Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5987-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-5987-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reliable, robust and realistic: the three R's of next-generation land-surface modelling
Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute – Climate Change and the Environment, Department of Life Sciences, Silwood Park Campus, Ascot, Imperial College London, UK
X. Liang
Department of Civil and Environmental Engineering, University of Pittsburgh, Pennsylvania, USA
B. E. Medlyn
Hawesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales, Australia
Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
Y.-P. Wang
CSIRO Ocean and Atmosphere Flagship, Private Bag 1, Aspendale, Victoria, Australia
Related authors
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Mengmeng Liu, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-12, https://doi.org/10.5194/cp-2024-12, 2024
Preprint under review for CP
Short summary
Short summary
Dansgaard-Oeschger events were large and rapid warming events that occurred multiple times during the last ice age. We show that changes in the northern extratropics and the southern extratropics were anti-phased, with warming over most of the north and cooling in the south. The reconstructions do not provide evidence for a change in seasonality in temperature. However, they do indicate that warming was generally accompanied by wetter conditions and cooling by drier conditions.
Huiying Xu, Han Wang, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 4511–4525, https://doi.org/10.5194/bg-20-4511-2023, https://doi.org/10.5194/bg-20-4511-2023, 2023
Short summary
Short summary
Leaf carbon (C) and nitrogen (N) are crucial elements in leaf construction and physiological processes. This study reconciled the roles of phylogeny, species identity, and climate in stoichiometric traits at individual and community levels. The variations in community-level leaf N and C : N ratio were captured by optimality-based models using climate data. Our results provide an approach to improve the representation of leaf stoichiometry in vegetation models to better couple N with C cycling.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Giulia Mengoli, Sandy P. Harrison, and I. Colin Prentice
EGUsphere, https://doi.org/10.5194/egusphere-2023-1261, https://doi.org/10.5194/egusphere-2023-1261, 2023
Preprint archived
Short summary
Short summary
Soil water availability affects plant carbon uptake by reducing leaf area and/or by closing stomata, which reduces its efficiency. We present a new formulation of how climatic dryness reduces both maximum carbon uptake and the soil-moisture threshold below which it declines further. This formulation illustrates how plants adapt their water conservation strategy to thrive in dry climates, and is step towards a better representation of soil-moisture effects in climate models.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice
Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, https://doi.org/10.5194/gmd-13-1545-2020, 2020
Short summary
Short summary
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models simulating the efficiency by which light absorbed by vegetation is used for CO2 assimilation. This paper presents the P-model, a light use efficiency model derived from a carbon–water optimality principle, and evaluates its predictions of ecosystem-level photosynthesis against globally distributed observations. The model is implemented and openly accessible as an R package (rpmodel).
Guangqi Li, Sandy P. Harrison, and I. Colin Prentice
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-63, https://doi.org/10.5194/bg-2019-63, 2019
Publication in BG not foreseen
Short summary
Short summary
Current methods of removing age effect from tree-ring are influenced by sampling biases – older trees are more abundantly sampled for recent decades, when the strongest environmental change happens. New technique of extracting environment-driven signals from tree ring is specifically designed to overcome this bias, drawing on theoretical tree growth. It removes sampling-bias effectively and shows consistent relationships between growth and climates through time and across two conifer species.
Dongyang Wei, Penélope González-Sampériz, Graciela Gil-Romera, Sandy P. Harrison, and I. Colin Prentice
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-16, https://doi.org/10.5194/cp-2019-16, 2019
Revised manuscript not accepted
Short summary
Short summary
El Cañizar de Villarquemado provides a pollen record from semi-arid Spain since before the last interglacial. We use modern pollen–climate relationships to reconstruct changes in seasonal temperature and moisture, accounting for CO2 effects on plants, and show coherent climate changes on glacial–interglacial and orbital timescales. The low glacial CO2 means moisture changes are less extreme than suggested by the vegetation shifts, and driven by evapotranspiration rather than rainfall changes.
