavourable.
Marina Friedel, Gabriel Chiodo, Andrea Stenke, Daniela I. V. Domeisen, and Thomas Peter
Atmos. Chem. Phys., 22, 13997–14017, https://doi.org/10.5194/acp-22-13997-2022, https://doi.org/10.5194/acp-22-13997-2022, 2022
Short summary
Short summary
In spring, winds the Arctic stratosphere change direction – an event called final stratospheric warming (FSW). Here, we examine whether the interannual variability in Arctic stratospheric ozone impacts the timing of the FSW. We find that Arctic ozone shifts the FSW to earlier and later dates in years with high and low ozone via the absorption of UV light. The modulation of the FSW by ozone has consequences for surface climate in ozone-rich years, which may result in better seasonal predictions.
Dmitry Belikov, Satoshi Sugawara, Shigeyuki Ishidoya, Fumio Hasebe, Shamil Maksyutov, Shuji Aoki, Shinji Morimoto, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 5349–5361, https://doi.org/10.5194/acp-19-5349-2019, https://doi.org/10.5194/acp-19-5349-2019, 2019
Aurélien Podglajen and Felix Ploeger
Atmos. Chem. Phys., 19, 1767–1783, https://doi.org/10.5194/acp-19-1767-2019, https://doi.org/10.5194/acp-19-1767-2019, 2019
Short summary
Short summary
The age spectrum (distribution of transit times) provides a compact description of transport from the surface to a given point in the atmosphere. It also determines the surface-emitted tracer content of an air parcel. We propose a method to invert this relation in order to retrieve age spectra from tracer concentrations and demonstrate its feasibility in idealized and model setups. Applied to observations, the approach might help to better constrain atmospheric transport timescales.
William T. Ball, Aleš Kuchař, Eugene V. Rozanov, Johannes Staehelin, Fiona Tummon, Anne K. Smith, Timofei Sukhodolov, Andrea Stenke, Laura Revell, Ancelin Coulon, Werner Schmutz, and Thomas Peter
Atmos. Chem. Phys., 16, 15485–15500, https://doi.org/10.5194/acp-16-15485-2016, https://doi.org/10.5194/acp-16-15485-2016, 2016
Short summary
Short summary
We find monthly, mid-latitude temperature changes above 40 km are related to ozone and temperature variations throughout the middle atmosphere. We develop an index to represent this atmospheric variability. In statistical analysis, the index can account for up to 60 % of variability in tropical temperature and ozone above 27 km. The uncertainties can be reduced by up to 35 % and 20 % in temperature and ozone, respectively. This index is an important tool to quantify current and future ozone recovery.
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Markus Kunze, Peter Braesicke, Ulrike Langematz, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8695–8714, https://doi.org/10.5194/acp-16-8695-2016, https://doi.org/10.5194/acp-16-8695-2016, 2016
F. Ploeger, C. Gottschling, S. Griessbach, J.-U. Grooß, G. Guenther, P. Konopka, R. Müller, M. Riese, F. Stroh, M. Tao, J. Ungermann, B. Vogel, and M. von Hobe
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, https://doi.org/10.5194/acp-15-13145-2015, 2015
Short summary
Short summary
The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere. In this paper, we show that a barrier to horizontal transport in the monsoon can be determined from a local maximum in the gradient of potential vorticity.
S. Fadnavis, K. Semeniuk, M. G. Schultz, M. Kiefer, A. Mahajan, L. Pozzoli, and S. Sonbawane
Atmos. Chem. Phys., 15, 11477–11499, https://doi.org/10.5194/acp-15-11477-2015, https://doi.org/10.5194/acp-15-11477-2015, 2015
Short summary
Short summary
The model and MIPAS satellite data show that there are three regions which contribute substantial pollution to the south Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. Simulations show that westerly winds drive North American and European pollutants eastward where they can become part of the ASM and lifted to LS.
