Articles | Volume 18, issue 13
https://doi.org/10.5194/acp-18-10025-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-18-10025-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Turbulent transport of energy across a forest and a semiarid shrubland
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany
current address: Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
Peter Brugger
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany
Frederik De Roo
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany
Konstantin Kröniger
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany
Dan Yakir
Department of Earth and Planetary Sciences (EPS), The Weizmann Institute of Science, Rehovot 76100, Israel
Eyal Rotenberg
Department of Earth and Planetary Sciences (EPS), The Weizmann Institute of Science, Rehovot 76100, Israel
Matthias Mauder
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany
Related authors
Tirtha Banerjee, Frederik De Roo, and Rodman Linn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-595, https://doi.org/10.5194/hess-2017-595, 2017
Revised manuscript not accepted
Short summary
Short summary
The conceptual model of turbulent flow through vegetation canopies is a phenomenological one that is developed from experimental observations. However, standard numerical simulations of canopy turbulence usually don't resolve the canopy as solid obstructions. We seek to reconcile such numerical simulations with the observations using large eddy simulations and information theory. We find out that the traditional drag based representation contains signatures of the phenomenological model.
Tirtha Banerjee, Frederik De Roo, and Matthias Mauder
Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, https://doi.org/10.5194/hess-21-2987-2017, 2017
Short summary
Short summary
The canopy convector effect in the context of canopy turbulence was recently introduced by Rotenberg and Yakir (Science, 2010). However, there was a lack of understanding of this phenomenon as a generic feature of canopy turbulence, as we have demonstrated in this paper. Uncertainties of existing parameterizations of canopy aerodynamic resistance to heat transfer are discussed and possible remedies are suggested.
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-168, https://doi.org/10.5194/amt-2024-168, 2024
Preprint under review for AMT
Short summary
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Päschke, and Matthias Mauder
Geosci. Instrum. Method. Data Syst., 13, 205–223, https://doi.org/10.5194/gi-13-205-2024, https://doi.org/10.5194/gi-13-205-2024, 2024
Short summary
Short summary
We compared wind measurements using different lidar setups at various heights. The triple Doppler lidar, sonic anemometer, and two single Doppler lidars were tested. Overall, the lidar methods showed good agreement with the sonic anemometer. The triple Doppler lidar performed better than single Doppler lidars, especially at higher altitudes. We also developed a new filtering approach for virtual tower scanning strategies. Single Doppler lidars provide reliable wind data over flat terrain.
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024, https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
Short summary
A hydraulic model approach is presented that can be added to any physiologically based ecosystem model. Simulated plant water potential triggers stomatal closure, photosynthesis decline, root–soil resistance increases, and sapwood and foliage senescence. The model has been evaluated at an extremely dry site stocked with Aleppo pine and was able to represent gas exchange, soil water content, and plant water potential. The model also responded realistically regarding leaf senescence.
Peter Brugger, Corey D. Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 9, 1363–1379, https://doi.org/10.5194/wes-9-1363-2024, https://doi.org/10.5194/wes-9-1363-2024, 2024
Short summary
Short summary
The dynamic wake meandering model (DWMM) assumes that wind turbine wakes are transported like a passive tracer by the large-scale turbulence of the atmospheric boundary layer. We show that both the downstream transport and the lateral transport of the wake have differences from the passive tracer assumption. We then propose to include the turbulent Schmidt number into the DWMM to account for the less efficient transport of momentum and show that it improves the quality of the model predictions.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Sreenath Paleri, Luise Wanner, Matthias Sühring, Ankur Desai, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1721, https://doi.org/10.5194/egusphere-2023-1721, 2023
Preprint archived
Short summary
Short summary
We present a description and evaluation of numerical simulations of field experiment days during the CHEESEHEAD19 field campaign, conducted over a heterogeneous forested domain in Northern Wisconsin, USA. Diurnal simulations, informed and constrained by field measurements for two days during the summer and autumn were performed. The model could simulate near surface time series and profiles of atmospheric state variables and fluxes that matched relatively well with observations.
Timo Vesala, Kukka-Maaria Kohonen, Linda M. J. Kooijmans, Arnaud P. Praplan, Lenka Foltýnová, Pasi Kolari, Markku Kulmala, Jaana Bäck, David Nelson, Dan Yakir, Mark Zahniser, and Ivan Mammarella
Atmos. Chem. Phys., 22, 2569–2584, https://doi.org/10.5194/acp-22-2569-2022, https://doi.org/10.5194/acp-22-2569-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) provides new insights into carbon cycle research. We present an easy-to-use flux parameterization and the longest existing time series of forest–atmosphere COS exchange measurements, which allow us to study both seasonal and interannual variability. We observed only uptake of COS by the forest on an annual basis, with 37 % variability between years. Upscaling the boreal COS uptake using a biosphere model indicates a significant missing COS sink at high latitudes.
Peter Brugger, Corey Markfort, and Fernando Porté-Agel
Wind Energ. Sci., 7, 185–199, https://doi.org/10.5194/wes-7-185-2022, https://doi.org/10.5194/wes-7-185-2022, 2022
Short summary
Short summary
Wind turbines create a wake of reduced wind speeds downstream of the rotor. The wake does not necessarily have a straight, pencil-like shape but can meander similar to a smoke plume. We investigated this wake meandering and observed that the downstream transport velocity is slower than the wind speed contrary to previous assumptions and that the evolution of the atmospheric turbulence over time impacts wake meandering on distances typical for the turbine spacing in wind farms.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Peter Brugger, Mithu Debnath, Andrew Scholbrock, Paul Fleming, Patrick Moriarty, Eric Simley, David Jager, Jason Roadman, Mark Murphy, Haohua Zong, and Fernando Porté-Agel
Wind Energ. Sci., 5, 1253–1272, https://doi.org/10.5194/wes-5-1253-2020, https://doi.org/10.5194/wes-5-1253-2020, 2020
Short summary
Short summary
A wind turbine can actively influence its wake by turning the rotor out of the wind direction to deflect the wake away from a downstream wind turbine. This technique was tested in a field experiment at a wind farm, where the inflow and wake were monitored with remote-sensing instruments for the wind speed. The behaviour of the wake deflection agrees with the predictions of two analytical models, and a bias of the wind direction perceived by the yawed wind turbine led to suboptimal power gains.
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, https://doi.org/10.5194/hess-24-2457-2020, 2020
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020, https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Genki Katata, Rüdiger Grote, Matthias Mauder, Matthias J. Zeeman, and Masakazu Ota
Biogeosciences, 17, 1071–1085, https://doi.org/10.5194/bg-17-1071-2020, https://doi.org/10.5194/bg-17-1071-2020, 2020
Short summary
Short summary
In this paper, we demonstrate that high physiological activity levels during the extremely warm winter are allocated into the below-ground biomass and only to a minor extent used for additional plant growth during early spring. This process is so far largely unaccounted for in scenario analysis using global terrestrial biosphere models, and it may lead to carbon accumulation in the soil and/or carbon loss from the soil as a response to global warming.