Henrique Fürstenau Togashi, Iain Colin Prentice, Owen K. Atkin, Craig Macfarlane, Suzanne M. Prober, Keith J. Bloomfield, and Bradley John Evans
Biogeosciences, 15, 3461–3474, https://doi.org/10.5194/bg-15-3461-2018, https://doi.org/10.5194/bg-15-3461-2018, 2018
Short summary
Short summary
Ecosystem models commonly assume that photosynthetic traits, such as carboxylation capacity measured at a standard temperature, are constant in time and therefore do not acclimate. Optimality hypotheses suggest this assumption may be incorrect. We investigated acclimation by carrying out measurements on woody species during distinct seasons in Western Australia. Our study shows evidence that carboxylation capacity should acclimate so that it increases somewhat with growth temperature.
Sandy P. Harrison, Patrick J. Bartlein, Victor Brovkin, Sander Houweling, Silvia Kloster, and I. Colin Prentice
Earth Syst. Dynam., 9, 663–677, https://doi.org/10.5194/esd-9-663-2018, https://doi.org/10.5194/esd-9-663-2018, 2018
Short summary
Short summary
Temperature affects fire occurrence and severity. Warming will increase fire-related carbon emissions and thus atmospheric CO2. The size of this feedback is not known. We use charcoal records to estimate pre-industrial fire emissions and a simple land–biosphere model to quantify the feedback. We infer a feedback strength of 5.6 3.2 ppm CO2 per degree of warming and a gain of 0.09 ± 0.05 for a climate sensitivity of 2.8 K. Thus, fire feedback is a large part of the climate–carbon-cycle feedback.
Daniel S. Goll, Alexander J. Winkler, Thomas Raddatz, Ning Dong, Ian Colin Prentice, Philippe Ciais, and Victor Brovkin
Geosci. Model Dev., 10, 2009–2030, https://doi.org/10.5194/gmd-10-2009-2017, https://doi.org/10.5194/gmd-10-2009-2017, 2017
Short summary
Short summary
The response of soil organic carbon decomposition to warming and the interactions between nitrogen and carbon cycling affect the feedbacks between the land carbon cycle and the climate. In the model JSBACH carbon–nitrogen interactions have only a small effect on the feedbacks, whereas modifications of soil organic carbon decomposition have a large effect. The carbon cycle in the improved model is more resilient to climatic changes than in previous version of the model.
Tyler W. Davis, I. Colin Prentice, Benjamin D. Stocker, Rebecca T. Thomas, Rhys J. Whitley, Han Wang, Bradley J. Evans, Angela V. Gallego-Sala, Martin T. Sykes, and Wolfgang Cramer
Geosci. Model Dev., 10, 689–708, https://doi.org/10.5194/gmd-10-689-2017, https://doi.org/10.5194/gmd-10-689-2017, 2017
Short summary
Short summary
This research presents a comprehensive description for calculating necessary, but sparsely observed, factors related to Earth's surface energy and water budgets relevant in, but not limited to, the study of ecosystems. We present the equations, including their derivations and assumptions, as well as example indicators relevant to plant-available moisture. The robustness of these relatively simple equations provides a tool to be used across broad fields of scientific research.
Ning Dong, Iain Colin Prentice, Bradley J. Evans, Stefan Caddy-Retalic, Andrew J. Lowe, and Ian J. Wright
Biogeosciences, 14, 481–495, https://doi.org/10.5194/bg-14-481-2017, https://doi.org/10.5194/bg-14-481-2017, 2017
Short summary
Short summary
The nitrogen content of leaves is a key quantity for understanding ecosystem function. We analysed variations in nitrogen per unit leaf area among species at sites along a transect across Australia including many climates and ecosystem types. The data could be explained by the idea that leaf nitrogen comprises two parts, one proportional to leaf mass, the other (metabolic) part proportional to light intensity and declining with CO2 drawdown and temperature, as optimal allocation theory predicts.
