
Atmos. Chem. Phys., 16, 10333–10350, 2016
www.atmos-chem-phys.net/16/10333/2016/
doi:10.5194/acp-16-10333-2016
© Author(s) 2016. CC Attribution 3.0 License.

One-year simulation of ozone and particulate matter in China using
WRF/CMAQ modeling system
Jianlin Hu1, Jianjun Chen2,1, Qi Ying3,1, and Hongliang Zhang4,1

1Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Engineering Technology
Research Center of Environmental Cleaning Materials, Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and
Technology, 219 Ningliu Road, Nanjing 210044, China
2Air Quality Planning and Science Division, California Air Resources Board, 1001 I Street, Sacramento, CA 95814, USA
3Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
4Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA

Correspondence to: Qi Ying (qying@civil.tamu.edu) and Hongliang Zhang (hlzhang@lsu.edu)

Received: 17 February 2016 – Published in Atmos. Chem. Phys. Discuss.: 13 April 2016
Revised: 15 July 2016 – Accepted: 18 July 2016 – Published: 16 August 2016

Abstract. China has been experiencing severe air pollution
in recent decades. Although an ambient air quality monitor-
ing network for criteria pollutants has been constructed in
over 100 cities since 2013 in China, the temporal and spa-
tial characteristics of some important pollutants, such as par-
ticulate matter (PM) components, remain unknown, limit-
ing further studies investigating potential air pollution con-
trol strategies to improve air quality and associating hu-
man health outcomes with air pollution exposure. In this
study, a yearlong (2013) air quality simulation using the
Weather Research and Forecasting (WRF) model and the
Community Multi-scale Air Quality (CMAQ) model was
conducted to provide detailed temporal and spatial informa-
tion of ozone (O3), total PM2.5, and chemical components.
Multi-resolution Emission Inventory for China (MEIC) was
used for anthropogenic emissions and observation data ob-
tained from the national air quality monitoring network were
collected to validate model performance. The model success-
fully reproduces the O3 and PM2.5 concentrations at most
cities for most months, with model performance statistics
meeting the performance criteria. However, overprediction
of O3 generally occurs at low concentration range while un-
derprediction of PM2.5 happens at low concentration range
in summer. Spatially, the model has better performance in
southern China than in northern China, central China, and
Sichuan Basin. Strong seasonal variations of PM2.5 exist
and wind speed and direction play important roles in high

PM2.5 events. Secondary components have more boarder dis-
tribution than primary components. Sulfate (SO2−

4 ), nitrate
(NO−3 ), ammonium (NH+4 ), and primary organic aerosol
(POA) are the most important PM2.5 components. All com-
ponents have the highest concentrations in winter except sec-
ondary organic aerosol (SOA). This study proves the abil-
ity of the CMAQ model to reproduce severe air pollution
in China, identifies the directions where improvements are
needed, and provides information for human exposure to
multiple pollutants for assessing health effects.

1 Introduction

Atmospheric pollutants have adverse effects on human health
and ecosystems and are associated with climate change
(Menon et al., 2008; Pöschl, 2005; Pui et al., 2014). Devel-
oping countries usually experience severely high concentra-
tions of air pollutants due to fast growth of population, indus-
trialization, transportation, and urbanization without prompt
emission controls. As one of such countries, China started to
publish real-time concentration data of six criteria pollutants
from the ambient air quality monitoring networks after mul-
tiple severe pollution events across the country (Sun et al.,
2014; M. Tao et al., 2014; D. Wang et al., 2014; Zheng et al.,
2015).
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More than 1000 observation sites have been set up in more
than 100 major cities in the country to routinely monitor
hourly concentrations of six criteria pollutants, i.e., O3, CO,
NO2, SO2, PM2.5 (PM – particulate matter), and PM10, and
to inform the public on air quality status using the air qual-
ity index (AQI). Analysis of the observation provided a gen-
eral understanding of the spatial and temporal variation of
the levels of air pollution (Hu et al., 2014a; Y. Wang et al.,
2014), the roles of meteorology in air pollution (H. Zhang
et al., 2015), and the construction of AQI based on multiple
pollutants to better inform the public about the severity of air
pollution (Hu et al., 2015b). However, the monitoring system
only considers criteria pollutants and the key species such
as the volatile organic compounds (VOCs) and the chem-
ical composition of PM that are needed to understand the
causes of air pollution and form cost-effective emissions con-
trols are not measured routinely. Monitoring networks fo-
cusing on the chemical composition of gaseous and partic-
ulate air pollutants, such as the Photochemical Assessment
Monitoring Stations (PAMS) and the Chemical Speciation
Network (CNS) in the United States, have not been estab-
lished in China. The lack of detailed chemical composition
information limits our capability to understand the forma-
tion mechanisms of O3 and PM, quantify the contributions
of different sources, and design effective control strategies.
In addition, the observation sites are mostly in highly devel-
oped urban areas but are very sparse in other suburban and
rural regions which also have large population and experi-
ence high concentrations of certain pollutants, such as O3.
Insufficient spatial coverage in the monitoring system limits
the completeness of public air pollution risk assessment for
the entire country.

Chemical transport models (CTMs) are often used to re-
produce past pollution events, test newly discovered atmo-
spheric mechanisms, predict future air quality, and provide
high temporal and spatial resolution data for epidemiologi-
cal studies. Several modeling studies have been reported to
analyze the severe air pollution events in January 2013. For
example, the Community Multiscale Air Quality (CMAQ)
model was updated with heterogeneous chemistry to study
the formation of secondary inorganic aerosol in northern
China (Zheng et al., 2015). The CMAQ model was also ap-
plied to identify the contributions of both source regions and
sectors to PM2.5 in southern Hebei during the 2013 severe
haze episode with a brute force method (L. T. Wang et al.,
2014). It was found that industrial and domestic activities
were the most significant local sectors while northern Hebei
province, Beijing–Tianjin city cluster, and Henan province
were the major regional contributors. Using the two-way
coupled Weather Research and Forecasting (WRF)/CMAQ
system, L. T. Wang et al. (2014) simulated the impacts of
aerosol–meteorology interactions of the PM pollution during
January 2013. They argued that enhanced planetary bound-
ary layer stability suppressed the dispersion of air pollu-
tants and resulted in higher PM2.5 concentrations. Similar

results were also reported by B. Zhang et al. (2015) with
the WRF/Chemistry (WRF/Chem) model. Using the Com-
prehensive Air Quality Model with extensions (CAMx) and
the Particulate Source Apportionment Technology (PSAT),
X. Li et al. (2015) determined the contributions of 7 emission
categories and 11 source regions to regional air pollution in
China and suggested a strong need for regional joint emission
control efforts in Beijing. More recently, Hu et al. (2015a)
used a tracer-based technique in a source-oriented CMAQ to
determine source sector/region contributions to primary PM
in different seasons in 2012–2013. It was found that residen-
tial and industrial emissions from local area and the neigh-
boring Hebei province contribute to high primary PM events
in Beijing.