Rafat Qubaja, Fyodor Tatarinov, Eyal Rotenberg, and Dan Yakir
Biogeosciences, 17, 699–714, https://doi.org/10.5194/bg-17-699-2020, https://doi.org/10.5194/bg-17-699-2020, 2020
Short summary
Short summary
This paper presents a study of the CO2 fluxes in a pine forest plantation at the dry timberline in the Negev, combining the present time with the long-term perspective. Two key issues that limit our understanding are the need to know the sources of CO2 fluxes and the need for long-term perspectives. We provide evidence that helps explain the forest plantation productivity under stressful conditions, which can assist in predicting the response of forest to future drying climate.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Sadiq Huq, Frederik De Roo, Siegfried Raasch, and Matthias Mauder
Geosci. Model Dev., 12, 2523–2538, https://doi.org/10.5194/gmd-12-2523-2019, https://doi.org/10.5194/gmd-12-2523-2019, 2019
Short summary
Short summary
To study turbulence in heterogeneous terrain, high-resolution LES is desired. However, the desired resolution is often restricted by computational constraints. We present a two-way interactive vertical grid nesting technique that enables high-resolution LES of the surface layer. By employing a finer grid only close to the surface layer, the total computational memory requirement is reduced. We demonstrate the accuracy and performance of the method for a convective boundary layer simulation.
Fulin Yang, Rafat Qubaja, Fyodor Tatarinov, Rafael Stern, and Dan Yakir
Atmos. Chem. Phys., 19, 3873–3883, https://doi.org/10.5194/acp-19-3873-2019, https://doi.org/10.5194/acp-19-3873-2019, 2019
Short summary
Short summary
The contribution of soil carbonyl sulfate (COS) flux is probably the major limitation to the application of COS as a novel tracer of canopy-scale CO2 uptake. We provide new, field-based high-resolution results on the spatial and temporal variations in soil COS flux, its relationships to CO2 exchange and the key factors influencing it. We furthermore provide the only study, to our knowledge, that validate the surface dynamic chamber approach, increasingly used, with soil concentration profiles.
Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, María P. González-Dugo, Günther Heinemann, Cor M. J. Jacobs, Matthias Mauder, Arnold F. Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodríguez, Todd M. Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph K. Thomas, Veronika Valler, Matthias J. Zeeman, and Harry Vereecken
Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019, https://doi.org/10.5194/bg-16-1111-2019, 2019
Short summary
Short summary
To obtain magnitudes of flux components of H2O and CO2 (e.g., transpiration, soil respiration), we applied source partitioning approaches after Scanlon and Kustas (2010) and after Thomas et al. (2008) to high-frequency eddy covariance measurements of 12 study sites covering various ecosystems (croplands, grasslands, and forests) in different climatic regions. We analyzed the interrelations among turbulence, site characteristics, and the performance of both partitioning methods.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Frederik De Roo and Matthias Mauder
Atmos. Chem. Phys., 18, 5059–5074, https://doi.org/10.5194/acp-18-5059-2018, https://doi.org/10.5194/acp-18-5059-2018, 2018
Short summary
Short summary
We investigate the mismatch between incoming energy and the turbulent flux of sensible heat at the Earth's surface and how surface heterogeneity affects this imbalance. To resolve the turbulent fluxes we employ large-eddy simulations. We study terrain with different heterogeneity lengths and quantify the contributions of advection by the mean flow and horizontal flux-divergence in the surface energy budget. We find that the latter contributions depend on the scale of the heterogeneity length.
Matthias Mauder and Matthias J. Zeeman
Atmos. Meas. Tech., 11, 249–263, https://doi.org/10.5194/amt-11-249-2018, https://doi.org/10.5194/amt-11-249-2018, 2018
Tirtha Banerjee, Frederik De Roo, and Rodman Linn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-595, https://doi.org/10.5194/hess-2017-595, 2017
Revised manuscript not accepted
Short summary
Short summary
The conceptual model of turbulent flow through vegetation canopies is a phenomenological one that is developed from experimental observations. However, standard numerical simulations of canopy turbulence usually don't resolve the canopy as solid obstructions. We seek to reconcile such numerical simulations with the observations using large eddy simulations and information theory. We find out that the traditional drag based representation contains signatures of the phenomenological model.
David Helman, Itamar M. Lensky, Yagil Osem, Shani Rohatyn, Eyal Rotenberg, and Dan Yakir
Biogeosciences, 14, 3909–3926, https://doi.org/10.5194/bg-14-3909-2017, https://doi.org/10.5194/bg-14-3909-2017, 2017
Short summary
Short summary
A remote-sensing biophysical approach for estimating daily evapotranspiration and carbon uptake was tested at Mediterranean forest and non-forest sites in Israel after accounting for root zone water deficit. A newly developed mobile lab system and an active FLUXNET station were used for validation. The model successfully tracked observed changes in fluxes, showing promise for a reliable ecosystem-level assessment. Changes in water use efficiency due to afforestation were assessed in Israel.
Tirtha Banerjee, Frederik De Roo, and Matthias Mauder
Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, https://doi.org/10.5194/hess-21-2987-2017, 2017
Short summary
Short summary
The canopy convector effect in the context of canopy turbulence was recently introduced by Rotenberg and Yakir (Science, 2010). However, there was a lack of understanding of this phenomenon as a generic feature of canopy turbulence, as we have demonstrated in this paper. Uncertainties of existing parameterizations of canopy aerodynamic resistance to heat transfer are discussed and possible remedies are suggested.
V. Maurer, N. Kalthoff, A. Wieser, M. Kohler, M. Mauder, and L. Gantner
Atmos. Chem. Phys., 16, 1377–1400, https://doi.org/10.5194/acp-16-1377-2016, https://doi.org/10.5194/acp-16-1377-2016, 2016
Short summary
Short summary
The measurement of turbulence in the lowest 1–2 km above the land surface is important for our understanding of boundary-layer processes. We compared turbulence profiles measured at three locations lying about 3 km apart and found that the deployment of the instruments in different crop fields has no direct influence on turbulence statistics on cloud-free days. Nevertheless, spatial differences as well as correlations were found, indicating the existence of organized structures of turbulence.
L. Wingate, J. Ogée, E. Cremonese, G. Filippa, T. Mizunuma, M. Migliavacca, C. Moisy, M. Wilkinson, C. Moureaux, G. Wohlfahrt, A. Hammerle, L. Hörtnagl, C. Gimeno, A. Porcar-Castell, M. Galvagno, T. Nakaji, J. Morison, O. Kolle, A. Knohl, W. Kutsch, P. Kolari, E. Nikinmaa, A. Ibrom, B. Gielen, W. Eugster, M. Balzarolo, D. Papale, K. Klumpp, B. Köstner, T. Grünwald, R. Joffre, J.-M. Ourcival, M. Hellstrom, A. Lindroth, C. George, B. Longdoz, B. Genty, J. Levula, B. Heinesch, M. Sprintsin, D. Yakir, T. Manise, D. Guyon, H. Ahrends, A. Plaza-Aguilar, J. H. Guan, and J. Grace
Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, https://doi.org/10.5194/bg-12-5995-2015, 2015
Short summary
Short summary
The timing of plant development stages and their response to climate and management were investigated using a network of digital cameras installed across different European ecosystems. Using the relative red, green and blue content of images we showed that the green signal could be used to estimate the length of the growing season in broadleaf forests. We also developed a model that predicted the seasonal variations of camera RGB signals and how they relate to leaf pigment content and area well.