Corinne Le Quéré, Erik T. Buitenhuis, Róisín Moriarty, Séverine Alvain, Olivier Aumont, Laurent Bopp, Sophie Chollet, Clare Enright, Daniel J. Franklin, Richard J. Geider, Sandy P. Harrison, Andrew G. Hirst, Stuart Larsen, Louis Legendre, Trevor Platt, I. Colin Prentice, Richard B. Rivkin, Sévrine Sailley, Shubha Sathyendranath, Nick Stephens, Meike Vogt, and Sergio M. Vallina
Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, https://doi.org/10.5194/bg-13-4111-2016, 2016
Short summary
Short summary
We present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types, and use the model to assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean. Our results suggest that observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton growth.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
A. V. Gallego-Sala, D. J. Charman, S. P. Harrison, G. Li, and I. C. Prentice
Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, https://doi.org/10.5194/cp-12-129-2016, 2016
Short summary
Short summary
It has become a well-established paradigm that blanket bog landscapes in the British Isles are a result of forest clearance by early human populations. We provide a novel test of this hypothesis using results from bioclimatic modelling driven by cimate reconstructions compared with a database of peat initiation dates. Both results show similar patterns of peat initiation over time and space. This suggests that climate was the main driver of blanket bog inception and not human disturbance.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
M. G. De Kauwe, S.-X. Zhou, B. E. Medlyn, A. J. Pitman, Y.-P. Wang, R. A. Duursma, and I. C. Prentice
Biogeosciences, 12, 7503–7518, https://doi.org/10.5194/bg-12-7503-2015, https://doi.org/10.5194/bg-12-7503-2015, 2015
Short summary
Short summary
Future climate change has the potential to increase drought in many regions of the globe. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art models currently assume the same drought sensitivity for all vegetation. Our results indicate that models will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.
T.-T. Meng, H. Wang, S. P. Harrison, I. C. Prentice, J. Ni, and G. Wang
Biogeosciences, 12, 5339–5352, https://doi.org/10.5194/bg-12-5339-2015, https://doi.org/10.5194/bg-12-5339-2015, 2015
Short summary
Short summary
By analysing the quantitative leaf-traits along extensive temperature and moisture gradients with generalized linear models, we found that metabolism-related traits are universally acclimated to environmental conditions, rather than being fixed within plant functional types. The results strongly support a move towards Dynamic Global Vegetation Models in which continuous, adaptive trait variation provides the fundamental mechanism for changes in ecosystem properties along environmental gradients.
G. Li, S. P. Harrison, and I. C. Prentice
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-4769-2015, https://doi.org/10.5194/bgd-12-4769-2015, 2015
Revised manuscript has not been submitted
G. Li, S. P. Harrison, I. C. Prentice, and D. Falster
Biogeosciences, 11, 6711–6724, https://doi.org/10.5194/bg-11-6711-2014, https://doi.org/10.5194/bg-11-6711-2014, 2014
M. Martin Calvo, I. C. Prentice, and S. P. Harrison
Biogeosciences, 11, 6017–6027, https://doi.org/10.5194/bg-11-6017-2014, https://doi.org/10.5194/bg-11-6017-2014, 2014
H. Wang, I. C. Prentice, and T. W. Davis
Biogeosciences, 11, 5987–6001, https://doi.org/10.5194/bg-11-5987-2014, https://doi.org/10.5194/bg-11-5987-2014, 2014
D. I. Kelley, S. P. Harrison, and I. C. Prentice
Geosci. Model Dev., 7, 2411–2433, https://doi.org/10.5194/gmd-7-2411-2014, https://doi.org/10.5194/gmd-7-2411-2014, 2014
I. Bistinas, S. P. Harrison, I. C. Prentice, and J. M. C. Pereira
Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, https://doi.org/10.5194/bg-11-5087-2014, 2014