All above modeling studies except Hu et al. (2015a)
were focused on the formation and source apportionment
of airborne PM during the severe pollution episode of Jan-
uary 2013 in northern China. Although additional PM for-
mation pathways and/or emission adjustments were imple-
mented and tuned to better predict this extreme episode,
model predictions were only evaluated against a small num-
ber of measurements in and near Beijing for a relatively short
period of time. A few studies have been conducted to eval-
uate the model performance in China for longer time pe-
riods, such as a full year or several representative months
in different seasons (Gao et al., 2014; Liu et al., 2010; Liu
et al., 2016; Wang et al., 2011; Zhang et al., 2016; Zhao
et al., 2013b). However, due to limited ambient observation
data, model performance on temporal and spatial variations
of air pollutants were mostly evaluated against available sur-
face observation at a limited number of sites. In addition,
the surface observations were mostly based on the air pollu-
tion index numbers of the Ministry of Environmental Protec-
tion (MEP), which could be used to calculate the concentra-
tions of the major pollutants of SO2, NO2, or PM10. Exten-
sive model performance evaluation of O3 and PM is urgently
needed to build the confidence in the emission inventory, the
predicted meteorological fields, as well as the capability of
the model in predicting regional O3 and PM under a wide
range of topographical, meteorological, and emission condi-
tions so that further modeling studies of pollutant formation
mechanisms, emission control strategies, and human expo-
sure and health risk assessment are based on a solid founda-
tion.

In this study, a yearlong (2013) air quality simulation us-
ing a WRF/CMAQ system was conducted to provide detailed
temporal and spatial distribution of O3 and PM concentra-
tions as well as PM2.5 chemical composition in China. The
publicly available observation data obtained from a total of
422 air monitoring sites in 60 major cities in China were used
to provide a thorough evaluation of the model performance
in the entire year. The modeled spatial and temporal con-
centrations of O3 and PM2.5 from this study will be used in
subsequent studies to investigate the interaction between O3
and PM pollution during high pollution events, the formation
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mechanism of secondary inorganic and organic aerosols, and
the population exposure and health risk.

2 Method

2.1 Model description

The CMAQ model applied in this study is based on CMAQ
v5.0.1. Changes were made to the original CMAQ to improve
the capability of the model in predicting secondary inorganic
and organic aerosol, including (1) a modified SAPRC-11 gas
phase photochemical mechanism to provide more detailed
treatment of isoprene oxidation chemistry (Ying et al., 2015);
(2) pathways of secondary organic aerosol (SOA) forma-
tion from surface controlled reactive uptake of dicarbonyls,
isoprene epoxydiol (IEPOX), and methacrylic acid epoxide
(MAE) (J. Li et al., 2015; Ying et al., 2015); (3) vapor wall-
loss corrected SOA yields (Zhang et al., 2014b); and (4) het-
erogeneous reactions of NO2 and SO2 on particle surface to
form secondary nitrate and sulfate (Ying et al., 2014a). More
details of these changes can be found in the cited references
and the references therein, and thus only a short summary of
the changes are provided below.

The isoprene mechanism in the original SAPRC-11 with
standard lumping (Carter and Heo, 2012) was replaced by
the detailed isoprene oxidation chemistry as used by Lin et
al. (2013) to predict the formation of IEPOX and MAE in the
gas phase. A precursor tracking scheme was implemented
in the modified SAPRC-11 to track the glyoxal (GLY) and
methylglyoxal (MGLY) formation from multiple biogenic
and anthropogenic precursors. The surface controlled reac-
tive uptake of SOA precursors is considered non-reversible,
with constant uptake coefficients for GLY and MGLY as
used by Fu et al. (2008) and an acidity-dependent uptake
coefficient for IEPOX and MAE as described by J. Li et
al. (2015). The original SOA yields for toluene and xylene
under high NOx concentrations based on Ng et al. (2007)
were replaced with the higher toluene yield reported by
Hildebrandt et al. (2009). This update has been applied by
Ying et al. (2014a) to study SOA formation in Mexico City.
All SOA yields were then corrected by the average bias due
to wall loss as reported in Table 1 of X. Zhang et al. (2014). A
modeling study of SOA formation in eastern USA reported
by Ying et al. (2015) shows that negative bias in predicted
organic carbon concentrations reported in previous studies
have been significantly reduced. Formation of sulfate and ni-
trate due to heterogeneous reactions on particle surface is
also modeled as a reactive uptake process. The reactive sur-
face uptake coefficients of SO2 and NO2 on particle surface
were taken from Ying et al. (2014a) and Zheng et al. (2015)
respectively.

Figure 1. Model domain. The axes are the number of grid cells.
Blue filled circles show the locations of cities with air quality ob-
servations (see Table 2). The purple dots show the locations of me-
teorological stations. The figure also shows the regions discussed
in the text for better understanding. NCP represents North China
Plain, YRD represents Yangtze River Delta, and PRD represents
Pearl River Delta.

2.2 Model application

The updated CMAQ model was applied to simulate O3 and
particulate air pollution using a 36 km× 36 km horizontal
resolution domain that covers China and surrounding coun-
tries in East Asia (Fig. 1). The meteorological inputs were
generated using WRF v3.6.1 with initial and boundary con-
ditions from the NCEP FNL Operational Model Global Tro-
pospheric Analyses dataset. Detailed WRF model configura-
tions have been described by Zhang et al. (2012).

Multi-resolution Emission Inventory for China (MEIC)
(0.25◦× 0.25◦) developed by Tsinghua University (http:
//www.meicmodel.org) was used for the monthly anthro-
pogenic emissions from China. MEIC (V1.0) is the new
version of emission inventory in China, including improve-
ments such as a unit-based emission inventory for power
plants (Wang et al., 2012) and cement plants (Lei et al.,
2011), a high-resolution county-level vehicle emission in-
ventory (Zheng et al., 2014), and a non-methane VOC map-
ping approach for different chemical mechanisms (M. Li
et al., 2014). MEIC provides speciated VOC emissions for
the SAPRC-07 mechanism with standard lumping (Carter,
2010). As the definitions of explicit and lumped primary
VOCs have not changed from SAPRC-07 to SAPRC-11,
these VOC emissions were directly used to drive SAPRC-
11. Total PM2.5 mass emissions and emissions of primary
organic carbon and elemental carbon (EC) were also pro-
vided by MEIC directly. Emissions of trace metals needed
by version 6 of the aerosol module in CMAQ (AERO6)
were generated using averaged speciation profiles adapted
from the US Environmental Protection Agency (EPA) SPE-
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CIATE database for each MEIC source category. Emis-
sions from other countries and regions rather than China in
the domain were filled with data generated from the grid-
ded 0.25◦× 0.25◦ resolution Regional Emission inventory in
ASia version 2 (REAS2) (Kurokawa et al., 2013). Details
of the REAS2 emission processing are described by Qiao et
al. (2015). Detailed information about spatial and temporal
allocation can also be found in the papers cited above.

Biogenic emissions were generated using the Model for
Emissions of Gases and Aerosols from Nature (MEGAN)
v2.1. The leaf area index (LAI) was based on the 8 day Mod-
erate Resolution Imaging Spectroradiometer (MODIS) LAI
product (MOD15A2) and the plant function types (PFTs)
were based on the PFT files used in the Global Commu-
nity Land Model (CLM 3.0). For more details of the bio-
genic emission processing, the readers are referred to Qiao
et al. (2015). Open biomass burning emissions were gener-
ated from the Fire INventory from NCAR (FINN), which
is based on satellite observations (Wiedinmyer et al., 2011).
Dust and sea salt emissions were generated in line during
the CMAQ simulations. In this updated CMAQ model, dust
emission module was updated to be compatible with the 20-
category MODIS land use data (Hu et al., 2015a). Initial and
boundary conditions were based on the default vertical dis-
tributions of concentrations that represent clean continental
conditions as provided by the CMAQ model. The impact of
initial conditions was minimal as the results of the first 5 days
of the simulation were excluded in the analyses.