A. Angert, D. Yakir, M. Rodeghiero, Y. Preisler, E. A. Davidson, and T. Weiner
Biogeosciences, 12, 2089–2099, https://doi.org/10.5194/bg-12-2089-2015, https://doi.org/10.5194/bg-12-2089-2015, 2015
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014, https://doi.org/10.5194/amt-7-2273-2014, 2014
M. Roland, P. Serrano-Ortiz, A. S. Kowalski, Y. Goddéris, E. P. Sánchez-Cañete, P. Ciais, F. Domingo, S. Cuezva, S. Sanchez-Moral, B. Longdoz, D. Yakir, R. Van Grieken, J. Schott, C. Cardell, and I. A. Janssens
Biogeosciences, 10, 5009–5017, https://doi.org/10.5194/bg-10-5009-2013, https://doi.org/10.5194/bg-10-5009-2013, 2013
S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X. H. Zheng, H. P. Schmid, and T. Foken
Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, https://doi.org/10.5194/bg-10-2193-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dynamics of aerosol, humidity, and clouds in air masses travelling over Fennoscandian boreal forests
Residence times of air in a mature forest: observational evidence from a free-air CO2 enrichment experiment
Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck
Observations of aerosol–vapor pressure deficit–evaporative fraction coupling over India
Biogeochemical and biophysical responses to episodes of wildfire smoke from natural ecosystems in southwestern British Columbia, Canada
Traces of urban forest in temperature and CO2 signals in monsoon East Asia
Technical note: Uncertainties in eddy covariance CO2 fluxes in a semiarid sagebrush ecosystem caused by gap-filling approaches
Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes
Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest
Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks
New particle formation events observed at the King Sejong Station, Antarctic Peninsula – Part 2: Link with the oceanic biological activities
Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes
Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
Characterization of ozone deposition to a mixed oak–hornbeam forest – flux measurements at five levels above and inside the canopy and their interactions with nitric oxide
Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests
The monsoon effect on energy and carbon exchange processes over a highland lake in the southwest of China
Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer
Nighttime wind and scalar variability within and above an Amazonian canopy
Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska
Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest
Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog
Biophysical effects on the interannual variation in carbon dioxide exchange of an alpine meadow on the Tibetan Plateau
Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River
Overview of mercury dry deposition, litterfall, and throughfall studies
Scalar turbulent behavior in the roughness sublayer of an Amazonian forest
Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling
Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest
Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season
Step changes in persistent organic pollutants over the Arctic and their implications
Estimating surface fluxes using eddy covariance and numerical ogive optimization
Nitrous oxide emissions from a commercial cornfield (Zea mays) measured using the eddy covariance technique
Observations of the scale-dependent turbulence and evaluation of the flux–gradient relationship for sensible heat for a closed Douglas-fir canopy in very weak wind conditions
The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon
Acetaldehyde exchange above a managed temperate mountain grassland
Surface response to rain events throughout the West African monsoon
The role of vegetation in the CO2 flux from a tropical urban neighbourhood
Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia
Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing
Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment
Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment
Abiotic and biotic control of methanol exchanges in a temperate mixed forest
Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign
Methane flux, vertical gradient and mixing ratio measurements in a tropical forest
The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China
Size-dependent aerosol deposition velocities during BEARPEX'07
Day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors
Meri Räty, Larisa Sogacheva, Helmi-Marja Keskinen, Veli-Matti Kerminen, Tuomo Nieminen, Tuukka Petäjä, Ekaterina Ezhova, and Markku Kulmala
Atmos. Chem. Phys., 23, 3779–3798, https://doi.org/10.5194/acp-23-3779-2023, https://doi.org/10.5194/acp-23-3779-2023, 2023
Short summary
Short summary
We utilised back trajectories to identify the source region of air masses arriving in Hyytiälä, Finland, and their travel time over forests. Combined with atmospheric observations, they revealed how air mass transport over the Fennoscandian boreal forest during the growing season produced an accumulation of cloud condensation nuclei and humidity, promoting cloudiness and precipitation. By 55 h of transport, air masses appeared to reach a balanced state with the forest environment.
Edward J. Bannister, Mike Jesson, Nicholas J. Harper, Kris M. Hart, Giulio Curioni, Xiaoming Cai, and A. Rob MacKenzie
Atmos. Chem. Phys., 23, 2145–2165, https://doi.org/10.5194/acp-23-2145-2023, https://doi.org/10.5194/acp-23-2145-2023, 2023
Short summary
Short summary
In forests, the residence time of air influences canopy chemistry and atmospheric exchange. However, there have been few field observations. We use long-term open-air CO2 enrichment measurements to show median daytime residence times are twice as long when the trees are in leaf versus when they are not. Residence times increase with increasing atmospheric stability and scale inversely with turbulence. Robust parametrisations for large-scale models are available using common distributions.
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022, https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
Short summary
This study examines how cities and their surroundings influence turbulent exchange processes responsible for weather and climate. Analysis of a 4-year observational dataset for the Alpine city of Innsbruck reveals several similarities with other (flat) city centre sites. However, the mountain setting leads to characteristic daily and seasonal flow patterns (valley winds) and downslope windstorms that have a marked effect on temperature, wind speed, turbulence and pollutant concentration.
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022, https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Short summary
Transpiration fluxes by vegetation are reduced under heat stress to conserve water. However, in situ observations over northern India show that the strength of the inverse association between transpiration and atmospheric vapor pressure deficit is weakening in the presence of heavy aerosol loading. This finding not only implicates the significant role of aerosols in modifying the evaporative fraction (EF) but also warrants an in-depth analysis of the aerosol–plant–temperature–EF continuum.
Sung-Ching Lee, Sara H. Knox, Ian McKendry, and T. Andrew Black
Atmos. Chem. Phys., 22, 2333–2349, https://doi.org/10.5194/acp-22-2333-2022, https://doi.org/10.5194/acp-22-2333-2022, 2022
Short summary
Short summary
Wildfire smoke alters land–atmosphere exchange. Here, measurements in a forest and a wetland during four smoke episodes over four summers showed that impacts on radiation and heat budget were the greatest when smoke arrived in late summer. Both sites sequestered more CO2 under smoky days, partly due to diffuse light, but emitted CO2 when smoke was dense. This kind of field study is important for validating predictions of smoke–productivity feedbacks and has climate change implications.
