Articles | Volume 16, issue 14
https://doi.org/10.5194/acp-16-9255-2016
https://doi.org/10.5194/acp-16-9255-2016
Research article
 | 
28 Jul 2016
Research article |  | 28 Jul 2016

Theoretical investigation of mixing in warm clouds – Part 2: Homogeneous mixing

Mark Pinsky, Alexander Khain, Alexei Korolev, and Leehi Magaritz-Ronen

Related authors

Revisiting adiabatic fraction estimations in cumulus clouds: high-resolution simulations with a passive tracer
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021,https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Theoretical analysis of mixing in liquid clouds – Part IV: DSD evolution and mixing diagrams
Mark Pinsky and Alexander Khain
Atmos. Chem. Phys., 18, 3659–3676, https://doi.org/10.5194/acp-18-3659-2018,https://doi.org/10.5194/acp-18-3659-2018, 2018
Short summary
Theoretical study of mixing in liquid clouds – Part 1: Classical concepts
Alexei Korolev, Alex Khain, Mark Pinsky, and Jeffrey French
Atmos. Chem. Phys., 16, 9235–9254, https://doi.org/10.5194/acp-16-9235-2016,https://doi.org/10.5194/acp-16-9235-2016, 2016
Short summary
Theoretical analysis of mixing in liquid clouds – Part 3: Inhomogeneous mixing
Mark Pinsky, Alexander Khain, and Alexei Korolev
Atmos. Chem. Phys., 16, 9273–9297, https://doi.org/10.5194/acp-16-9273-2016,https://doi.org/10.5194/acp-16-9273-2016, 2016
Short summary
Drizzle formation in stratocumulus clouds: effects of turbulent mixing
L. Magaritz-Ronen, M. Pinsky, and A. Khain
Atmos. Chem. Phys., 16, 1849–1862, https://doi.org/10.5194/acp-16-1849-2016,https://doi.org/10.5194/acp-16-1849-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ambient and intrinsic dependencies of evolving ice-phase particles within a decaying winter storm during IMPACTS
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 25, 8087–8106, https://doi.org/10.5194/acp-25-8087-2025,https://doi.org/10.5194/acp-25-8087-2025, 2025
Short summary
High-resolution modeling of early contrail evolution from hydrogen-powered aircraft
Annemarie Lottermoser and Simon Unterstrasser
Atmos. Chem. Phys., 25, 7903–7924, https://doi.org/10.5194/acp-25-7903-2025,https://doi.org/10.5194/acp-25-7903-2025, 2025
Short summary
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025,https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Failed cyclogenesis of a mesoscale convective system near Cabo Verde: the role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign
Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris
Atmos. Chem. Phys., 25, 7447–7465, https://doi.org/10.5194/acp-25-7447-2025,https://doi.org/10.5194/acp-25-7447-2025, 2025
Short summary
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary

Cited articles

Andejchuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K.: Numerical simulation of cloud–clear air interfacial mixing: homogeneous vs. inhomogeneous mixing, J. Atmos. Sci., 66, 2493–2500, 2009.
Baker, M. and Latham, J.: The evolution of droplet spectra and the rate of production of embyonic raindrops in small cumulus clouds, J. Atmos. Sci., 36, 1612–1615, 1979.
Baker, M., Corbin, R. G., and Latham, J.: The influence of entrainment on the evolution of cloud drop spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581–598, 1980.
Baker, M. B. and Latham, J.: A diffusive model of the turbulent mixing of dry and cloudy air, Quart. J. Roy. Meteor. Soc., 108, 871–898, 1982
Bar-Or, R. Z., Koren, I., Altaratz, O., and Fredj, E.: Radiative properties of humidified aerosol in cloudy environment, Atmos. Res., 118, 280–294, 2012.
Short summary
The evolution of monodisperse and polydisperse droplet size distributions (DSDs) during homogeneous mixing is analyzed. It is shown that the classic conceptual scheme, according to which homogeneous mixing leads to a decrease in the droplet mass under constant droplet concentration, is valid only in cases of initially very narrow DSDs. In cases of wide DSDs a decrease of both mass and concentration take place such that the characteristic droplet sizes remain nearly constant.
Share
Altmetrics
Final-revised paper
Preprint