3 Results

3.1 Meteorology validation

Meteorological factors are closely related to transport, trans-
formation, and deposition of air pollutants (Hu et al., 2014b;
Jacob and Winner, 2009; J. Tao et al., 2014; H. Zhang et al.,
2015). Although the WRF model has been widely used to
provide meteorological inputs for CTMs, the performance
varies when applying to different domains, episodes, and
with different model settings. Thus, the validation of model
performance on meteorological conditions is important in as-
suring the accuracy of air quality predictions. Observation
data from the National Climate Data Center (NCDC) was
used to validate the model predictions of temperature (T2)
and relative humidity (RH) at 2 m above surface, and wind
speed (WS) and wind direction (WD) at 10 m above surface.
Within the domain, there are∼ 1200 stations shown as purple
dots in Fig. 1. Model performance statistics of mean observa-
tion (OBS), mean prediction (PRE), mean bias (MB), gross
error (GE), and root mean square error (RMSE) based on
the observations and WRF predictions at the grid cells where
the stations are located are shown in Table 1. The table also
shows the benchmarks suggested by Emery et al. (2001) for

the MM5 model in the eastern USA with 4–12 km grid reso-
lution.

The WRF model predicts slightly higher T2 in winter and
lower T2 in other seasons than the observations. The MB
values for June, July, and September to December are within
the benchmark, but the GE values of T2 are generally larger
than the benchmark. The GE values of WS meet the bench-
mark in all months, but WS is overpredicted, as indicated by
the positive MB values. The MB values meet the benchmark
in January, June, and August, and RMSE values are within
the benchmark in June, July, and August. MB values of WD
are within the benchmark of ±10◦ for 4 months. February,
November, and December are the months with largest MB
values. All GE values of WD are about 50 % larger than the
benchmark. RH is generally underpredicted except for July
and August. The performance in this study is comparable to
other studies using WRF in China (Hu et al., 2015a; Wang
et al., 2010; Wang et al., 2014b; Ying et al., 2014b; Zhang et
al., 2012), despite the differences in model, resolution, and
study region in different studies. Generally, the WRF model
has acceptable performance on meteorological parameters. It
should be noted that there is a study showing better WRF
performance (Zhao et al., 2013a). However, it is difficult to
compare since different model settings, simulation episodes,
and number of observation stations were used.

3.2 Model performance of O3 and PM2.5

Hourly observations of air pollutants from March to De-
cember 2013 were obtained from the publishing website
of China National Environmental Monitoring Center (http:
//113.108.142.147:20035/emcpublish/). A total of 422 sta-
tions in 60 cities (see Fig. 1 for the location of the cities)
including the capital cities of all 31 provinces were obtained.
Concentrations of pollutants in difference regions of China
exhibit large variations due to diverse climates, topography,
and emission sources. Aiming to identify the model strength
and weakness in different regions of China, model perfor-
mance was evaluated separately for different regions. The
regions and names of these cities are listed in Table 2. Au-
tomated quality control measures were taken to remove data
points with observed O3 concentrations greater than 250 ppb,
PM2.5 concentrations greater than 1500 µg m−3, and points
with standard deviation less than 5 ppb or 5 µg m−3 in 24 h.

3.2.1 O3 model performance

Table 3 shows the model performance statistics of gaseous
pollutants (1 h peak O3 (O3-1 h), 8 h peak O3 (O3-8 h), and
hourly CO, NO2, and SO2), PM2.5, and PM10. Mean obser-
vations, mean predictions, mean fractional bias (MFB), mean
fractional error (MFE), mean normalized bias (MNB), and
mean normalized error (MNE) of hourly concentrations are
calculated for each month from March to December 2013.
Only O3-1 h or O3-8 h concentrations greater than 30 ppb
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Table 1. Meteorology performance in all the months in 2013 (OBS is mean observation; PRE is mean prediction; MB is mean bias; GE is
gross error; RMSE is root mean square error). The benchmarks are suggested by Emery et al. (2001) for the MM5 model in the eastern USA
with 4–12 km grid resolution. The values that do not meet the criteria are denoted in bold.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Bench-mark

T2 (K) OBS 267.3 270.4 277.5 282.7 289.3 293.9 297.0 297.1 292.1 286.0 278.1 272.8
PRE 266.1 268.9 276.2 281.8 288.7 293.6 296.5 296.5 291.9 286.0 278.4 273.1
MB 1.2 −1.4 −1.3 −0.8 −0.7 −0.3 −0.5 −0.6 −0.2 0.0 0.3 0.3 ≤±0.5
GE 3.7 3.3 3.0 2.7 2.7 2.7 2.6 2.5 2.4 2.5 2.7 2.8 ≤ 2.0
RMSE 4.7 4.5 4.0 3.6 3.5 3.6 3.5 3.3 3.2 3.3 3.5 3.8

WS (ms−1) OBS 3.0 3.5 3.7 3.8 3.6 3.3 3.4 3.2 3.3 3.4 3.5 3.5
PRE 3.2 4.8 4.8 4.8 4.4 3.8 4.0 3.8 4.0 4.4 4.6 4.7
MB 0.2 1.3 1.1 1.0 0.7 0.5 0.6 0.5 0.7 1.0 1.1 1.2 ≤±0.5
GE 1.3 2.0 1.9 1.9 1.7 1.53 1.6 1.5 1.6 1.7 1.9 1..9 ≤ 2.0
RMSE 2.6 2.6 2.5 2.4 2.2 2.0 2.0 1.9 2.1 2.3 2.4 2.5 ≤ 2.0

WD (◦) OBS 187.5 212.0 205.0 202.4 187.3 171.2 187.0 190.6 174.8 183.0 216.0 216.4
PRE 209.9 229.1 220.4 216.8 198.5 175.8 200.8 203.4 171.4 182.1 236.5 234.0
MB 10.5 17.1 15.4 14.4 11.2 4.6 13.8 12.9 −3.4 −0.9 20.5 17.7 ≤±10
GE 46.3 47.7 46.7 44.8 46.2 49.4 46.6 47.4 47.5 45.6 44.8 46.6 ≤±30
RMSE 66.3 65.1 64.1 62.1 63.4 66.4 63.5 64.4 65.0 62.9 61.8 63.8

RH (%) OBS 64.9 78.9 69.5 67.1 64.3 68.7 70.8 70.4 6938 71.7 72.2 75.3
PRE 63.6 73.4 68.4 65.3 64.0 68.1 72.0 72.1 69.2 71.0 68.9 68.7
MB −1.4 −5.6 −1.1 −1.8 −0.3 −0.5 1.2 1.7 −0.6 −0.7 −3.3 −6.5
GE 19.2 14.1 15.4 14.9 14.5 13.4 13.5 13.0 12.6 13.5 14.1 14.8
RMSE 21.2 18.3 19.4 18.9 18.6 17.4 17.3 16.6 16.3 17.4 18.4 19.8

Table 2. List of the cities in different regions with available observations.