Keunmin Lee, Je-Woo Hong, Jeongwon Kim, Sungsoo Jo, and Jinkyu Hong
Atmos. Chem. Phys., 21, 17833–17853, https://doi.org/10.5194/acp-21-17833-2021, https://doi.org/10.5194/acp-21-17833-2021, 2021
Short summary
Short summary
This study examine two benefits of urban forest, thermal mitigation and carbon uptake. Our analysis indicates that the urban forest reduces both the warming trend and urban heat island intensity. Urban forest is a net CO2 source despite larger photosynthetic carbon uptake because of strong contribution of ecosystem respiration, which can be attributed to the substantial amount of soil organic carbon by intensive historical soil use and warm temperature in a city.
Jingyu Yao, Zhongming Gao, Jianping Huang, Heping Liu, and Guoyin Wang
Atmos. Chem. Phys., 21, 15589–15603, https://doi.org/10.5194/acp-21-15589-2021, https://doi.org/10.5194/acp-21-15589-2021, 2021
Short summary
Short summary
Gap-filling usually accounts for a large source of uncertainties in the annual CO2 fluxes, though gap-filling CO2 fluxes is challenging at dryland sites due to small fluxes. Using data collected from a semiarid site, four machine learning methods are evaluated with different lengths of artificial gaps. The artificial neural network and random forest methods outperform the other methods. With these methods, uncertainties in the annual CO2 flux at this site are estimated to be within 16 g C m−2.
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021, https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Short summary
We simulate the spatiotemporal dynamics of aboveground biomass (AGB) in Inner Mongolian grasslands using a machine-learning-based approach. Under climate change, on average, compared with the historical AGB (average of 1981–2019), the AGB at the end of this century (average of 2080–2100) would decrease by 14 % under RCP4.5 and 28 % under RCP8.5. The decrease in AGB might be mitigated or even reversed by positive carbon dioxide enrichment effects on plant growth.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Renato Kerches Braghiere, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, José de Souza Nogueira, and Alessandro Carioca de Araújo
Atmos. Chem. Phys., 20, 3439–3458, https://doi.org/10.5194/acp-20-3439-2020, https://doi.org/10.5194/acp-20-3439-2020, 2020
Short summary
Short summary
We evaluate how the interaction of smoke with sun light impacts the exchange of energy and mass between vegetation and the atmosphere using a machine learning technique. We found an effect of the smoke on CO2, energy, and water fluxes, linking the effects of smoke with temperature, humidity, and winds. CO2 exchange increased by up to 55 % in the presence of smoke. A decrease of 12 % was observed for a site with simpler vegetation. Energy fluxes were negatively impacted for all study sites.
Eunho Jang, Ki-Tae Park, Young Jun Yoon, Tae-Wook Kim, Sang-Bum Hong, Silvia Becagli, Rita Traversi, Jaeseok Kim, and Yeontae Gim
Atmos. Chem. Phys., 19, 7595–7608, https://doi.org/10.5194/acp-19-7595-2019, https://doi.org/10.5194/acp-19-7595-2019, 2019
Short summary
Short summary
We reported long-term observations (from 2009 to 2016) of the nanoparticles measured at the Antarctic Peninsula (62.2° S, 58.8° W), and satellite-derived estimates of the biological characteristics were analyzed to identify the link between new particle formation and marine biota. The key finding from this research is that the formation of nanoparticles was strongly associated not only with the biomass of phytoplankton but, more importantly, also its taxonomic composition in the Antarctic Ocean.
Linlin Wang, Junkai Liu, Zhiqiu Gao, Yubin Li, Meng Huang, Sihui Fan, Xiaoye Zhang, Yuanjian Yang, Shiguang Miao, Han Zou, Yele Sun, Yong Chen, and Ting Yang
Atmos. Chem. Phys., 19, 6949–6967, https://doi.org/10.5194/acp-19-6949-2019, https://doi.org/10.5194/acp-19-6949-2019, 2019
Short summary
Short summary
Urban boundary layer (UBL) affects the physical and chemical processes of the pollutants, and UBL structure can also be altered by pollutants. This paper presents the interactions between air pollution and the UBL structure by using the field data mainly collected from a 325 m meteorology tower, as well as from a Doppler wind lidar, during a severe heavy pollution event that occurred during 1–4 December 2016 in Beijing.
Carsten Schaller, Fanny Kittler, Thomas Foken, and Mathias Göckede
Atmos. Chem. Phys., 19, 4041–4059, https://doi.org/10.5194/acp-19-4041-2019, https://doi.org/10.5194/acp-19-4041-2019, 2019
Short summary
Short summary
Methane emissions from biogenic sources, e.g. Arctic permafrost ecosystems, are associated with uncertainties due to the high variability of fluxes in both space and time. Besides the traditional eddy covariance method, we evaluated a method based on wavelet analysis, which does not require a stationary time series, to calculate fluxes. The occurrence of extreme methane flux events was strongly correlated with the soil temperature. They were triggered by atmospheric non-turbulent mixing.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavrič, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Üllar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17863–17881, https://doi.org/10.5194/acp-18-17863-2018, https://doi.org/10.5194/acp-18-17863-2018, 2018
Short summary
Short summary
Understanding the connections between aerosols, solar radiation and photosynthesis in terrestrial ecosystems is important for estimates of the CO2 balance in the atmosphere. Atmospheric aerosols and clouds influence solar radiation. In this study, we quantify the aerosol effect on solar radiation in boreal forests and study forest ecosystems response to this change in the radiation conditions. The analysis is based on atmospheric observations from several remote stations in Eurasian forests.
Qun Du, Huizhi Liu, Lujun Xu, Yang Liu, and Lei Wang
Atmos. Chem. Phys., 18, 15087–15104, https://doi.org/10.5194/acp-18-15087-2018, https://doi.org/10.5194/acp-18-15087-2018, 2018
Short summary
Short summary
Erhai Lake is a subtropical highland shallow lake on the southeast margin of the Tibetan Plateau, which is influenced by both South Asian and East Asian summer monsoons. The substantial difference in atmospheric properties during monsoon and non-monsoon periods has a large effect in regulating turbulent heat and carbon dioxide exchange processes over Erhai Lake. Large difference are found for the factors controlling sensible heat and carbon dioxide flux during monsoon and non-monsoon periods.
Claudia Grossi, Felix R. Vogel, Roger Curcoll, Alba Àgueda, Arturo Vargas, Xavier Rodó, and Josep-Anton Morguí
Atmos. Chem. Phys., 18, 5847–5860, https://doi.org/10.5194/acp-18-5847-2018, https://doi.org/10.5194/acp-18-5847-2018, 2018
Short summary
Short summary
To gain a full picture of the Spanish (and European) GHG balance, understanding of CH4 emissions in different regions is a critical challenge, as is the improvement of bottom-up inventories for all European regions. This study uses, among other elements, GHG, meteorological and 222Rn tracer data from a Spanish region to understand the main causes of temporal variability of GHG mixing ratios. The study can offer new insights into regional emissions by identifying the impacts of changing sources.