J. G. Anet, S. Muthers, E. Rozanov, C. C. Raible, T. Peter, A. Stenke, A. I. Shapiro, J. Beer, F. Steinhilber, S. Brönnimann, F. Arfeuille, Y. Brugnara, and W. Schmutz
Atmos. Chem. Phys., 13, 10951–10967, https://doi.org/10.5194/acp-13-10951-2013, https://doi.org/10.5194/acp-13-10951-2013, 2013
H. Garny, G. E. Bodeker, D. Smale, M. Dameris, and V. Grewe
Atmos. Chem. Phys., 13, 7279–7300, https://doi.org/10.5194/acp-13-7279-2013, https://doi.org/10.5194/acp-13-7279-2013, 2013
B. Hassler, P. J. Young, R. W. Portmann, G. E. Bodeker, J. S. Daniel, K. H. Rosenlof, and S. Solomon
Atmos. Chem. Phys., 13, 5533–5550, https://doi.org/10.5194/acp-13-5533-2013, https://doi.org/10.5194/acp-13-5533-2013, 2013
E. L. Fleming, C. H. Jackman, R. S. Stolarski, and A. R. Douglass
Atmos. Chem. Phys., 11, 8515–8541, https://doi.org/10.5194/acp-11-8515-2011, https://doi.org/10.5194/acp-11-8515-2011, 2011
Cited articles
Ajtić, J., Connor, B. J., Lawrence, B. N., Bodeker, G. E., Hoppel, K. W.,
Rosenfield, J. E., and Heuff, D. N.: Dilution of the Antarctic ozone hole
into southern midlatitudes, 1998–2000, J. Geophys. Res., 109, D17107,
https://doi.org/10.1029/2003JD004500, 2004. a, b
Albers, J. R. and Nathan, T. R.: Ozone Loss and Recovery and the
Preconditioning of Upward-Propagating Planetary Wave Activity, J. Atmos. Sci., 70, 3977–3994, https://doi.org/10.1175/JAS-D-12-0259.1, 2013. a
Andrews, D. G.: Some comparisons between the middle atmosphere dynamics for the
southern and northern hemispheres, Pure Appl. Geophys., 130, 213–232,
1989. a
Bernhard, G., Manney, G., Fioletov, V., Grooß, J.-U., Heikkila, A.,
Johnson, B., Koslela, T., Lakkala, K., Müller, R., Myhre, C., and Rex,
M.: [The Arctic] Ozone and UV Radiation, [in “State of the Climate in
2011”.], B. Am. Meteorol. Soc., 93, S129–S132, 2012. a
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data
assimilation using incremental analysis updates, Mon. Weather Rev., 124,
1256–1271, 1996. a
Boccara, G., Hertzog, A., Basdevant, C., and Vial, F.: Accuracy of NCEP/NCAR
reanalyses and ECMWF analyses in the lower stratosphere over Antarctica
in 2005, J. Geophys. Res., 113, d20115, https://doi.org/10.1029/2008JD010116, 2008. a
Bosilovich, M., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R.,
Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle,
R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G.,
Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.:
MERRA-2: Initial Evaluation of the Climate, Series on Global Modeling and
Data Assimilation, NASA/TM-2015-104606, Vol. 43, NASA, 2015. a
Bosilovich, M. G., Lucchesi, R., and Suarez, M.: MERRA-2: File Specification,
Office Note 9, GMAO Office Note, 73 pp, available at:
https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf
(last access: 13 September 2018), 2016. a
Butchart, N. and Remsberg, E. E.: The area of the stratospheric polar vortex as
a diagnostic for tracer transport on an isentropic surface, J. Atmos. Sci.,
43, 1319–1339, 1986. a
Conway, J., Bodeker, G., and Cameron, C.: Bifurcation of potential vorticity
gradients across the Southern Hemisphere stratospheric polar vortex, Atmos.
Chem. Phys., 18, 8065–8077, https://doi.org/10.5194/acp-18-8065-2018, 2018. a
Davies, S., Chipperfield, M. P., Carslaw, K. S., Sinnhuber, B.-M., Anderson, J. G.,
Stimpfle, R. M., Wilmouth, D. M., Fahey, D. W., Popp, P. J., Richard, E. C.,
von der Gathen, P., Jost, H., and Webster, C. R.: Modeling the effect of denitrification on
Arctic ozone depletion during winter 1999/2000, J. Geophys. Res., 108,
8322, https://doi.org/10.1029/2001JD000445, 2003. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011. a
DiCiccio, T. J. and Efron, B.: Bootstrap confidence intervals, Statist. Sci.,
11, 189–228, https://doi.org/10.1214/ss/1032280214, 1996. a
Dunkerton, T. J. and Delisi, D. P.: Evolution of potential vorticity in the
winter stratosphere of January–February 1979, J. Geophys. Res., 91,
1199–1208, 1986. a
Ebita, A., Kobayashi, S., Ota, Y., Moriya, M., Kumabe, R.,
Onogi, K., Harada, Y., Yasui, S., Miyaoka, K.,
Takahashi, K., Kamahori, H., Kobayashi, C., Endo, H., Soma, M.,
Oikawa, Y., and Ishimizu, T.: The Japanese 55-year Reanalysis
“JRA-55”: An interim
report, SOLA, 7, 149–152, 2011. a
Fleming, E., Chandra, S., Barnett, J. J., and Corney, M.: Zonal mean
temperature, pressure, zonal wind and geopotential height as functions of
latitude, Adv. Sp. Res., 10, 11–53, 1990. a
Forster, P. M. and Shine, K. P.: Radiative forcing and temperature trends from
stratospheric ozone changes, J. Geophys. Res., 102, 10841–10855, 1997. a
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner,
T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer,
C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P.,
Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D.