Region City list

Northeast (4 cities) 1. Harbin, 2. Changchun, 3. Shenyang, 4. Dalian
North China Plain (NCP) (14) 5. Chengde, 6. Beijing, 7. Qinhuangdao, 8. Tangshan, 9. Langfang, 10. Tianjin, 11. Baoding,

12. Cangzhou, 13. Shijiazhuang, 14. Hengshui, 15. Handan, 16. Jinan, 17. Qingdao, 28. Hohhot
Yangtze River Delta (YRD) (20) 21. Lianyungang, 22. Suqian, 23. Xuzhou, 24. Huai’an, 25. Taizhou, 26. Yangzhou, 27. Nanjing,

29. Nantong, 30. Suzhou, 31. Wuxi, 32. Shanghai, 33. Huzhou, 34. Hangzhou, 35. Jiaxing, 36.
Shaoxing, 37. Zhoushan, 38. Wenzhou, 39. Jinhua, 40. Quzhou, 41. Lishui

Pearl River Delta (PRD) (3) 46. Guangzhou, 47. Zhuhai, 60. Shenzhen
Central China (6) 18. Taiyuan, 19. Zhengzhou, 20. Hefei, 43. Wuhan, 44. Nanchang, 45. Changsha
Northwest (5) 54. Xi’an, 55. Yinchuan, 56. Lanzhou, 57. Xining, 58. Ürümqi
Sichuan Basin (SCB) (2) 52. Chongqing, 53. Chengdu
Southwest and other (6) 42. Fuzhou, 48. Haikou, 49. Nanning, 50. Kunming, 51. Guiyang, 59. Lhasa

were included in the analysis. A cutoff concentration of 40
or 60 ppb is suggested by the US EPA (EPA, 2005). A lower
cutoff of 30 ppb is chosen in this study considering the mon-
itoring sites are all located in urban areas and higher O3 con-
centrations generally occur in downwind of urban areas. The
overall model performance on O3-1 h and O3-8 h meets the
model performance criteria suggested by US EPA (2005) in
all months, except in March and April for O3-1 h and June
for O3-8 h. MNE of O3-1 h in June and July slightly exceeds
the criteria, although MNB meets the criteria. MNB of O3-
8 h in May exceeds the criteria, but MNE meets the criteria.
The relatively small MNB/MNE and MFB/MFE in most of
months indicate that O3-1 h and O3-8 h are well captured.

Model performance of O3-1 h and O3-8 h in different re-
gions is illustrated in Table 4. Model performance meets
the criteria in four regions, i.e., North China Plain (NCP),
Yangtze River Delta (YRD), Pearl River Delta (PRD), and
northeast (NE). Relatively poor performance is identified in
the Sichuan Basin (SCB), central (CEN), and northwestern
(NW) regions. O3-1 h and O3-8 h concentrations are slightly
underpredicted in YRD and PRD but overpredicted in all
other regions. Model performance in regions other than NCP
and YRD should be interpreted with care due to limited num-
ber of cities to sufficiently represent the entire region.

Figure 2 compares the predicted monthly averaged diur-
nal variations of O3 concentrations with observations for all
60 cities. For a city with multiple stations, observations and
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Table 3. Model performance on O3-1 h, O3-8 h, PM2.5, PM10, CO, NO2, and SO2 in March to December 2013 (OBS is mean observation;
PRE is mean prediction; MFB is mean fractional bias; MFE is mean fractional error; MNB is mean normalized bias; MNE is mean normalized
error). The performance criteria for PM2.5 are suggested by EPA (2007), and the performance criteria for O3 are suggested by EPA (2005).
The values that do not meet the criteria are denoted in bold.

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Criteria

O3-1 h (ppb) OBS 53.96 57.73 65.37 67.72 65.7 68.3 60.73 57.97 49.18 46.53
PRE 58.09 61.76 66.91 67.82 63.23 66.47 59.5 54.92 45.66 42.09
MFB 0.08 0.09 0.05 0.01 −0.01 −0.01 0.01 −0.03 −0.05 −0.09
MFE 0.29 0.27 0.25 0.3 0.29 0.28 0.27 0.26 0.27 0.32
MNB 0.16 0.17 0.11 0.1 0.06 0.06 0.07 0.03 0.01 −0.01 ≤±0.15
MNE 0.34 0.32 0.28 0.33 0.31 0.3 0.29 0.26 0.26 0.28 ≤ 0.3

O3-8 h (ppb) OBS 50.4 47.44 52.59 54.36 51.79 54.03 48.63 48.03 40.31 38.92
PRE 48.81 51.49 57.86 59.58 54.05 58.07 50.64 48.48 40.6 40.7
MFB −0.05 0.07 0.1 0.08 0.03 0.06 0.04 0.01 −0.01 0.01
MFE 0.29 0.24 0.24 0.28 0.26 0.26 0.25 0.24 0.25 0.27
MNB 0.03 0.13 0.16 0.16 0.09 0.12 0.1 0.06 0.03 0.07 ≤±0.15
MNE 0.29 0.28 0.28 0.32 0.28 0.29 0.27 0.25 0.24 0.27 ≤ 0.3

PM2.5 (µg m−3) OBS 81.68 62.07 60.12 60.83 45.52 47.1 56.08 85.69 88.93 123.73
PRE 66.12 43.24 39.28 41.6 31.31 39.07 52.24 56.09 80.21 126.83
MFB −0.24 −0.4 −0.47 −0.41 −0.48 −0.31 −0.21 −0.42 −0.17 −0.07 ≤±0.6
MFE 0.59 0.63 0.68 0.69 0.72 0.65 0.62 0.64 0.6 0.59 ≤ 0.75
MNB 0.04 −0.16 −0.19 −0.09 −0.17 −0.01 0.11 −0.16 0.17 0.3
MNE 0.61 0.54 0.58 0.63 0.63 0.64 0.68 0.56 0.7 0.75

PM10 (µg m−3) OBS 151.39 121.56 111.90 96.95 79.90 85.04 98.27 136.02 150.27 178.78
PRE 74.72 52.48 45.37 46.58 35.59 44.63 57.53 65.12 90.22 136.26
MFB −0.59 −0.73 −0.79 −0.68 −0.78 −0.65 −0.54 −0.65 −0.48 −0.34
MFE 0.74 0.83 0.89 0.82 0.88 0.79 0.73 0.77 0.72 0.63
MNB −0.31 −0.43 −0.45 −0.35 −0.44 −0.35 −0.24 −0.36 −0.16 −0.04
MNE 0.56 0.58 0.62 0.62 0.63 0.59 0.60 0.59 0.64 0.62

CO (ppm) OBS 1.17 0.94 0.86 0.8 0.73 0.75 0.85 1.09 1.16 1.48
PRE 0.37 0.26 0.25 0.26 0.23 0.25 0.29 0.31 0.41 0.59
MFB −0.89 −0.97 −0.97 −0.91 −0.95 −0.92 −0.9 −0.98 −0.88 −0.8
MFE 0.95 1.01 1 0.95 0.99 0.96 0.95 1.02 0.92 0.86
MNB −0.54 −0.6 −0.6 −0.56 −0.58 −0.56 −0.56 −0.61 −0.54 −0.49
MNE 0.63 0.65 0.65 0.63 0.64 0.63 0.63 0.66 0.62 0.59

NO2 (ppb) OBS 23.33 21.26 19.83 18.11 16.34 16.5 19.74 24.82 27.41 31.41
PRE 10.11 8.87 8.51 8.74 8.12 8.77 10.45 11.85 13.45 13.87
MFB −0.83 −0.88 −0.86 −0.79 −0.79 −0.73 −0.71 −0.76 −0.7 −0.77
MFE 0.94 0.99 0.99 0.95 0.95 0.91 0.89 0.91 0.85 0.87
MNB −0.45 −0.48 −0.46 −0.4 −0.4 −0.35 −0.35 −0.39 −0.37 −0.44
MNE 0.65 0.67 0.68 0.68 0.68 0.67 0.66 0.65 0.62 0.61

