Articles | Volume 16, issue 16
Atmos. Chem. Phys., 16, 10333–10350, 2016
https://doi.org/10.5194/acp-16-10333-2016
Atmos. Chem. Phys., 16, 10333–10350, 2016
https://doi.org/10.5194/acp-16-10333-2016
Research article
16 Aug 2016
Research article | 16 Aug 2016

One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system

Jianlin Hu et al.

Related authors

Estimation of secondary PM2.5 in China and the United States using a multi-tracer approach
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022,https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China
Xue Qiao, Hao Guo, Ya Tang, Pengfei Wang, Wenye Deng, Xing Zhao, Jianlin Hu, Qi Ying, and Hongliang Zhang
Atmos. Chem. Phys., 19, 5791–5803, https://doi.org/10.5194/acp-19-5791-2019,https://doi.org/10.5194/acp-19-5791-2019, 2019
Short summary
Source contributions and potential reductions to health effects of particulate matter in India
Hao Guo, Sri Harsha Kota, Kaiyu Chen, Shovan Kumar Sahu, Jianlin Hu, Qi Ying, Yuan Wang, and Hongliang Zhang
Atmos. Chem. Phys., 18, 15219–15229, https://doi.org/10.5194/acp-18-15219-2018,https://doi.org/10.5194/acp-18-15219-2018, 2018
Short summary
Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China
Jianlin Hu, Xun Li, Lin Huang, Qi Ying, Qiang Zhang, Bin Zhao, Shuxiao Wang, and Hongliang Zhang
Atmos. Chem. Phys., 17, 13103–13118, https://doi.org/10.5194/acp-17-13103-2017,https://doi.org/10.5194/acp-17-13103-2017, 2017
Short summary
Long-term particulate matter modeling for health effect studies in California – Part 2: Concentrations and sources of ultrafine organic aerosols
Jianlin Hu, Shantanu Jathar, Hongliang Zhang, Qi Ying, Shu-Hua Chen, Christopher D. Cappa, and Michael J. Kleeman
Atmos. Chem. Phys., 17, 5379–5391, https://doi.org/10.5194/acp-17-5379-2017,https://doi.org/10.5194/acp-17-5379-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Modelling SO2 conversion into sulfates in the mid-troposphere with a 3D chemistry transport model: the case of Mount Etna's eruption on 12 April 2012
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022,https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Global distribution of Asian, Middle Eastern, and North African dust simulated by CESM1/CARMA
Siying Lian, Luxi Zhou, Daniel M. Murphy, Karl D. Froyd, Owen B. Toon, and Pengfei Yu
Atmos. Chem. Phys., 22, 13659–13676, https://doi.org/10.5194/acp-22-13659-2022,https://doi.org/10.5194/acp-22-13659-2022, 2022
Short summary
Opinion: Coordinated development of emission inventories for climate forcers and air pollutants
Steven J. Smith, Erin E. McDuffie, and Molly Charles
Atmos. Chem. Phys., 22, 13201–13218, https://doi.org/10.5194/acp-22-13201-2022,https://doi.org/10.5194/acp-22-13201-2022, 2022
Short summary
Seasonal modeling analysis of nitrate formation pathways in Yangtze River Delta region, China
Jinjin Sun, Momei Qin, Xiaodong Xie, Wenxing Fu, Yang Qin, Li Sheng, Lin Li, Jingyi Li, Ishaq Dimeji Sulaymon, Lei Jiang, Lin Huang, Xingna Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 12629–12646, https://doi.org/10.5194/acp-22-12629-2022,https://doi.org/10.5194/acp-22-12629-2022, 2022
Short summary
Modeling radiative and climatic effects of brown carbon aerosols with the ARPEGE-Climat global climate model
Thomas Drugé, Pierre Nabat, Marc Mallet, Martine Michou, Samuel Rémy, and Oleg Dubovik
Atmos. Chem. Phys., 22, 12167–12205, https://doi.org/10.5194/acp-22-12167-2022,https://doi.org/10.5194/acp-22-12167-2022, 2022
Short summary

Cited articles

Aw, J. and Kleeman, M. J.: Evaluating the first-order effect of intraannual temperature variability on urban air pollution, J. Geophys. Res.-Atmos., 108, 4365, https://doi.org/10.1029/2002JD002688, 2003.
Battelle Memorial Institute and Center for International Earth Science Information Network – CIESIN – Columbia University: Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD). NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2013.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44, 5324–5335, 2010.
Carter, W. P. L. and Heo, G.: Development of revised SAPRC aromatics mechanisms. Final Report to the California Air Resources Board, Contracts No. 07-730 and 08-326, 12 April 2012.
de Sherbinin, A., Levy, M., Zell, E., Weber, S., and Jaiteh, M.: Using Satellite Data to Develop Environmental Indicators, Environ. Res. Lett., 9, https://doi.org/10.1088/1748-9326/9/8/08401, 2014.
Download
Short summary
A yearlong (2013) air-quality simulation was conducted to provide detailed temporal and spatial information of ozone, PM2.5 total and chemical components. The paper firstly compared the simulated air pollutants in China with country-wide public available observations for a whole year. It proves the ability of CMAQ in reproducing severe air pollution in China, shows directions that need to be improved, and benefits future source apportionment and human exposure studies.
Altmetrics
Final-revised paper
Preprint