P. N. Foster, I. C. Prentice, C. Morfopoulos, M. Siddall, and M. van Weele
Biogeosciences, 11, 3437–3451, https://doi.org/10.5194/bg-11-3437-2014, https://doi.org/10.5194/bg-11-3437-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
A. M. Ukkola and I. C. Prentice
Hydrol. Earth Syst. Sci., 17, 4177–4187, https://doi.org/10.5194/hess-17-4177-2013, https://doi.org/10.5194/hess-17-4177-2013, 2013
H. Wang, I. C. Prentice, and J. Ni
Biogeosciences, 10, 5817–5830, https://doi.org/10.5194/bg-10-5817-2013, https://doi.org/10.5194/bg-10-5817-2013, 2013
D. I. Kelley, I. C. Prentice, S. P. Harrison, H. Wang, M. Simard, J. B. Fisher, and K. O. Willis
Biogeosciences, 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, https://doi.org/10.5194/bg-10-3313-2013, 2013
F. J. Bragg, I. C. Prentice, S. P. Harrison, G. Eglinton, P. N. Foster, F. Rommerskirchen, and J. Rullkötter
Biogeosciences, 10, 2001–2010, https://doi.org/10.5194/bg-10-2001-2013, https://doi.org/10.5194/bg-10-2001-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Mengmeng Liu, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-12, https://doi.org/10.5194/cp-2024-12, 2024
Preprint under review for CP
Short summary
Short summary
Dansgaard-Oeschger events were large and rapid warming events that occurred multiple times during the last ice age. We show that changes in the northern extratropics and the southern extratropics were anti-phased, with warming over most of the north and cooling in the south. The reconstructions do not provide evidence for a change in seasonality in temperature. However, they do indicate that warming was generally accompanied by wetter conditions and cooling by drier conditions.
Huiying Xu, Han Wang, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 4511–4525, https://doi.org/10.5194/bg-20-4511-2023, https://doi.org/10.5194/bg-20-4511-2023, 2023
Short summary
Short summary
Leaf carbon (C) and nitrogen (N) are crucial elements in leaf construction and physiological processes. This study reconciled the roles of phylogeny, species identity, and climate in stoichiometric traits at individual and community levels. The variations in community-level leaf N and C : N ratio were captured by optimality-based models using climate data. Our results provide an approach to improve the representation of leaf stoichiometry in vegetation models to better couple N with C cycling.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Giulia Mengoli, Sandy P. Harrison, and I. Colin Prentice
EGUsphere, https://doi.org/10.5194/egusphere-2023-1261, https://doi.org/10.5194/egusphere-2023-1261, 2023
Preprint archived
Short summary
Short summary
Soil water availability affects plant carbon uptake by reducing leaf area and/or by closing stomata, which reduces its efficiency. We present a new formulation of how climatic dryness reduces both maximum carbon uptake and the soil-moisture threshold below which it declines further. This formulation illustrates how plants adapt their water conservation strategy to thrive in dry climates, and is step towards a better representation of soil-moisture effects in climate models.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Yingping Wang, Julian Helfenstein, Yuanyuan Huang, Kailiang Yu, Zhiqiang Wang, Yongchuan Yang, and Enqing Hou
Earth Syst. Sci. Data, 13, 5831–5846, https://doi.org/10.5194/essd-13-5831-2021, https://doi.org/10.5194/essd-13-5831-2021, 2021
Short summary
Short summary
Our database of globally distributed natural soil total P (STP) concentration showed concentration ranged from 1.4 to 9630.0 (mean 570.0) mg kg−1. Global predictions of STP concentration increased with latitude. Global STP stocks (excluding Antarctica) were estimated to be 26.8 and 62.2 Pg in the topsoil and subsoil, respectively. Our global map of STP concentration can be used to constrain Earth system models representing the P cycle and to inform quantification of global soil P availability.