G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki,
W., Harad̃a, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons,
A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC
Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis
systems, Atmos. Chem. Phys., 17, 1417–1452,
https://doi.org/10.5194/acp-17-1417-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., nov, A. D., Bosilovich, M. G., Reichle, R., Wargan, K., Coy,
L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva,
A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., N, J.
E. N., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for
Research and Applications, Version-2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Global Modeling and Assimilation Office (GMAO): MERRA-2 inst3_3d_asm_Nv:
3d, 3-Hourly, Instantaneous, Model-Level, Assimilation, Assimilated
Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences
Data and Information Services Center (GES DISC), access: 1 November 2015,
https://doi.org/10.5067/WWQSXQ8IVFW8, 2015. a
Global Modeling and Assimilation Office (GMAO): Use of MERRA-2 for
Atmospheric Chemistry and Transport Studies, available at:
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/ANAvsASM.pdf (last access: 13 September 2018),
2017. a
Gobiet, A., Kirchengast, G., Manney, G. L., Borsche, M., Retscher, C., and
Stiller, G.: Retrieval of temperature profiles from CHAMP for climate
monitoring: intercomparison with Envisat MIPAS and GOMOS and different
atmospheric analyses, Atmos. Chem. Phys., 7, 3519–3536,
https://doi.org/10.5194/acp-7-3519-2007, 2007. a
Hegglin, M. I., Boone, C. D., Manney, G. L., and Walker, K. A.: A global view
of the extratropical tropopause transition layer (ExTL) from Atmospheric
Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO,
J. Geophys. Res., 114, D00B11, https://doi.org/10.1029/2008JD009984, 2009. a
Hitchcock, P., Shepherd, T. G., and Manney, G. L.: Statistical characterization
of Arctic polar-night jet oscillation events, J. Climate, 26, 2096–2116,
2013. a
Hoffmann, L. and Alexander, M. J.: Retrieval of stratospheric temperatures from
Atmospheric Infrared Sounder radiance measurements for gravity wave studies,
J. Geophys. Res., 114, D07105, https://doi.org/10.1029/2008JD011241, 2009. a
Hoffmann, L., Hertzog, A., Rößler, T., Stein, O., and Wu, X.:
Intercomparison of meteorological analyses and trajectories in the
Antarctic lower stratosphere with Concordiasi superpressure balloon
observations, Atmos. Chem. Phys., 17, 8045–8061,
https://doi.org/10.5194/acp-17-8045-2017, 2017. a, b, c
Huck, P. E., McDonald, A. J., Bodeker, G. E., and Struthers, H.: Interannual
variability in Antarctic ozone depletion controlled by planetary waves and
polar temperatures, Geophys. Res. Lett., 32, L13819,
https://doi.org/10.1029/2005GL022943, 2005. a
Knox, J. A.: On converting potential temperature to altitude in the middle
atmosphere, Eos Trans. AGU, 79, 376, 1998. a
Knudsen, B. M., Rosen, J. M., Kjome, N. T., and Whitten, A. T.: Comparison of
analyzed stratospheric temperatures and calculated trajectories with
long-duration balloon data, J. Geophys. Res., 101, 19137–19145, 1996. a
Knudsen, B. M., Pommereau, J.-P., Garnier, A., Nunez-Pinharanda, M., Denis, L.,
Letrenne, G., Durand, M., and Rosen, J. M.: Comparison of stratospheric air
parcel trajectories based on different meteorological analyses, J. Geophys. Res., 106, 3415–3424, 2001. a
Knudsen, B. M., Rosen, J. M., Kjome, N. T., and Whitten, A. T.: Accuracy of analyzed stratospheric temperatures in the
winter Arctic vortex from infrared Montgolfier long-duration balloon
flights 2. Results, J. Geophys. Res., 107, D001329, https://doi.org/10.1029/2001JD001329, 2002. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specification and Basic Characteristics, J.
