Articles | Volume 17, issue 3
Atmos. Chem. Phys., 17, 1641–1651, 2017
https://doi.org/10.5194/acp-17-1641-2017
Atmos. Chem. Phys., 17, 1641–1651, 2017
https://doi.org/10.5194/acp-17-1641-2017

Research article 02 Feb 2017

Research article | 02 Feb 2017

Understanding severe winter haze events in the North China Plain in 2014: roles of climate anomalies

Zhicong Yin et al.

Related authors

Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in February
Zhicong Yin, Yijia Zhang, Huijun Wang, and Yuyan Li
Atmos. Chem. Phys., 21, 1581–1592, https://doi.org/10.5194/acp-21-1581-2021,https://doi.org/10.5194/acp-21-1581-2021, 2021
Short summary
Roles of climate variability on the rapid increases of early winter haze pollution in North China after 2010
Yijia Zhang, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 20, 12211–12221, https://doi.org/10.5194/acp-20-12211-2020,https://doi.org/10.5194/acp-20-12211-2020, 2020
Short summary
Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations
Zhicong Yin, Bufan Cao, and Huijun Wang
Atmos. Chem. Phys., 19, 13933–13943, https://doi.org/10.5194/acp-19-13933-2019,https://doi.org/10.5194/acp-19-13933-2019, 2019
Short summary
The relationship between anticyclonic anomalies in northeastern Asia and severe haze in the Beijing–Tianjin–Hebei region
Wogu Zhong, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 19, 5941–5957, https://doi.org/10.5194/acp-19-5941-2019,https://doi.org/10.5194/acp-19-5941-2019, 2019
Short summary
Links of climate variability in Arctic sea ice, Eurasian teleconnection pattern and summer surface ozone pollution in North China
Zhicong Yin, Huijun Wang, Yuyan Li, Xiaohui Ma, and Xinyu Zhang
Atmos. Chem. Phys., 19, 3857–3871, https://doi.org/10.5194/acp-19-3857-2019,https://doi.org/10.5194/acp-19-3857-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Comparison of the influence of two types of cold surge on haze dispersion in eastern China
Shiyue Zhang, Gang Zeng, Xiaoye Yang, Ruixi Wu, and Zhicong Yin
Atmos. Chem. Phys., 21, 15185–15197, https://doi.org/10.5194/acp-21-15185-2021,https://doi.org/10.5194/acp-21-15185-2021, 2021
Short summary
Water vapor anomaly over the tropical western Pacific in El Niño winters from radiosonde and satellite observations and ERA5 reanalysis data
Minkang Du, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong, and Fan Yi
Atmos. Chem. Phys., 21, 13553–13569, https://doi.org/10.5194/acp-21-13553-2021,https://doi.org/10.5194/acp-21-13553-2021, 2021
Short summary
Characteristics of the summer atmospheric boundary layer height over the Tibetan Plateau and influential factors
Junhui Che and Ping Zhao
Atmos. Chem. Phys., 21, 5253–5268, https://doi.org/10.5194/acp-21-5253-2021,https://doi.org/10.5194/acp-21-5253-2021, 2021
Short summary
The relationship between anticyclonic anomalies in northeastern Asia and severe haze in the Beijing–Tianjin–Hebei region
Wogu Zhong, Zhicong Yin, and Huijun Wang
Atmos. Chem. Phys., 19, 5941–5957, https://doi.org/10.5194/acp-19-5941-2019,https://doi.org/10.5194/acp-19-5941-2019, 2019
Short summary
Response of early winter haze in the North China Plain to autumn Beaufort sea ice
Zhicong Yin, Yuyan Li, and Huijun Wang
Atmos. Chem. Phys., 19, 1439–1453, https://doi.org/10.5194/acp-19-1439-2019,https://doi.org/10.5194/acp-19-1439-2019, 2019
Short summary

Cited articles

Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence of low frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, 1987.
Chen, H. P. and Wang, H. J.: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012, J. Geophys. Res.-Atmos., 120, 5895–5909, https://doi.org/10.1002/2015JD023225, 2015.
Chen, Y., Ebenstein, A., Greenstone, M., and Li, H.: Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy, P. Natl. Acad. Sci. USA, 110, 12936–12941, 2013.
China Meteorology Administration: The notification on the adjustment of haze phenomenon observing provisions and revision of fog-haze observation data in 2013 by Observing and Forecasting Department Division, China Meteorology Administration, 2014.
CMA: China ground observation data sets, available at: http://data.cma.cn/, last access: 21 January 2017 (in Chinese).
Download
Short summary
The number of winter haze days over the north-central North China Plain in 2014 was largest in the past 30 years. With the anticyclone circulation over North China taken as an intermediate, the positive phases of the east Atlantic/west Russia, western Pacific, and Eurasian patterns led to a larger number of haze days in 2014. The related external forcing included preceding autumn Arctic sea ice, winter and pre-autumn surface temperature, and pre-autumn sea surface temperature in the Pacific.
Altmetrics
Final-revised paper
Preprint