SO2 (ppb) OBS 19.1 15.8 15.25 12.93 12.32 12.96 13.24 15.53 21.74 27.88
PRE 11.64 8.87 8.31 8.61 7.09 8.88 11.94 14.25 17.91 23.32
MFB −0.61 −0.66 −0.68 −0.59 −0.73 −0.56 −0.39 −0.29 −0.31 −0.32
MFE 0.89 0.9 0.91 0.89 0.98 0.89 0.84 0.78 0.82 0.83
MNB −0.14 −0.23 −0.23 −0.11 −0.22 −0.08 0.23 0.25 0.29 0.31
MNE 0.79 0.74 0.76 0.8 0.81 0.82 1 0.95 1.01 1.03

predictions are matched at individual station level and the
averaged observations and predictions are used to represent
the concentrations for the city. Some cities, such as Beijing,
exhibit substantial diurnal variations, especially in summer;
others, such as Lhasa, exhibit small diurnal variations. Over-
all, the model successfully reproduces the monthly average
diurnal variation in most cities, even though model perfor-
mance among cities in the same region can be quite differ-

ent. For example, in NE, the monthly averaged predictions
agree well with observations in Shenyang and Changchun
but are higher in Dalian, a coastal city, in summer months.
In NCP, the model predicts well O3 concentrations with
slight overprediction at a few cities, especially in the sum-
mer months, which agrees with the better hourly O3 model
performance shown in Tables 3 and 4. In YRD, the monthly
diurnal variations of O3 are also well predicted. Obvious un-
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Table 4. Model performance on O3-1 h, O3-8 h, PM2.5, PM10, CO, NO2, and SO2 in different regions during March to December 2013. The
values that do not meet the criteria are denoted in bold.

NCP YRD PRD SCB NE CEN NW Other

O3-1 h (ppb) OBS 65.18 63.84 65.7 67.85 53.37 63.1 54.5 54.21
PRE 65.84 59.02 56.6 71.36 57.9 62.79 60.5 55.37

MFB 0.03 −0.07 −0.13 0.08 0.09 0.03 0.14 0.05
MFE 0.27 0.27 0.3 0.31 0.24 0.31 0.28 0.28
MNB 0.1 −0.01 −0.06 0.18 0.14 0.12 0.22 0.13
MNE 0.3 0.26 0.29 0.36 0.27 0.34 0.33 0.3

O3-8 h (ppb) OBS 53.38 52.96 51.25 53.48 46.73 49.88 44.26 45
PRE 57.51 51.72 46.13 59.04 52.18 54.33 52.67 49.94

MFB 0.06 −0.03 −0.11 0.1 0.1 0.08 0.18 0.1
MFE 0.26 0.26 0.26 0.26 0.23 0.26 0.28 0.24
MNB 0.13 0.02 −0.06 0.17 0.15 0.15 0.25 0.16
MNE 0.3 0.26 0.24 0.3 0.26 0.3 0.33 0.28

PM2.5(µg m−3) OBS 90.85 65.55 49.28 65.61 60.93 77.74 70.13 42.7
PRE 65.5 55.55 29.19 78.83 48.57 74.95 33.84 33.55

MFB −0.33 −0.27 −0.56 0.05 −0.26 −0.16 −0.75 −0.53
MFE 0.64 0.57 0.68 0.57 0.62 0.57 0.88 0.77
MNB −0.01 −0.04 −0.33 0.47 0.03 0.15 −0.39 −0.2
MNE 0.65 0.54 0.52 0.84 0.63 0.66 0.65 0.63

PM10 (µg m−3) OBS 164.80 104.94 69.85 104.79 99.08 122.64 143.95 68.67
PRE 73.69 63.47 34.20 86.70 52.80 80.44 44.25 35.63

MFB −0.71 −0.55 −0.69 −0.25 −0.62 −0.49 −0.98 −0.76
MFE 0.84 0.70 0.77 0.62 0.78 0.70 1.05 0.87
MNB −0.37 −0.30 −0.43 0.07 −0.32 −0.20 −0.56 −0.42
MNE 0.63 0.54 0.55 0.68 0.60 0.60 0.69 0.62

CO (ppm) OBS 1.22 0.8 0.81 0.82 0.79 1.11 1.13 0.75
PRE 0.37 0.29 0.22 0.41 0.25 0.4 0.23 0.22

MFB −0.89 −0.86 −1.11 −0.62 −0.93 −0.87 −1.21 −1.04
MFE 0.95 0.9 1.12 0.71 0.96 0.93 1.22 1.07
MNB −0.54 −0.55 −0.69 −0.39 −0.58 −0.52 −0.72 −0.63
MNE 0.63 0.6 0.7 0.52 0.63 0.62 0.74 0.68

NO2 (ppb) OBS 24.28 21.42 23.12 21.2 21.09 21.01 22.23 16.2
PRE 11.26 11.77 10.71 12.53 6.37 12.03 8.4 4.29

MFB −0.72 −0.65 −0.7 −0.56 −1.09 −0.62 −0.95 −1.24
MFE 0.85 0.83 0.83 0.78 1.15 0.83 1.05 1.28
MNB −0.39 −0.31 −0.39 −0.24 −0.61 −0.27 −0.52 −0.7
MNE 0.62 0.63 0.6 0.62 0.73 0.66 0.69 0.75

SO2 (ppb) OBS 22.31 14.07 10.41 12.83 21.06 17.26 16.66 11.81
PRE 12.24 8.66 8.07 25.77 5.13 18.55 11.58 10.28

MFB −0.57 −0.62 −0.45 0.34 −1.14 −0.24 −0.6 −0.63
MFE 0.8 0.87 0.77 0.73 1.21 0.8 0.95 1
MNB −0.21 −0.22 −0.1 1.5 −0.61 0.46 −0.07 −0.02
MNE 0.66 0.71 0.69 1.78 0.76 1.13 0.86 0.94

derprediction of summer peak O3 at Zhoushan and Wen-
zhou are likely caused by underestimation of emissions in
these port cities, although uncertainty in meteorology might
also play a role. At PRD, O3 is slightly underestimated in
Guangzhou and Shenzhen for summer and fall months but
well estimated in Zhuhai. In all three cities in the PRD re-

gion, O3 concentrations are higher in the spring and fall
months, and the model correctly captures this trend. In SCB,
the model correctly predicts the higher spring O3 concentra-
tions in Chengdu but overpredicts spring O3 concentrations
in Chongqing. Summer O3 concentrations are well predicted
at both cities. For CEN, O3 predictions are higher than ob-
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Figure 2. Comparison of monthly averaged diurnal variations of O3 concentrations from March to December 2013. Pred. are the values
predicted at the grid cell each city center located while Best are the values predicted closest to the observations within 3×3 grid cell regions
that surround the observation. Units are ppb.

servations in Zhengzhou and Hefei but agree well with ob-
servations in other cities. In NW, the observed O3 concen-
trations are much lower and are generally overpredicted all
year except for Xi’an and Wulumuqi with good performance
in summer.

Figure 3 shows the comparison of predicted and observed
monthly averaged O3-1 h and O3-8 h concentrations at typi-

cal cities of major regions in China: Beijing for NCP, Shang-
hai for YRD, Guangzhou for PRD, Xi’an for NW, Shenyang
for NE, and Chongqing for SCB. In Beijing, the monthly
variations of both O3-1 h and O3-8 h, low in winter months
and high in summer months, are well captured by the model.
The model slightly overpredicts O3 concentrations from June
to December except for August. In Shanghai, both O3-1 h and
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Figure 3. Comparison of predicted and observed O3-1 h and O3-8 h
concentrations at Beijing, Shanghai, Guangzhou, Xi’an, Shenyang,
and Chongqing. Grey areas represent ranges in model predictions
within 3× 3 grid cells surrounding the observation. Units are ppb.