Meteor. Soc. JPN, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015. a
Lacis, A., Wuebbles, D. J., and Logan, J. A.: Radiative forcing of climate by
changes in the vertical distribution of ozone, J. Geophys. Res., 95,
9971–9981, 1990. a
Lahiri, S.: Resampling Methods for Dependent Data, Springer Series in
Statistics, Springer, 2003. a
Lambert, A. and Santee, M. L.: Accuracy and precision of polar lower
stratospheric temperatures from reanalyses evaluated from A-Train CALIOP
and MLS, COSMIC GPS RO, and the equilibrium thermodynamics of
supercooled ternary solutions and ice clouds, Atmos. Chem. Phys., 18,
1945–1975, https://doi.org/10.5194/acp-18-1945-2018, 2018. a, b, c, d, e
Lawrence, Z. D. and Manney, G. L.: Characterizing Stratospheric Polar Vortex
Variability With Computer Vision Techniques, J. Geophys. Res.-Atmos.,
123, 1510–1535, https://doi.org/10.1002/2017JD027556, 2018. a, b, c
Levine, J. G., Braesicke, P., Harris, N. R., Savage, N. H., and Pyle, J. A.:
Pathways and timescales for troposphere-to-stratosphere transport via the
tropical tropopause layer and their relevance for very short lived
substances, J. Geophys. Res., 112, D04308, https://doi.org/10.1029/2005JD006940,
2007. a
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A.,
Manney, G. L., Millán Valle, L. F., Pumphrey, H. C., Santee, M. L.,
Schwartz, M. J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and
Martinez, E.: EOS MLS Version 4.2x Level 2 data quality and description
document, Tech. rep., JPL, available at: http://mls.jpl.nasa.gov/
(last access: 13 September 2018), 2015. a
Manney, G. L. and Lawrence, Z. D.: The major stratospheric final warming in
2016: dispersal of vortex air and termination of Arctic chemical ozone loss,
Atmos. Chem. Phys., 16, 15371–15396,
https://doi.org/10.5194/acp-16-15371-2016, 2016. a, b
Manney, G. L., Zurek, R. W., Gelman, M. E., Miller, A. J., and Nagatani, R.:
The anomalous Arctic lower stratospheric polar vortex of 1992–1993,
Geophys. Res. Lett., 21, 2405–2408, 1994. a
Manney, G. L., Swinbank, R., Massie, S. T., Gelman, M. E., Miller, A. J.,
Nagatani, R., O'Neill, A., and Zurek, R. W.: Comparison of U. K.
Meteorological Office and U. S. National Meteorological Center
stratospheric analyses during northern and southern winter, J. Geophys. Res., 101, 10311–10334, 1996. a
Manney, G. L., Lahoz, W. A., Swinbank, R., O'Neill, A., Connew, P. M., and
Zurek, R. W.: Simulation of the December 1998 stratospheric major warming,
Geophys. Res. Lett., 26, 2733–2736, 1999. a
Manney, G. L., Sabutis, J. L., Pawson, S., Santee, M. L., Naujokat, B.,
Swinbank, R., Gelman, M. E., and Ebisuzaki, W.: Lower stratospheric
temperature differences between meteorological analyses in two cold Arctic
winters and their impact on polar processing studies, J. Geophys. Res.,
108, 8328, https://doi.org/10.1029/2001JD001149, 2003. a, b
Manney, G. L., Krüger, K., Sabutis, J. L., Sena, S. A., and Pawson, S.: The
remarkable 2003–2004 winter and other recent warm winters in the Arctic
stratosphere since the late 1990s, J. Geophys. Res., 110, D04107,
https://doi.org/10.1029/2004JD005367, 2005b. a, b, c
Manney, G. L., Santee, M. L., Livesey, N. J., Froidevaux, L., Read, W. G.,
Pumphrey, H. C., Waters, J. W., and Pawson, S.: EOS Microwave Limb
Sounder observations of the Antarctic polar vortex breakup in 2004,
Geophys. Res. Lett., 32, L12811, https://doi.org/10.1029/2005GL022823,