Pablo E. S. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Anywhere Tsokankunku, Stefan Wolff, Alessandro C. Araújo, Rodrigo A. F. Souza, Marta O. Sá, Antônio O. Manzi, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 3083–3099, https://doi.org/10.5194/acp-18-3083-2018, https://doi.org/10.5194/acp-18-3083-2018, 2018
Short summary
Short summary
Carbon dioxide and latent heat fluxes within the canopy are dominated by low-frequency (nonturbulent) processes. There is a striking contrast between fully turbulent and intermittent nights, such that turbulent processes dominate the total nighttime exchange during the former, while nonturbulent processes are more relevant in the latter. In very stable nights, during which intermittent exchange prevails, the stable boundary layer may be shallower than the highest observational level at 80 m.
Sean Hartery, Róisín Commane, Jakob Lindaas, Colm Sweeney, John Henderson, Marikate Mountain, Nicholas Steiner, Kyle McDonald, Steven J. Dinardo, Charles E. Miller, Steven C. Wofsy, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 18, 185–202, https://doi.org/10.5194/acp-18-185-2018, https://doi.org/10.5194/acp-18-185-2018, 2018
Short summary
Short summary
Methane is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. This study uses aircraft measurements of methane from Alaska to estimate surface emissions. We found that methane emission rates depend on the soil temperature at depths where its production was taking place, and that total emissions were similar between tundra and boreal regions. These results provide a simple way to predict methane emissions in this region.
Linda M. J. Kooijmans, Kadmiel Maseyk, Ulli Seibt, Wu Sun, Timo Vesala, Ivan Mammarella, Pasi Kolari, Juho Aalto, Alessandro Franchin, Roberta Vecchi, Gianluigi Valli, and Huilin Chen
Atmos. Chem. Phys., 17, 11453–11465, https://doi.org/10.5194/acp-17-11453-2017, https://doi.org/10.5194/acp-17-11453-2017, 2017
Short summary
Short summary
Carbon cycle studies rely on the accuracy of models to estimate the amount of CO2 being taken up by vegetation. The gas carbonyl sulfide (COS) can serve as a tool to estimate the vegetative CO2 uptake by scaling the ecosystem uptake of COS to that of CO2. Here we investigate the nighttime fluxes of COS. The relationships found in this study will aid in implementing nighttime COS uptake in models, which is key to obtain accurate estimates of vegetative CO2 uptake with the use of COS.
Pavel Alekseychik, Ivan Mammarella, Dmitry Karpov, Sigrid Dengel, Irina Terentieva, Alexander Sabrekov, Mikhail Glagolev, and Elena Lapshina
Atmos. Chem. Phys., 17, 9333–9345, https://doi.org/10.5194/acp-17-9333-2017, https://doi.org/10.5194/acp-17-9333-2017, 2017
Short summary
Short summary
West Siberian peatlands occupy a large fraction of land area in the region, and yet little is known about their interaction with the atmosphere. We took the first measurements of CO2 and energy surface balances over a typical bog of West Siberian middle taiga, in the vicinity of the Mukhrino field station (Khanty–Mansiysk). The May–August study in a wet year (2015) revealed a relatively large photosynthetic sink of CO2 that was close to the high end of estimates at bog sites elsewhere.
Lei Wang, Huizhi Liu, Jihua Sun, and Yaping Shao
Atmos. Chem. Phys., 17, 5119–5129, https://doi.org/10.5194/acp-17-5119-2017, https://doi.org/10.5194/acp-17-5119-2017, 2017
Short summary
Short summary
This study found that the seasonal variation in CO2 exchange over an alpine meadow on the Tibetan Plateau was primarily affected by the seasonal pattern of air temperature, especially in spring and autumn. The annual net ecosystem exchange decreased with mean annual temperature, and then increased when the gross primary production became saturated. This study contributes to the response of the alpine meadow ecosystem to global warming.
Xueqian Wang, Weidong Guo, Bo Qiu, Ye Liu, Jianning Sun, and Aijun Ding
Atmos. Chem. Phys., 17, 4989–4996, https://doi.org/10.5194/acp-17-4989-2017, https://doi.org/10.5194/acp-17-4989-2017, 2017
Short summary
Short summary
Land use or cover change is a fundamental anthropogenic forcing for climate change. Based on field observations, we quantified the contributions of different factors to surface temperature change and deepened the understanding of its mechanisms. We found evaporative cooling plays the most important role in the temperature change, while radiative forcing, which is traditionally emphasized, is not significant. This study provided firsthand evidence to verify the model results in IPCC AR5.
L. Paige Wright, Leiming Zhang, and Frank J. Marsik
Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, https://doi.org/10.5194/acp-16-13399-2016, 2016
Short summary
Short summary
The current knowledge concerning mercury dry deposition is reviewed, including dry deposition algorithms used in chemical transport models and at monitoring sites, measurement methods and studies for quantifying dry deposition of oxidized mercury, and measurement studies of litterfall and throughfall mercury. Over all the regions, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition.
Einara Zahn, Nelson L. Dias, Alessandro Araújo, Leonardo D. A. Sá, Matthias Sörgel, Ivonne Trebs, Stefan Wolff, and Antônio Manzi
Atmos. Chem. Phys., 16, 11349–11366, https://doi.org/10.5194/acp-16-11349-2016, https://doi.org/10.5194/acp-16-11349-2016, 2016
Short summary
Short summary
Preliminary data from the ATTO project were analyzed to characterize the exchange of heat, water vapor, and CO2 between the Amazon forest and the atmosphere. The forest roughness makes estimation of their fluxes difficult, and even measurements at 42 m above the canopy show a lot of scatter. Still, measurements made around noon showed much better conformity with standard theories for the exchange of these quantities, opening the possibility of good flux estimates when the sun is high.
Undine Zöll, Christian Brümmer, Frederik Schrader, Christof Ammann, Andreas Ibrom, Christophe R. Flechard, David D. Nelson, Mark Zahniser, and Werner L. Kutsch
Atmos. Chem. Phys., 16, 11283–11299, https://doi.org/10.5194/acp-16-11283-2016, https://doi.org/10.5194/acp-16-11283-2016, 2016
Short summary
Short summary
Accurate quantification of atmospheric ammonia concentration and exchange fluxes with the land surface has been a major metrological challenge. We demonstrate the applicability of a novel laser device to identify concentration and flux patterns over a peatland ecosystem influenced by nearby agricultural practices. Results help to strengthen air quality monitoring networks, lead to better understanding of ecosystem functionality and improve parameterizations in air chemistry and transport models.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
Aurélie Bachy, Marc Aubinet, Niels Schoon, Crist Amelynck, Bernard Bodson, Christine Moureaux, and Bernard Heinesch
Atmos. Chem. Phys., 16, 5343–5356, https://doi.org/10.5194/acp-16-5343-2016, https://doi.org/10.5194/acp-16-5343-2016, 2016
Short summary
Short summary
This research focuses on Biogenic Volatile Organic Compounds (BVOC) exchanges between a maize field and the atmosphere. Indeed, few BVOC studies have already investigated agricultural ecosystems. We found that the maize field emitted mainly methanol, that both soil and plants contributed to the net exchange, that exchanges were lower than in other studies and than considered by models. Our work tends thus to lower the impact of maize on terrestrial BVOC exchanges.