O3-8 h are underestimated by 5–10 ppb, but all observations
are within the range of concentrations in the 3× 3 grid cells
surrounding the city center of Shanghai. In Guangzhou, O3
concentrations vary slightly over months. O3-1 h is underpre-
dicted especially in summer and fall months. O3-8 h predic-
tions are closer to the observations. In Xi’an, the model well
predicts the O3-1 h and O3-8 h concentrations in July, Au-
gust, and September while it overpredicts all other months
by up to 20 ppb. In Shenyang, the trend of O3-1 h and O3-8 h
are well reproduced with less than 5 ppb differences for all
the months. In Chongqing, overprediction occurs in spring,
fall, and winter while underprediction occurs in summer.

3.2.2 PM2.5 model performance

PM2.5 model performance in different months and regions is
also illustrated in Tables 3 and 4 respectively. The model per-
formance statistics of MFB and MFE of hourly PM2.5 con-
centrations meet the US EPA criteria in all months. Negative
MFB is found in all months, indicating the model underpre-

dicts the PM2.5 concentrations. Model performance is better
in March, September, November, and December, with MFB
less than 0.3. The bias is relatively larger in April, May, June,
July, and October, with MFB over 0.4. PM10 is largely under-
estimated and is very likely due to underestimation of dust
emissions from both natural sources as well as human activ-
ities.

Model performance of PM2.5 in different regions is also
different. The model significantly underpredicts PM2.5 in the
NW and the other (mostly southwestern cities) regions. Es-
pecially in the NW region, MFB value is −0.75 and MFE
value is 0.88. PM2.5 in all the other regions meets the perfor-
mance criteria. Although most regions meet the model per-
formance criteria in this study, underprediction of PM2.5 con-
centrations is found in all regions (except SCB), as indicated
by the large negative MFB values. PM10 has a similar perfor-
mance in various regions.

Figure 4 illustrates the comparison of predicted and ob-
served monthly averaged PM2.5 concentrations for all the
60 cities. In NE, the predictions agree well with observations
in summer months. Concentrations in fall and winter months
are underpredicted, except for Dalian, where all the values
are well reproduced. In NCP, the annual trends at most cities
are well captured. The model trends to underpredict spring
and summer concentrations and overpredict December con-
centrations. The coastal city, Qingdao, is unique with under-
prediction in summer and good estimation in other months.
In YRD, the model well produces PM2.5 for all the months at
most sites except in coastal cities (Zhoushan and Wenzhou)
and mountainous cities (Quzhou and Lishui). In SCB, the
model underestimates concentrations in the winter months in
Chongqing but estimates well the concentrations in Chengdu
except for March and April. In CEN, the seasonal trend is
well captured in all cities but most cities show overpredicted
concentrations in December. In NE, PM2.5 is uniformly un-
derpredicted. For other regions, predictions agree with ob-
servations at the coastal cities (Fuzhou and Haikou) but con-
centrations in Lhasa are largely underpredicted. The values
closest to the observations in the 3×3 surrounding grid cells
are similar to the predictions at city centers for most months
with clear differences in October, November, and Decem-
ber at several cities. It indicates the higher contributions of
primary PM, which has steeper concentration gradients than
secondary PM, in winter months than in summer months.

Generally, the WRF/CMAQ modeling system with MEIC
inventory reproduces well the O3 and PM2.5 concentrations
in most regions for most months. Overprediction of O3 oc-
curs at low concentrations in winter while underprediction
of PM2.5 happens at low concentration range in summer and
in cities in the NW region. The model performance on CO,
NO2, and SO2 is also calculated and listed in Tables 3 and
4. There are no performance criteria for these pollutants, but
the model performance is in the same ranges as compared to
other studies in other countries/regions (J. Tao et al., 2014).
The model performance at different regions differs due to the
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Figure 4. Comparison of predicted (in column) and observed (in circle) monthly averaged PM2.5 concentrations for March to December
2013. The “best” symbols (in “+”) represent predictions closest to the hourly observations within a 3× 3 grid cell region with the grid cell
where the monitoring sites are located at the center. Units are µg m−3.

differences in emission, topography, and meteorological con-
ditions. The performance on these species can be used as in-
dicator for emission uncertainties. The possible uncertainties
are discussed in Sect. 4.

3.3 Seasonal variations and regional distribution of O3
and PM2.5

Figure 5 shows the predicted regional distribution of sea-
sonal averaged O3-1 h and O3-8 h. In spring, highest O3-
1 h concentration (∼ 100 ppb) occurs in South Asia due to
higher temperature, solar radiation, and a significant amount
of emissions from open biomass burning activities (Kondo
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Figure 5. Seasonal variations of predicted regional distribution of
O3-1 h and O3-8 h. Units are ppb.

et al., 2004). Southern China has higher concentrations
(∼ 70 ppb) than northern China (∼ 50 ppb). However, in
summer, NCP has the highest concentration of 80 ppb while
southern China (and other regions) has lower concentrations
of 50–60 ppb. In fall, most of the regions in China have O3-
1 h concentrations of 50–60 ppb. In winter, NE China and
NCP have O3-1 h concentrations lower than 30 ppb while
southern China has the concentrations of 40–50 ppb. In ad-
dition to NCP in the summer, SCB is also another hot spot
for ozone with high summertime and wintertime O3-1 h of
∼ 100 ppb and 60–70 ppb respectively. O3-8 h has similar
spatial distribution patterns as O3-1 h for all seasons with
lower concentrations (by 5–10 ppb).

Figure 6 shows the spatial distribution of seasonal aver-
aged PM2.5 concentrations together with the averaged wind
vectors as the regional distribution of PM2.5 is significantly
influenced by wind patterns. In spring, the PM2.5 concentra-
tions in China reach approximately 50–70 µg m−3 in north-
ern, eastern, and southern China except coastal provinces of
Zhejiang, Fujian, and Guangdong. It is evident that the high
concentrations are related to low wind speed. In summer,
the areas with high PM2.5 concentrations of ∼ 50 µg m−3 are
limited to NCP and SCB while all other regions have con-
centrations of < 30 µg m−3. Emissions brought to the NCP
by the southerly wind, blockage of dispersion due to moun-
tain ranges to the north and west, and SOA formed due to
strong solar radiation are contributing factors for higher sum-
mer PM2.5 in NCP. In fall, the high concentration regions are
similar to those in spring but with higher concentrations of
up to 100 µg m−3 in NCP, YRD, CEN, and SCB. In winter,
high PM2.5 concentrations are located in the NE, NCP, YRD,
CEN, and SCB regions. Seasonal average concentrations of
more than 200 µg m−3 occur in large portions of NCP, CEN,
and SCB due to low wind speed and mixing height. Strong
gradient exists between the high concentration regions and
surrounding areas where wind is more lenient to pollutant
dispersion.

