Articles | Volume 17, issue 20
https://doi.org/10.5194/acp-17-12797-2017
https://doi.org/10.5194/acp-17-12797-2017
Research article
 | 
27 Oct 2017
Research article |  | 27 Oct 2017

Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

Xiaowei Wang, Bo Jing, Fang Tan, Jiabi Ma, Yunhong Zhang, and Maofa Ge

Related authors

Mechanistic insights into nitric acid-enhanced iodic acid particle nucleation in the upper troposphere and lower stratosphere
Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1194,https://doi.org/10.5194/egusphere-2025-1194, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Characterization of nitrous acid and its potential effects on secondary pollution in the warm season in Beijing urban areas
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Jiaqi Wang, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
Atmos. Chem. Phys., 25, 2551–2568, https://doi.org/10.5194/acp-25-2551-2025,https://doi.org/10.5194/acp-25-2551-2025, 2025
Short summary
The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024,https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
A comprehensive study on hygroscopic behaviour and nitrate depletion of NaNO3 and dicarboxylic acid mixtures: implications for nitrate depletion in tropospheric aerosols
Shuaishuai Ma, Qiong Li, and Yunhong Zhang
Atmos. Chem. Phys., 22, 10955–10970, https://doi.org/10.5194/acp-22-10955-2022,https://doi.org/10.5194/acp-22-10955-2022, 2022
Short summary
Effects of OH radical and SO2 concentrations on photochemical reactions of mixed anthropogenic organic gases
Junling Li, Kun Li, Hao Zhang, Xin Zhang, Yuanyuan Ji, Wanghui Chu, Yuxue Kong, Yangxi Chu, Yanqin Ren, Yujie Zhang, Haijie Zhang, Rui Gao, Zhenhai Wu, Fang Bi, Xuan Chen, Xuezhong Wang, Weigang Wang, Hong Li, and Maofa Ge
Atmos. Chem. Phys., 22, 10489–10504, https://doi.org/10.5194/acp-22-10489-2022,https://doi.org/10.5194/acp-22-10489-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Heterogeneous phototransformation of halogenated polycyclic aromatic hydrocarbons: influencing factors, mechanisms and products
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Atmos. Chem. Phys., 25, 3981–3994, https://doi.org/10.5194/acp-25-3981-2025,https://doi.org/10.5194/acp-25-3981-2025, 2025
Short summary
Boosting aerosol surface effects: strongly enhanced cooperative surface propensity of atmospherically relevant organic molecular ions in aqueous solution
Harmanjot Kaur, Stephan Thürmer, Shirin Gholami, Bruno Credidio, Florian Trinter, Debora Vasconcelos, Ricardo Marinho, Joel Pinheiro, Hendrik Bluhm, Arnaldo Naves de Brito, Gunnar Öhrwall, Bernd Winter, and Olle Björneholm
Atmos. Chem. Phys., 25, 3503–3518, https://doi.org/10.5194/acp-25-3503-2025,https://doi.org/10.5194/acp-25-3503-2025, 2025
Short summary
The lifetimes and potential change in planetary albedo owing to the oxidation of thin surfactant organic films extracted from atmospheric aerosol by hydroxyl (OH) radicals at the air–water interface of particles
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025,https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
Atmos. Chem. Phys., 25, 1805–1829, https://doi.org/10.5194/acp-25-1805-2025,https://doi.org/10.5194/acp-25-1805-2025, 2025
Short summary
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025,https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary

Cited articles

Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V., and Seinfeld, J. H.: A phase equilibrium model for atmospheric aerosols containing inorganic electrolytes and organic compounds (UHAERO), with application to dicarboxylic acids, J. Geophys. Res.-Atmos., 112, D24S13, https://doi.org/10.1029/2007jd008424, 2007.
Badger, C. L., George, I., Griffiths, P. T., Braban, C. F., Cox, R. A., and Abbatt, J. P. D.: Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate, Atmos. Chem. Phys., 6, 755–768, https://doi.org/10.5194/acp-6-755-2006, 2006.
Braban, C. F. and Abbatt, J. P. D.: A study of the phase transition behavior of internally mixed ammonium sulfate – malonic acid aerosols, Atmos. Chem. Phys., 4, 1451–1459, https://doi.org/10.5194/acp-4-1451-2004, 2004.
Braban, C. F., Carroll, M. F., Styler, S. A., and Abbatt, J. P. D.: Phase transitions of malonic and oxalic acid aerosols, J. Phys. Chem. A, 107, 6594–6602, https://doi.org/10.1021/jp034483f, 2003.
Brooks, S. D., Wise, M. E., Cushing, M., and Tolbert, M. A.: Deliquescence behavior of organic/ammonium sulfate aerosol, Geophys. Res. Lett., 29, 1917, https://doi.org/10.1029/2002gl014733, 2002.
Download
Short summary
Our results reveal the formation of NH4HC2O4 and NH4HSO4 from the reaction of oxalic acid (OA) with ammonium sulfate within aerosols during the slow dehydration compared to the rapid dehydration process. The hygroscopic growth of mixed particles at high RH upon hydration is substantially lower than that of the corresponding dehydration process due to the significant formation of low hygroscopic NH4HC2O4 and residual OA. These findings have important implications for atmospheric chemistry.
Share
Altmetrics
Final-revised paper
Preprint