Articles | Volume 17, issue 2
https://doi.org/10.5194/acp-17-1037-2017
https://doi.org/10.5194/acp-17-1037-2017
Research article
 | 
23 Jan 2017
Research article |  | 23 Jan 2017

Factors controlling black carbon distribution in the Arctic

Ling Qi, Qinbin Li, Yinrui Li, and Cenlin He

Related authors

Fossil fuel combustion and biomass burning sources of global black carbon from GEOS-Chem simulation and carbon isotope measurements
Ling Qi and Shuxiao Wang
Atmos. Chem. Phys., 19, 11545–11557, https://doi.org/10.5194/acp-19-11545-2019,https://doi.org/10.5194/acp-19-11545-2019, 2019
Short summary
Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008
Ling Qi, Qinbin Li, Daven K. Henze, Hsien-Liang Tseng, and Cenlin He
Atmos. Chem. Phys., 17, 9697–9716, https://doi.org/10.5194/acp-17-9697-2017,https://doi.org/10.5194/acp-17-9697-2017, 2017
Short summary
Effects of the Wegener–Bergeron–Findeisen process on global black carbon distribution
Ling Qi, Qinbin Li, Cenlin He, Xin Wang, and Jianping Huang
Atmos. Chem. Phys., 17, 7459–7479, https://doi.org/10.5194/acp-17-7459-2017,https://doi.org/10.5194/acp-17-7459-2017, 2017
Short summary
Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget
Cenlin He, Qinbin Li, Kuo-Nan Liou, Ling Qi, Shu Tao, and Joshua P. Schwarz
Atmos. Chem. Phys., 16, 3077–3098, https://doi.org/10.5194/acp-16-3077-2016,https://doi.org/10.5194/acp-16-3077-2016, 2016
Short summary
Estimates of black carbon emissions in the western United States using the GEOS-Chem adjoint model
Y. H. Mao, Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 15, 7685–7702, https://doi.org/10.5194/acp-15-7685-2015,https://doi.org/10.5194/acp-15-7685-2015, 2015

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025,https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025,https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary
How to trace the origins of short-lived atmospheric species: an Arctic example
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025,https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Dust-producing weather patterns of the North American Great Plains
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025,https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025,https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary

Cited articles

Allen, D. J., Kasibhatla, P., Thompson, A. M., Rood, R. B., Doddridge, B. G., Pickering, K. E., Hudson, R. D., and Lin, S. J.: Transport-induced interannual variability of carbon monoxide determined using a chemistry and transport model, J. Geophys. Res.-Atmos., 101, 28655–28669, https://doi.org/10.1029/96jd02984, 1996a.
Allen, D. J., Rood, R. B., Thompson, A. M., and Hudson, R. D.: Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm, J. Geophys. Res.-Atmos., 101, 6871–6881, https://doi.org/10.1029/95jd03408, 1996b.
Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I, J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:ioacce>2.0.co;2, 1974.
Barahona, D., Molod, A., Bacmeister, J., Nenes, A., Gettelman, A., Morrison, H., Phillips, V., and Eichmann, A.: Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5), Geosci. Model Dev., 7, 1733–1766, https://doi.org/10.5194/gmd-7-1733-2014, 2014.
Download
Short summary
The Arctic is the most vulnerable region for climate change. Black carbon (BC) in air and deposited on snow and ice warms the Arctic substantially, but simulations of BC climate effects are associated with large uncertainties. To reduce this uncertainty, it is imperative to improve the simulation of BC distribution in the Arctic. We evaluate the effects of controlling factors (emissions, dry and wet deposition) on BC distribution and call for more observations to constrain these processes.
Share
Altmetrics
Final-revised paper
Preprint