Figure 7 shows the spatial distribution of seasonal aver-
aged PM2.5 components. All components show clear sea-
sonal variations. For secondary inorganic components and
anthropogenic primary components (EC and POA), concen-

Figure 6. Seasonal variation of predicted PM2.5 and wind vectors:
(a) spring, (b) summer, (c) fall, and (d) winter. Units are µg m−3.

trations are usually highest in winter and lowest in summer.
Spring and fall concentrations are similar with slightly higher
concentrations in fall. For EC and POA, this seasonal varia-
tion is largely driven by large increase in the emissions from
residential sources in winter, as well as reduced ventilation
that is often associated with winter stagnant conditions. For
secondary inorganic components, gas phase formation rate of
HNO3 and H2SO4 decreases as temperature and solar radi-
ation intensity decreases in fall and winter, leading to a de-
crease in their formation from the homogeneous pathways.
However, the amount of secondary NO−3 and SO2−

4 from
surface heterogeneous reactions of SO2 and NO2 increases
as their emissions increase, and more particle surface area
becomes available due to an increase in primary PM con-
centrations. In addition, ammonium nitrate is preferentially
partitioned into the particle phase under colder temperatures
(Aw and Kleeman, 2003). In most regions with high con-
centrations, wintertime NO−3 concentrations are 150–200 %
higher than annual average concentrations, while SO2−

4 and
NH+4 concentrations are approximately 100–150 % higher
(see Fig. 8). POA concentrations in winter are also approxi-
mately 100–150 % higher in winter than the annual average,
especially in northern part of China where residential heat-
ing is a significant source of PM2.5 emissions. In provinces
in southern China with warm temperatures, winter POA is
not significantly deviated from the annual mean (see Fig. 8).
Maximum concentrations of NO−3 and SO2−

4 increase to be-
yond 50 µg m−3 and those of NH+4 to as high as 40 µg m−3

in portions of NCP, CEN, YRD, and SCB. This suggests that
in large areas, secondary inorganic PM is the most signifi-
cant contributor to elevated wintertime PM2.5 concentrations.
EC has limited spatial distribution since it is only directly
emitted. Highest EC concentrations are in NCP, CEN and
SCB. The EC concentrations are 10–15 µg m−3 in winter but
lower than 5 µg m−3 in other seasons. POA concentrations
are highly seasonally dependent with the highest concentra-
tions of ∼ 30 µg m−3 in NCP, CEN, SCB, and NE occurring
in winter.
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Figure 7. Seasonal variations of predicted PM2.5 components. Units are µg m−3.

SOA shows different seasonal variations from the sec-
ondary inorganic aerosol and anthropogenic primary PM
components. In CEN and eastern China, higher seasonal av-
erage SOA concentrations of 10–15 µg m−3 occur in summer
and winter, while in southern China similar levels of SOA oc-
cur in spring. The spring and summer high SOA concentra-
tions are dominantly formed from biogenic isoprene emis-
sions but winter SOA is mainly formed from semi-volatile
oxidation products of anthropogenic aromatic compounds.
Details of SOA formation and composition will be discussed
in a separate paper. “Other” components are primary PM2.5

mostly from dust. The concentrations are high in spring, fall,
and winter. In summary, secondary components have more
boarder distribution than primary components. SO2−

4 , NO−3 ,
NH+4 , and POA are the most important aerosol components
based on their absolute concentrations.

It should be noted that the simulated spatiotemporal dis-
tribution of PM2.5 and its chemical composition is affected
by the temporally and spatially variant biases of PM2.5. In
summer PM2.5 is more underpredicted when the concentra-
tions are lower; therefore the actual seasonal variation of
PM2.5 is likely weaker than the predictions. PM2.5 is more
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Figure 8. Deviation of winter nitrate (NO−3 ), sulfate (SO2−
4 ), am-

monium ion (NH+4 ), and primary organic aerosol (POA) from an-
nual average, as calculated by (W−A)/A, where W and A are win-
ter and annual concentrations respectively.

underpredicted in NW where the concentrations are lower;
therefore the actual spatial difference between NW and east-
ern China regions (e.g., NCP, YRD) is also likely weaker.
The spatiotemporal distribution of PM2.5 chemical composi-
tion is expected to be affected similarly but this needs to be
confirmed through detailed PM2.5 composition observations.
The biases of O3 exhibit much less variation temporally and
spatially, so the predicted spatiotemporal distribution of O3
is more accurate than PM2.5.

3.4 Temporal variation of PM2.5 components in
representative cities

Temporal variations of PM2.5 components are also shown at
typical cities in different regions as in Fig. 9. The total PM2.5
concentrations in Beijing are high in winter and low in sum-
mer with the peak of ∼ 150 µg m−3 in January. EC contri-
butions are ∼ 5–10 % in winter but less than 5 % in other
seasons. POA has a similar pattern as EC but contributions
can be ∼ 35 % in winter and ∼ 20 % in summer. SOA con-
tributions are high in summer with the peak of ∼ 30 % in
August and very low in winter. SO2−

4 and NO−3 are the top
two largest contributors with comparable contributions all
the time. NH+4 can be as high as ∼ 20 % in January and only
∼ 10 % in summer. Other components (“other”, mostly ox-
ides of crustal elements and other trace metals) contribute up
to 15 % in some months. In Shanghai, the monthly averaged
concentrations are highest in winter and decrease gradually
from spring to fall. Five out of the 12 months are over the
Chinese Ambient Air Quality Standards (CAAQS) Grade II
standard for 24 h average PM2.5 (75 µg m−3, simply Grade II
standard hereafter). EC and POA have similar pattern with a
total contribution of 20 % in most months. SO2−

4 , NO−3 , and
NH+4 contribute to more than 70 % from November to June
and less than 50 % in other months, while the contribution of
SOA increases significantly to as much as 40 % in the sum-

mer months. The relative contributions of the “other” compo-
nents are about 2 times of those in Beijing (15 % to 30 %). In
Guangzhou, the PM2.5 concentrations are lower than Beijing
and Shanghai. Predicted PM2.5 concentrations are all within
the Grade II standard in China. Although the contribution
of SOA is higher, SO2−

4 , NO−3 , and NH+4 are still the major
components with more than 60 % contribution all over the
year.

In Xi’an, the largest city in NW, the differences in PM2.5
at winter and other months are significant. In winter, the total
PM2.5 concentrations are 150–180 µg m−3 with POA, SO2−

4 ,
NO−3 , and NH+4 as major components. In Shenyang, a NE
city, the PM2.5 concentrations are ∼ 250 µg m−3 in January
followed by ∼ 200 µg m−3 in February and ∼ 150 µg m−3

in December. The extremely high concentrations are related
to winter residential heating or uncontrolled open biomass
(such as straw) burning as can be indicated by the elevated
emissions from residential sources. For other seasons, con-
tributions of other components are much lower but the con-
tribution of SOA increases to more than 20 % (∼ 10 µg m−3)

in June, likely due to increased biogenic emissions in the
densely forested regions in the NE. In Chongqing, located in
SCB, the monthly average reaches as high as 230 µg m−3 in
January due to increased atmospheric stability. Spring, sum-
mer, and fall months have much lower PM2.5 concentrations
especially for July, when the PM2.5 is lower than 50 µg m−3.

One of the questions that remain unclear is whether sec-
ondary PM formation is enhanced during the high pollution
days or high pollution events are simply caused by enhanced
emissions and reduced dilution due to stagnant conditions.
As an attempt to address this question, Fig. 10 shows the
comparison of relative contributions of PM2.5 components in
episode days (>= the Grade II standard of 75 µg m−3) and
non-episode days. In Guangzhou, there are no episode days
predicted, thus only Beijing, Shanghai, Xi’an, Shenyang, and
Chongqing are included in Fig. 10. In all cities, the minimum
episode-day averaged concentration occurs in summer while
the maximum concentration occurs in winter. In most cities
and in most seasons, episode days have larger contributions
of secondary components (SOA, SO2−

4 , NO−3 , and NH+4 ;
69.8 % on episode days vs. 59.9 % on non-episode days) and
lower contributions of primary components (EC, POA, and
other; 30.2 % on episode days vs. 40.1 % on non-episode
days). Some cities show drastic differences in secondary PM
contributions between episode and non-episode days. For ex-
ample, contribution of secondary PM in Xi’an increases from
40 % on non-episode days to more than 60 % on episode days
in winter. Other cities, such as Chongqing, show less differ-
ence in the relative contributions of secondary PM between
episode and non-episode days. While most of the secondary
PM increase is due to enhanced formation of secondary in-
organic components, the contribution of SOA to total PM is
significantly higher than that on non-episode days in summer
Beijing. This suggests that enhanced SOA formation could
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Figure 9. Contributions of different components to monthly aver-
aged PM2.5 concentrations at selected cities in China. White circles
are absolute concentrations according to right y axis with unit of
µg m−3.

also play a significant role in summer PM pollution events
of urban areas. In conclusion, in most cities in most seasons,
episode days have more rapid formation of secondary PM
components than accumulation of primary pollutants due to
unfavorable weather conditions. This also suggests that con-
trolling the emissions of secondary PM precursors needs to
be considered in designing emission control strategies as in
many conditions it can be more effective in reducing PM con-
centrations.