2005c. a
Manney, G. L., Daffer, W. H., Zawodny, J. M., Bernath, P. F., Hoppel, K. W.,
Walker, K. A., Knosp, B. W., Boone, C., Remsberg, E. E., Santee, M. L.,
Harvey, V. L., Pawson, S., Jackson, D. R., Deaver, L., McElroy, C. T.,
McLinden, C. A., Drummond, J. R., Pumphrey, H. C., Lambert, A., Schwartz,
M. J., Froidevaux, L., McLeod, S., Takacs, L. L., Suarez, M. J., Trepte,
C. R., Cuddy, D. C., Livesey, N. J., Harwood, R. S., and Waters, J. W.: Solar
occultation satellite data and derived meteorological products: Sampling
issues and comparisons with Aura Microwave Limb Sounder, J. Geophys. Res.,
112, D24S50, https://doi.org/10.1029/2007JD008709, 2007. a
Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C., Veefkind,
P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L., Poole, L. R.,
Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V., Gernandt, H.,
Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt, P. F., Makshtas, A.,
McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick, D. W., von der
Gathen, P., Walker, K. A., and Zinoviev, N. S.: Unprecedented Arctic Ozone
Loss in 2011, Nature, 478, 469–475, 2011. a, b, c
Manney, G. L., Hegglin, M. I., Lawrence, Z. D., Wargan, K., Millán, L. F.,
Schwartz, M. J., Santee, M. L., Lambert, A., Pawson, S., Knosp, B. W.,
Fuller, R. A., and Daffer, W. H.: Reanalysis comparisons of upper
tropospheric-lower stratospheric jets and multiple tropopauses, Atmos. Chem.
Phys., 17, 11541–11566, https://doi.org/10.5194/acp-17-11541-2017, 2017. a
McIntyre, M. E. and Palmer, T. N.: The “surf zone” in the stratosphere, J.
Atmos. Terr. Phys., 46, 825–849, 1984. a
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the
GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2,
Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015,
2015. a
Naujokat, B., Krüger, K., Matthes, K., Hoffmann, J., Kunze, M., and
Labitzke, K.: The early major warming in December 2001 – exceptional?,
Geophys. Res. Lett., 29, 2023, https://doi.org/10.1029/2002GL015316, 2002. a
Newman, P. A., Kawa, S. R., and Nash, E. R.: On the size of the Antarctic
ozone hole, Geophys. Res. Lett., 31, L21104, https://doi.org/10.1029/2004GL020596, 2004. a
Pawson, S., Krüger, K., Swinbank, R., Bailey, M., and O'Neill, A.:
Intercomparison of two stratospheric analyses: Temperatures relevant to
polar stratospheric cloud formation, J. Geophys. Res., 104, 2041–2050,
1999. a
Pazmino, A. F., Godin-Beekmann, S., Ginzburg, M., Bekki, S., Hauchecorne, A.,
Piacentini, R. D., and Quel, E. J.: Impact of Antarctic polar vortex
occurrences on total ozone and UVB radiation at southern Argentinean and
Antarctic stations during 1997–2003 period, J. Geophys. Res., 110,
D03103, https://doi.org/10.1029/2004JD005304, 2005. a, b
Politis, D. N. and Romano, J. P.: The Stationary Bootstrap, J.
Am. Stat. Assoc., 89, 1303–1313, 1994. a
Polvani, L. M., Waugh, D. W., Correa, G. J., and Son, S.-W.: Stratospheric
ozone depletion: The main driver of twentieth-century atmospheric circulation
changes in the Southern Hemisphere, J. Climate, 24, 795–812, 2011. a
Rex, M., Salawitch, R. J., Gathen, P., Harris, N. R., Chipperfield, M. P., and
Naujokat, B.: Arctic ozone loss and climate change, Geophys. Res. Lett.,
31, L04116, https://doi.org/10.1029/2003GL018844, 2004. a
Rex, M., Salawitch, R. J., Deckelmann, H., von der Gathen, P., Harris, N.