Y. Zhao, T. Huang, L. Wang, H. Gao, and J. Ma
Atmos. Chem. Phys., 15, 3479–3495, https://doi.org/10.5194/acp-15-3479-2015, https://doi.org/10.5194/acp-15-3479-2015, 2015
Short summary
Short summary
After several decades of declining persistent organic pollutants in the arctic environment due to their global use restriction, some of these toxic chemicals increased in the mid-2000s and undertook statistically significant step changes which coincided with arctic sea ice melting. Results provide statistical evidence for the releasing of toxic chemicals from their reservoirs in the Arctic due to the rapid change in the arctic environment.
J. Sievers, T. Papakyriakou, S. E. Larsen, M. M. Jammet, S. Rysgaard, M. K. Sejr, and L. L. Sørensen
Atmos. Chem. Phys., 15, 2081–2103, https://doi.org/10.5194/acp-15-2081-2015, https://doi.org/10.5194/acp-15-2081-2015, 2015
H. Huang, J. Wang, D. Hui, D. R. Miller, S. Bhattarai, S. Dennis, D. Smart, T. Sammis, and K. C. Reddy
Atmos. Chem. Phys., 14, 12839–12854, https://doi.org/10.5194/acp-14-12839-2014, https://doi.org/10.5194/acp-14-12839-2014, 2014
Short summary
Short summary
An EC system was assembled with a sonic anemometer and a new fast-response N2O analyzer and applied in a cornfield during a growing season. This N2O EC system provided reliable N2O flux measurements. The average flux was about 63% higher during the daytime than during the nighttime. Seasonal fluxes were highly dependent on soil moisture rather than soil temperature.
D. Vickers and C. K. Thomas
Atmos. Chem. Phys., 14, 9665–9676, https://doi.org/10.5194/acp-14-9665-2014, https://doi.org/10.5194/acp-14-9665-2014, 2014
G. G. Cirino, R. A. F. Souza, D. K. Adams, and P. Artaxo
Atmos. Chem. Phys., 14, 6523–6543, https://doi.org/10.5194/acp-14-6523-2014, https://doi.org/10.5194/acp-14-6523-2014, 2014
L. Hörtnagl, I. Bamberger, M. Graus, T. M. Ruuskanen, R. Schnitzhofer, M. Walser, A. Unterberger, A. Hansel, and G. Wohlfahrt
Atmos. Chem. Phys., 14, 5369–5391, https://doi.org/10.5194/acp-14-5369-2014, https://doi.org/10.5194/acp-14-5369-2014, 2014
F. Lohou, L. Kergoat, F. Guichard, A. Boone, B. Cappelaere, J.-M. Cohard, J. Demarty, S. Galle, M. Grippa, C. Peugeot, D. Ramier, C. M. Taylor, and F. Timouk
Atmos. Chem. Phys., 14, 3883–3898, https://doi.org/10.5194/acp-14-3883-2014, https://doi.org/10.5194/acp-14-3883-2014, 2014
E. Velasco, M. Roth, S. H. Tan, M. Quak, S. D. A. Nabarro, and L. Norford
Atmos. Chem. Phys., 13, 10185–10202, https://doi.org/10.5194/acp-13-10185-2013, https://doi.org/10.5194/acp-13-10185-2013, 2013
G. C. Edwards and D. A. Howard
Atmos. Chem. Phys., 13, 5325–5336, https://doi.org/10.5194/acp-13-5325-2013, https://doi.org/10.5194/acp-13-5325-2013, 2013
H. Z. Liu, J. W. Feng, L. Järvi, and T. Vesala
Atmos. Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, https://doi.org/10.5194/acp-12-7881-2012, 2012
S. Dupont and E. G. Patton
Atmos. Chem. Phys., 12, 5913–5935, https://doi.org/10.5194/acp-12-5913-2012, https://doi.org/10.5194/acp-12-5913-2012, 2012
T. Foken, F. X. Meixner, E. Falge, C. Zetzsch, A. Serafimovich, A. Bargsten, T. Behrendt, T. Biermann, C. Breuninger, S. Dix, T. Gerken, M. Hunner, L. Lehmann-Pape, K. Hens, G. Jocher, J. Kesselmeier, J. Lüers, J.-C. Mayer, A. Moravek, D. Plake, M. Riederer, F. Rütz, M. Scheibe, L. Siebicke, M. Sörgel, K. Staudt, I. Trebs, A. Tsokankunku, M. Welling, V. Wolff, and Z. Zhu
Atmos. Chem. Phys., 12, 1923–1950, https://doi.org/10.5194/acp-12-1923-2012, https://doi.org/10.5194/acp-12-1923-2012, 2012
Q. Laffineur, M. Aubinet, N. Schoon, C. Amelynck, J.-F. Müller, J. Dewulf, H. Van Langenhove, K. Steppe, and B. Heinesch
Atmos. Chem. Phys., 12, 577–590, https://doi.org/10.5194/acp-12-577-2012, https://doi.org/10.5194/acp-12-577-2012, 2012
A. L. Steiner, S. N. Pressley, A. Botros, E. Jones, S. H. Chung, and S. L. Edburg
Atmos. Chem. Phys., 11, 11921–11936, https://doi.org/10.5194/acp-11-11921-2011, https://doi.org/10.5194/acp-11-11921-2011, 2011
C. A. S. Querino, C. J. P. P. Smeets, I. Vigano, R. Holzinger, V. Moura, L. V. Gatti, A. Martinewski, A. O. Manzi, A. C. de Araújo, and T. Röckmann
Atmos. Chem. Phys., 11, 7943–7953, https://doi.org/10.5194/acp-11-7943-2011, https://doi.org/10.5194/acp-11-7943-2011, 2011
X. Jing, J. Huang, G. Wang, K. Higuchi, J. Bi, Y. Sun, H. Yu, and T. Wang
Atmos. Chem. Phys., 10, 8205–8218, https://doi.org/10.5194/acp-10-8205-2010, https://doi.org/10.5194/acp-10-8205-2010, 2010
R. J. Vong, I. J. Vong, D. Vickers, and D. S. Covert
Atmos. Chem. Phys., 10, 5749–5758, https://doi.org/10.5194/acp-10-5749-2010, https://doi.org/10.5194/acp-10-5749-2010, 2010
H. K. Lappalainen, S. Sevanto, J. Bäck, T. M. Ruuskanen, P. Kolari, R. Taipale, J. Rinne, M. Kulmala, and P. Hari
Atmos. Chem. Phys., 9, 5447–5459, https://doi.org/10.5194/acp-9-5447-2009, https://doi.org/10.5194/acp-9-5447-2009, 2009
Cited articles
Banerjee, T. and Katul, G.: Logarithmic scaling in the longitudinal velocity
variance explained by a spectral budget, Phys. Fluids (1994–present),
25, 125106, https://doi.org/10.1063/1.4837876, 2013a. a
Banerjee, T., Katul, G., Salesky, S., and Chamecki, M.: Revisiting the
formulations for the longitudinal velocity variance in the unstable
atmospheric surface layer, Q. J. Roy. Meteorol. Soc., 141, 1699–1711, 2015. a
Banerjee, T., De Roo, F., and Mauder, M.: Explaining the
convector effect in canopy turbulence by means of large-eddy simulation, Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, 2017a. a
Belcher, S. E., Jerram, N., and Hunt, J. C. R.: Adjustment of a Turbulent
Boundary Layer to a Canopy of Roughness Elements, J. Fluid Mech.,
488, 369–398, 2003. a
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-profile
relationships in the atmospheric surface layer, J. Atmos.