Juhwan Lee, Raphael A. Viscarra Rossel, Mingxi Zhang, Zhongkui Luo, and Ying-Ping Wang
Biogeosciences, 18, 5185–5202, https://doi.org/10.5194/bg-18-5185-2021, https://doi.org/10.5194/bg-18-5185-2021, 2021
Short summary
Short summary
We performed Roth C simulations across Australia and assessed the response of soil carbon to changing inputs and future climate change using a consistent modelling framework. Site-specific initialisation of the C pools with measurements of the C fractions is essential for accurate simulations of soil organic C stocks and composition at a large scale. With further warming, Australian soils will become more vulnerable to C loss: natural environments > native grazing > cropping > modified grazing.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice
Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, https://doi.org/10.5194/gmd-13-1545-2020, 2020
Short summary
Short summary
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models simulating the efficiency by which light absorbed by vegetation is used for CO2 assimilation. This paper presents the P-model, a light use efficiency model derived from a carbon–water optimality principle, and evaluates its predictions of ecosystem-level photosynthesis against globally distributed observations. The model is implemented and openly accessible as an R package (rpmodel).
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang
Biogeosciences, 16, 3069–3093, https://doi.org/10.5194/bg-16-3069-2019, https://doi.org/10.5194/bg-16-3069-2019, 2019
Short summary
Short summary
This study presents an estimate of global terrestrial photosynthesis. We make use of satellite chlorophyll fluorescence measurements, a visible indicator of photosynthesis, to optimize model parameters and estimate photosynthetic carbon uptake. This new framework incorporates nonlinear, process-based understanding of the link between fluorescence and photosynthesis, an advance on past approaches. This will aid in the utility of fluorescence to quantify terrestrial carbon cycle feedbacks.
Guangqi Li, Sandy P. Harrison, and I. Colin Prentice
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-63, https://doi.org/10.5194/bg-2019-63, 2019
Publication in BG not foreseen
Short summary
Short summary
Current methods of removing age effect from tree-ring are influenced by sampling biases – older trees are more abundantly sampled for recent decades, when the strongest environmental change happens. New technique of extracting environment-driven signals from tree ring is specifically designed to overcome this bias, drawing on theoretical tree growth. It removes sampling-bias effectively and shows consistent relationships between growth and climates through time and across two conifer species.
Jing Wang, Jianyang Xia, Xuhui Zhou, Kun Huang, Jian Zhou, Yuanyuan Huang, Lifen Jiang, Xia Xu, Junyi Liang, Ying-Ping Wang, Xiaoli Cheng, and Yiqi Luo
Biogeosciences, 16, 917–926, https://doi.org/10.5194/bg-16-917-2019, https://doi.org/10.5194/bg-16-917-2019, 2019
Short summary
Short summary
Soil is critical in mitigating climate change mainly because soil carbon turns over much slower in soils than vegetation and the atmosphere. However, Earth system models (ESMs) have large uncertainty in simulating carbon dynamics due to their biased estimation of soil carbon transit time (τsoil). Here, the τsoil estimates from 12 ESMs that participated in CMIP5 were evaluated by a database of measured τsoil. We detected a large spatial variation in measured τsoil across the globe.
Dongyang Wei, Penélope González-Sampériz, Graciela Gil-Romera, Sandy P. Harrison, and I. Colin Prentice
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-16, https://doi.org/10.5194/cp-2019-16, 2019
Revised manuscript not accepted
Short summary
Short summary
El Cañizar de Villarquemado provides a pollen record from semi-arid Spain since before the last interglacial. We use modern pollen–climate relationships to reconstruct changes in seasonal temperature and moisture, accounting for CO2 effects on plants, and show coherent climate changes on glacial–interglacial and orbital timescales. The low glacial CO2 means moisture changes are less extreme than suggested by the vegetation shifts, and driven by evapotranspiration rather than rainfall changes.
Qianyu Li, Xingjie Lu, Yingping Wang, Xin Huang, Peter M. Cox, and Yiqi Luo
Biogeosciences, 15, 6909–6925, https://doi.org/10.5194/bg-15-6909-2018, https://doi.org/10.5194/bg-15-6909-2018, 2018
Short summary
Short summary
Land-surface models have been widely used to predict the responses of terrestrial ecosystems to climate change. A better understanding of model mechanisms that govern terrestrial ecosystem responses to rising atmosphere [CO2] is needed. Our study for the first time shows that the expansion of leaf area under rising [CO2] is the most important response for the stimulation of land carbon accumulation by a land-surface model: CABLE. Processes related to leaf area should be better calibrated.