R. P., Chipperfield, M. P., Naujokat, B., Reimer, E., Allart, M., Andersen,
S. B., Bevilacqua, R., Braathen, G. O., Claude, H., Davies, J., De Backer,
H., Dier, H., Dorokhov, V., Fast, H., Gerding, M., Godin-Beekmann, S.,
Hoppel, K., Johnson, B., Kyrö, E., Litynska, Z., Moore, D., Nakane, H.,
Parrondo, M. C., Risley, A. D., Skrivankova, P., Stübi, R., Viatte, P.,
Yushkov, V., and Zerefos, C.: Arctic winter 2005: Implications for
stratospheric ozone loss and climate change, Geophys. Res. Lett., 33,
L23808, https://doi.org/10.1029/2006GL026731, 2006. a
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E.,
Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G., Bloom, S., Chen, J.,
Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R.,
Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R.,
Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's
Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648,
2011. a
Riese, M., Ploeger, F., Rap, A., Vogel, B., Konopka, P., Dameris, M., and
Forster, P.: Impact of uncertainties in atmospheric mixing on simulated
UTLS composition and related radiative effects, J. Geophys.
Res.-Atmos., 117, d16305, https://doi.org/10.1029/2012JD017751, 2012. a
Saha, S., Moorthi, S., Pan, H.-L. et al.: The
NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, 2010. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D.,
Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den
Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast
System Version 2, J. Climate, 27,
2185–2208, 2014. a, b
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J.,
Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E.,
Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F.,
Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F.,
Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W. V.,
Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A.,
Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb
SounderSic temperature and geopotential height measurements, J. Geophys. Res., 113, D15S11, https://doi.org/10.1029/2007JD008783, 2008. a
Simmons, A. J., Hortal, M., Kelly, G., McNally, A., Untch, A., and Uppala, S.:
ECMWF analyses and forecasts of stratospheric winter polar vortex break-up:
September 2002 in the southern hemisphere and related events, J. Atmos. Sci., 62, 668–689, 2005. a
Simmons, A. J., Poli, P., Dee, D. P., Berrisfordand, P., Hersbach, H.,
Kobayashi, S., and Peubey, C.: Estimating low-frequency variability and
trends in atmospheric temperature using ERA-Interim, Q. J. Roy. Meteorol. Soc., 140, 329–353, 2014. a
Takacs, L. L., Suárez, M. J., and Todling, R.: Maintaining atmospheric mass
and water balance in reanalyses, Q. J. Roy. Meteorol. Soc., 142,
1565–1573, 2016. a
Telford, P., Braesicke, P., Morgenstern, O., and Pyle, J.: Reassessment of
causes of ozone column variability following the eruption of Mount Pinatubo
using a nudged CCM, Atmos. Chem. Phys., 9, 4251–4260,
https://doi.org/10.5194/acp-9-4251-2009, 2009. a
Tilmes, S., Müller, R., Engel, A., Rex, M., and Russel, J. M.: Chemical
ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005,
Geophys. Res. Lett., 33, L20812, https://doi.org/10.1029/2006GL026925, 2006. a
Tomikawa, Y., Sato, K., Hirasawa, N., Tsutsumi, M., and Nakamura, T.:
Balloon-borne observations of lower stratospheric water vapor at Syowa
Station, Antarctica in 2013, Polar Sci., 9, 345–353,
https://doi.org/10.1016/j.polar.2015.08.003,
special Issue: The Asian Forum for Polar Sciences (AFOPS), 2015. a
Waugh, D. W., Garfinkel, C. I., and Polvani, L. M.: Drivers of the Recent
Tropical Expansion in the Southern Hemisphere: Changing SSTs or Ozone
Depletion?, J. Climate, 28, 6581–6586, https://doi.org/10.1175/JCLI-D-15-0138.1, 2015. a
Wright, J. S., Fujiwara, M., Long, C., Anstey, J., Chabrillat, S., Compo,
G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W.,
Molod, A., Onogi, K., Pawson, S., Simmons, A., Tan, D., Wargan, K., Whitaker,
J. S., and Zou, C.-Z.: SPARC Reanalysis Intercomparison Project
(S-RIP) Final Report. Chapter 2: Description of the Reanalysis Systems, SPARC, in
preparation, 2018. a
Short summary
Stratospheric polar processing diagnostics are compared in both hemispheres for four recent high-resolution reanalyses. Temperature-based diagnostics show largest differences before 1999 in the Antarctic; agreement becomes much better thereafter, when the reanalysis inputs include higher-resolution satellite radiances. Recommendations for usage of reanalysis data in research studies are given based on the differences among the reanalyses, which can be substantial and difficult to interpret.
Stratospheric polar processing diagnostics are compared in both hemispheres for four recent...
Altmetrics
Final-revised paper
Preprint