Sci., 28, 181–189, 1971. a
Cassiani, M., Katul, G. G., and Albertson, J. D.: The Effects of Canopy Leaf
Area Index on Airflow across Foest Edges: Large-Eddy Simulation and
Analytical Results, Bound.-Lay. Meteorol., 126, 433–460, 2008. a
Chamecki, M.: Persistence of velocity fluctuations in non-Gaussian turbulence
within and above plant canopies, Phys. Fluids (1994–present), 25,
115110, https://doi.org/10.1063/1.4832955, 2013. a
Chatziefstratiou, E. K., Velissariou, V., and Bohrer, G.: Resolving the effects
of aperture and volume restriction of the flow by semi-porous barriers using
large-eddy simulations, Bound.-Lay. Meteorol., 152, 329–348, 2014. a
Courault, D., Drobinski, P., Brunet, Y., Lacarrere, P., and Talbot, C.: Impact
of surface heterogeneity on a buoyancy-driven convective boundary layer in
light winds, Bound.-Lay. Meteorol., 124, 383–403, 2007. a
Dalpe, B. and Masson, C.: Numerical Simulation of Wind Flow near a Forest Edge,
J. Wind Eng. Ind. Aerod., 97, 228–241, 2009. a
Dalu, G. and Pielke, R.: Vertical heat fluxes generated by mesoscale
atmospheric flow induced by thermal inhomogeneities in the PBL, J.
Atmos. Sci., 50, 919–926, 1993. a
Detto, M., Katul, G. G., Siqueira, M., Juang, J. Y., and Stoy, P.: The
Structure of Turbulence near a Tall Forest Edge: The Backward-Facing Step
Flow Analogy Revisited, Ecological Applications, 18, 1420–1435, 2008. a
Dias-Junior, C. Q., Marques Filho, E. P., and Sá, L. D.: A large eddy
simulation model applied to analyze the turbulent flow above Amazon forest,
J. Wind Eng. Ind. Aerod., 147, 143–153, 2015. a
Dixon, N., Parker, D., Taylor, C., Garcia-Carreras, L., Harris, P., Marsham,
J., Polcher, J., and Woolley, A.: The effect of background wind on mesoscale
circulations above variable soil moisture in the Sahel, Q. J.
Roy. Meteorol. Soc., 139, 1009–1024, 2013. a
Dupont, S. and Brunet, Y.: Coherent structures in canopy edge flow: a
large-eddy simulation study, J. Fluid Mech., 630, 93–128, 2009. a
Dyer, A.: A review of flux-profile relationships, Bound.-Lay. Meteorol.,
7, 363–372, 1974. a
Eder, F., De Roo, F., Kohnert, K., Desjardins, R. L., Schmid, H. P., and
Mauder, M.: Evaluation of two energy balance closure parametrizations,
Bound.-Lay. Meteorol., 151, 195–219, 2014. a
Fesquet, C., Dupont, S., Drobinski, P., Dubos, T., and Barthlott, C.: Impact of
Terrain Heterogeneity on Coherent Structure Properties: Numerical Approach,
Bound.-Lay. Meteorol., 133, 71–92, 2009. a
Foken, T.: The energy balance closure problem: an overview, Ecol.
Appl., 18, 1351–1367, 2008. a
Fuentes, J. D., Chamecki, M., Nascimento dos Santos, R. M., Von Randow, C.,
Stoy, P. C., Katul, G., Fitzjarrald, D., Manzi, A., Gerken, T., Trowbridge,
A., Souza Freire, L., Ruiz-Plancarte, J.,
Furtunato Maia, J. M., Tóta, J., Dias, N., Fisch, G., Schumacher, C., Acevedo, O., Rezende Mercer, J., and Yañez-Serrano, A. M.: Linking meteorology, turbulence, and air chemistry in the
Amazon rainforest, B. Am. Meteorol. Soc., 97, 2329–2342, 2016. a
Garcia-Carreras, L., Parker, D. J., Taylor, C. M., Reeves, C. E., and Murphy,
J. G.: Impact of mesoscale vegetation heterogeneities on the dynamical and
thermodynamic properties of the planetary boundary layer, J.
Geophys. Res.-Atmos., 115, https://doi.org/10.1029/2009JD012811, 2010. a
Gavrilov, K., Accary, G., Morvan, D., Lyubimov, D., Bessonov, O., and Meradji,
S.: Large Eddy Simulation of Coherent Structures over Forest Canopy,
Turbulence and Interactions, 110, 143–149, 2010. a
Gavrilov, K., Accary, G., Morvan, D., Lyubimov, D., Meradji, S., and Bessonov,
O.: Numerical Simulation of Coherent Structures over Plant Canopy, Flow
Turbulence and Combustion, 86, 89–111, 2011. a
Harman, I. N. and Finnigan, J. J.: A simple unified theory for flow in the
canopy and roughness sublayer, Bound.-Lay. Meteorol., 123, 339–363,
2007. a
Higgins, C. W., Katul, G. G., Froidevaux, M., Simeonov, V., and Parlange,
M. B.: Are atmospheric surface layer flows ergodic?, Geophys. Res.
Lett., 40, 3342–3346, 2013. a
Huang, J., Cassiani, M., and Albertson, J. D.: Coherent Turbulent Structures
across a Vegetation Discontinuity, Bound.-Lay. Meteorol., 140, 1–22,
2011. a
Irvine, M. R., Gardiner, B. A., and Hill, M. K.: The Evolution of Turbulence
across a Forest Edge, Bound.-Lay. Meteorol., 84, 467–496, 1997. a
Kanani-Sühring, F. and Raasch, S.: Spatial variability of scalar
concentrations and fluxes downstream of a clearing-to-forest transition: a
large-eddy simulation study, Bound.-Lay. Meteorol., 155, 1–27, 2015. a
Kanda, M., Inagaki, A., Letzel, M. O., Raasch, S., and Watanabe, T.: LES study
of the energy imbalance problem with eddy covariance fluxes, Bound.-Lay.