4 Discussion

Model-predicted concentrations of O3 and PM2.5 are evalu-
ated by comparing them to ground-level observations at 422
stations in 60 cities in China for 10 months in 2013. Predicted
concentrations generally agree well with observations, with
the model performance statistics meeting the criteria in most

Figure 10. Comparison of PM2.5 components at episode days
(Ep, >= 75 µg m−3) and non-episode days (non-EP, < 75 µg m−3).
White circles are absolute concentrations according to right y axis
with unit of µg m−3. Note Xi’an does not have episode days in sum-
mer.

of the regions and months. Relatively large bias in model-
predicted concentrations is found in certain regions in cer-
tain months/episodes. Model bias is mainly attributed to un-
certainties associated with meteorological fields, emissions,
model treatment, and configurations. Further studies are still
needed to continue improving the model capability in accu-
rately predicting air quality in China.

The WRF model performance in this study is comparable
to other studies (Hu et al., 2015a; Wang et al., 2010, 2014;
Ying et al., 2014b; Zhang et al., 2012), but a better WRF
performance was reported in Zhao et al. (2013a). Mesoscale
meteorological modeling studies are also needed to improve
the WRF model capability in China. In this study, some mete-
orological parameters are biased; for example, ground-level
wind speed is consistently overpredicted and RH is more bi-
ased low in winter months (Table 1). A previous study has
revealed that air pollution levels are associated with these pa-
rameters in highly polluted regions in China (Y. Wang et al.,
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2014). It is also demonstrated that bias in predicted meteo-
rological parameters by WRF contributes to bias in PM2.5
prediction (Hu et al., 2015c; Zhang et al., 2014a, b). A com-
panion study is undergoing to evaluate the sensitivity of pre-
dictions to meteorological fields.

Uncertainties associated with emission inventory often are
the major factor leading to bias in model predictions. The
overall good model performance in most regions indicates
general accuracy of the MEIC inventory. However, larger
negative bias in CO, NO2, and SO2 in NW (Table 4) suggests
that anthropogenic emissions, including primary PM2.5, are
severely underestimated in this region. Similarly, underpre-
dictions of PM2.5 in Lhasa are also likely due to underpredic-
tions of anthropogenic emissions, mostly likely those from
residential sources. Studies have suggested that dust con-
tributes significantly to PM2.5 in NW (J. Li et al., 2014;
Shen et al., 2009). The current estimation of dust from wind
erosion of natural soil surfaces in the NW is approximately
20 µg m−3 in spring and lower than 10 µg m−3 in other sea-
sons. This relatively low estimation of PM2.5 in the NW of
China generally agrees with the most recent global long-term
PM2.5 estimation based on satellite aerosol optical depth
measurements (Battelle Memorial Institute and Center for
International Earth Science Information Network – CIESIN;
Columbia University, 2013; de Sherbinin et al., 2014). Emis-
sions of dust from other sources in the urban/rural areas, such
as paved and unpaved road and construction activities, could
be a more important factor that leads to underpredictions of
mineral PM components in the NW cities. Both activity data
and emission factors used to generate these area emissions
should be examined carefully. Source apportionment studies
based on receptor-oriented techniques should be used to dif-
ferentiate the contributions from these different dust sources
to further constrain the uncertainties in dust emissions.

Another important source of underprediction of PM2.5 is
SOA, especially in the summer when the biases in PM2.5
predictions are larger and more SOA is expected to form due
to higher VOCs emissions and higher atmospheric reactivity.
While significant progress has been made to improve model
predictions and the SOA module used in the current study has
incorporated many of the newly found SOA formation path-
ways, the understanding of both gas phase and particle phase
chemistry that leads to SOA formation is still very limited,
and many experimental findings have yet to be incorporated
by the modeling community. To constrain the uncertainties
in SOA predictions, speciated measurements of SOA tracers
and gas phase VOC precursors are needed along with models
with detailed chemical mechanisms to represent the species.
While some VOC speciation data are available, more data in
different regions and episodes are needed to improve both
estimation of VOC emissions (Zhang and Ying, 2011) and
model predictions of SOA.

Model grid resolution also contributes to the bias in pre-
dictions. The emissions are instantly mixed into 36× 36 km2

grids after being released from sources. Some of the mon-

itoring stations are located in urban areas near emission
sources, such as traffic and industrial facilities, which could
imply negative prediction biases when compared with mod-
eled concentrations that represent average concentrations in
a grid cell. Higher-resolution modeling studies are believed
to more accurately capture the concentrations and to reveal
finer scale spatial distribution of pollutants (Fountoukis et al.,
2013; Gan et al., 2016; Joe et al., 2014; Stroud et al., 2011).
The grid dilution effect theoretically has larger impact on CO
and SO2 than on O3 and PM2.5, because O3 and secondary
PM2.5 components are often formed regionally and conse-
quently have a more uniform spatial distribution.

5 Conclusions

In this study, O3 and PM2.5 in China during the entire
year of 2013 is simulated using an updated WRF/CMAQ
model system and anthropogenic emissions from MEIC. The
WRF model predicts reasonable meteorological inputs for
the CMAQ model. The comparison of predicted and ob-
served hourly O3, peak hour O3, and daily and monthly av-
eraged PM2.5 in 60 cities shows that the current model can
successfully reproduce the O3 and PM2.5 concentrations at
most cities for most months of the year. Overprediction of O3
occurs at low concentration range in winter while underpre-
diction of PM2.5 happens at low concentration range in sum-
mer. Spatially, the model has better performance in NE, NCP,
central YRD, and SCB but significant underprediction biases
exist for the cities in the NW region. Strong seasonal varia-
tions of PM2.5 exist and wind speed and direction play impor-
tant roles in high PM2.5 events. Secondary components have
more boarder distribution than primary components. Contri-
butions of secondary PM components increase during high
PM events in a number of urban areas, suggesting that sec-
ondary PM formation rates are enhanced more than the ac-
cumulation rate of primary pollutants. Overall, SO2−

4 , NO−3 ,
NH+4 , and POA are the most important PM2.5 components.
All components have the highest concentrations in winter ex-
cept SOA. NCP, CEN, and SCB have more severe PM2.5 lev-
els than YRD and PRD.

This study reports the detailed model performance of O3
and PM2.5 in China for an entire year with the public avail-
able observations nationwide in China. Although much needs
to be done to improve the model performance, this study
shows the capability of the model with MEIC emission in
reproducing severe air pollution. The concentrations of O3,
PM2.5 total mass, and its chemical components from this
study will be used in future studies to understand formation
mechanisms of severe air pollution episodes, investigate the
effectiveness of emission control strategies, and estimate hu-
man exposure to multiple pollutants for assessing health bur-
den of air pollution in China.
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6 Data availability

Data used in this manuscript can be provided upon
request by e-mail to the corresponding authors Qi
Ying (qying@civil.tamu.edu), and Hongliang Zhang
(hlzhang@lsu.edu).
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