Meteorol., 110, 381–404, 2004. a
Kang, S.-L. and Lenschow, D. H.: Temporal evolution of low-level winds induced
by two-dimensional mesoscale surface heat-flux heterogeneity, Bound.-Lay.
Meteorol., 151, 501–529, 2014. a
Kröniger, K., Banerjee, T., De Roo, F., and Mauder, M.: Flow adjustment
inside homogeneous canopies after a leading edge–An analytical approach
backed by LES, Agr. Forest Meteorol., 255, 17–30, https://doi.org/10.1016/j.agrformet.2017.09.019, 2017. a
Kröniger, K., , DeRoo, F., Brugger, P., Huq, S., Banerjee, T., Zinsser,
J., Rotenberg, E., Yakir, D., Rohatyn, S., and Mauder, M.: Effect of
Secondary Circulations on the Surface–Atmosphere Exchange of Energy at an
Isolated Semi-arid Forest, Bound.-Lay. Meteorol., https://doi.org/10.1007/s10546-018-0370-6, 2018. a, b, c
Li, D., Salesky, S. T., and Banerjee, T.: Connections between the Ozmidov
scale and mean velocity profile in stably stratified atmospheric surface
layers, J. Fluid Mech., 797, https://doi.org/10.1017/jfm.2016.311, 2016. a, b
Li, Z. J., Lin, J. D., and Miller, D. R.: Air-Flow over and through a Forest
Edge – a Steady-State Numerical-Simulation, Bound.-Lay. Meteorol., 51,
179–197, 1990. a
Mahfouf, J.-F., Richard, E., and Mascart, P.: The influence of soil and
vegetation on the development of mesoscale circulations, J. Appl.
Meteorol. Climatol., 26, 1483–1495, 1987. a
Markfort, C., Porté-Agel, F., and Stefan, H.: Canopy-wake dynamics and wind
sheltering effects on Earth surface fluxes, Environ. Fluid Mech.,
14, 663–697, 2014. a
Marusic, I., Monty, J. P., Hultmark, M., and Smits, A. J.: On the logarithmic
region in wall turbulence, J. Fluid Mech., 716, https://doi.org/10.1017/jfm.2012.511, 2013. a
Mauder, M., Jegede, O., Okogbue, E., Wimmer, F., and Foken, T.: Surface energy
balance measurements at a tropical site in West Africa during the
transition from dry to wet season, Theor. Appl. Climatol., 89,
171–183, 2007. a
Monin, A. and Obukhov, A.: Basic laws of turbulent mixing in the surface layer
of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163–187,
1954. a
Nadeau, D. F., Pardyjak, E. R., Higgins, C. W., Fernando, H. J. S., and
Parlange, M. B.: A simple model for the afternoon and early evening decay of
convective turbulence over different land surfaces, Bound.-Lay.
Meteorol., 141, 301–324, https://doi.org/10.1007/s10546-011-9645-x, 2011. a, b
Nakagawa, H. and Nezu, I.: Prediction of the contributions to the Reynolds
stress from bursting events in open-channel flows, J. Fluid
Mech., 80, 99–128, 1977. a
Peltola, H.: Model Computations on Wind Flow and Turning Moment for Scots
Pine
s along the Margins of Clear-Cut Areas, Forest Ecol. Manage.,
83, 203–215, 1996. a
Perry, A. and Chong, M.: On the mechanism of wall turbulence, J. Fluid
Mech., 119, 173–217, 1982. a
Queck, R., Bernhofer, C., Bienert, A., and Schlegel, F.: The TurbEFA Field
Experiment – Measuring the Influence of a Forest Clearing on the Turbulent
Wind Field, Bound.-Lay. Meteorol., 160, 397–423, 2016. a
Rominger, J. T. and Nepf, H. M.: Flow Adjustment and Interior Flow Associated
with a Rectangular Porous Obstruction, J. Fluid Mech., 680,
636–659, 2011. a
Rotenberg, E. and Yakir, D.: Distinct patterns of changes in surface energy
budget associated with forestation in the semiarid region, Glob. Change
Biol., 17, 1536–1548, 2011. a
Salesky, S. T., Katul, G. G., and Chamecki, M.: Buoyancy effects on the
integral lengthscales and mean velocity profile in atmospheric surface layer
flows, Phys. Fluids (1994–present), 25, 105101, https://doi.org/10.1063/1.4823747, 2013. a
Schlegel, F., Stiller, J., Bienert, A., Maas, H. G., Queck, R., and Bernhofer,
C.: Large-Eddy Simulation of Inhomogeneous Canopy Flows Using High Resolution
Terrestrial Laser Scanning Data, Bound.-Lay. Meteorol., 142, 223–243,
2012. a
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain,
M. A., Arneth, A., Aurela, M., Bernhofer, C., et al.: A data-driven analysis
of energy balance closure across FLUXNET research sites: The role of
landscape scale heterogeneity, Agr. Forest Meteorol., 171,
137–152, 2013. a
Sühring, M. and Raasch, S.: Heterogeneity-induced heat-flux patterns in the
convective boundary layer: can they be detected from observations and is
there a blending height? – a large-eddy simulation study for the
LITFASS-2003 experiment, Bound.-Lay. Meteorol., 148, 309–331, 2013. a
Townsend, A. A.: The structure of turbulent shear flow, Cambridge University
Press, 1976. a
van Heerwaarden, C. C. and Guerau de Arellano, J. V.: Relative humidity as an
indicator for cloud formation over heterogeneous land surfaces, J. Atmos. Sci., 65, 3263–3277, 2008. a
Van Heerwaarden, C. C., Mellado, J. P., and De Lozar, A.: Scaling laws for the
heterogeneously heated free convective boundary layer, J.
Atmos. Sci., 71, 3975–4000, 2014. a
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt
correction algorithms, Bound.-Lay. Meteorol., 99, 127–150, 2001. a
Yang, B., Raupach, M. R., Shaw, R. H., Tha, K., Paw, U., and Morse, A. P.:
Large-Eddy Simulation of Turbulent Flow across a Forest Edge. Part I: Flow
Statistics, Bound.-Lay. Meteorol., 120, 377–412, 2006. a
Zhuang, Y. and Amiro, B.: Pressure fluctuations during coherent motions and
their effects on the budgets of turbulent kinetic energy and momentum flux
within a forest canopy, J. Appl. Meteorol., 33, 704–711, 1994. a
Short summary
We studied the nature of turbulent transport over a well-defined surface heterogeneity (approximate scale 7 km) comprising a shrubland and a forest in the Yatir semiarid area in Israel. Using eddy covariance and Doppler lidar measurements, we studied the variations in the turbulent kinetic energy budget and turbulent fluxes, focusing especially on transport terms. We also confirmed the role of large-scale secondary circulations that transport energy between the shrubland and the forest.
We studied the nature of turbulent transport over a well-defined surface heterogeneity...
Altmetrics
Final-revised paper
Preprint