Xingjie Lu, Ying-Ping Wang, Yiqi Luo, and Lifen Jiang
Biogeosciences, 15, 6559–6572, https://doi.org/10.5194/bg-15-6559-2018, https://doi.org/10.5194/bg-15-6559-2018, 2018
Short summary
Short summary
How long does C cycle through terrestrial ecosystems is a critical question for understanding land C sequestration capacity under future rising atmosphere [CO2] and climate warming. Under climate change, previous conventional concepts with a steady-state assumption will no longer be suitable for a non-steady state. Our results using the new concept, C transit time, suggest more significant responses in terrestrial C cycle under rising [CO2] and climate warming.
Yilong Wang, Philippe Ciais, Daniel Goll, Yuanyuan Huang, Yiqi Luo, Ying-Ping Wang, A. Anthony Bloom, Grégoire Broquet, Jens Hartmann, Shushi Peng, Josep Penuelas, Shilong Piao, Jordi Sardans, Benjamin D. Stocker, Rong Wang, Sönke Zaehle, and Sophie Zechmeister-Boltenstern
Geosci. Model Dev., 11, 3903–3928, https://doi.org/10.5194/gmd-11-3903-2018, https://doi.org/10.5194/gmd-11-3903-2018, 2018
Short summary
Short summary
We present a new modeling framework called Global Observation-based Land-ecosystems Utilization Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) that combines a data-constrained C-cycle analysis with data-driven estimates of N and P inputs and losses and with observed stoichiometric ratios. GOLUM-CNP provides a traceable tool, where a consistency between different datasets of global C, N, and P cycles has been achieved.
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-270, https://doi.org/10.5194/bg-2018-270, 2018
Revised manuscript has not been submitted
Short summary
Short summary
This study presents a global estimate of land carbon uptake through photosynthesis. We make use satellite chlorophyll fluorescence measurements, a visible indicator of photosynthesis, to optimize model parameters and then use the optimized model to estimate photosynthetic carbon uptake. This provides a new tool that can combine measurements and observations in a systematic way and maximise the use of chlorophyll fluorescence to improve our understanding of the land carbon cycle.
Henrique Fürstenau Togashi, Iain Colin Prentice, Owen K. Atkin, Craig Macfarlane, Suzanne M. Prober, Keith J. Bloomfield, and Bradley John Evans
Biogeosciences, 15, 3461–3474, https://doi.org/10.5194/bg-15-3461-2018, https://doi.org/10.5194/bg-15-3461-2018, 2018
Short summary
Short summary
Ecosystem models commonly assume that photosynthetic traits, such as carboxylation capacity measured at a standard temperature, are constant in time and therefore do not acclimate. Optimality hypotheses suggest this assumption may be incorrect. We investigated acclimation by carrying out measurements on woody species during distinct seasons in Western Australia. Our study shows evidence that carboxylation capacity should acclimate so that it increases somewhat with growth temperature.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Sandy P. Harrison, Patrick J. Bartlein, Victor Brovkin, Sander Houweling, Silvia Kloster, and I. Colin Prentice
Earth Syst. Dynam., 9, 663–677, https://doi.org/10.5194/esd-9-663-2018, https://doi.org/10.5194/esd-9-663-2018, 2018
Short summary
Short summary
Temperature affects fire occurrence and severity. Warming will increase fire-related carbon emissions and thus atmospheric CO2. The size of this feedback is not known. We use charcoal records to estimate pre-industrial fire emissions and a simple land–biosphere model to quantify the feedback. We infer a feedback strength of 5.6 3.2 ppm CO2 per degree of warming and a gain of 0.09 ± 0.05 for a climate sensitivity of 2.8 K. Thus, fire feedback is a large part of the climate–carbon-cycle feedback.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gabriel Abramowitz, Martin G. De Kauwe, Bradley Evans, Vanessa Haverd, Longhui Li, Caitlin Moore, Youngryel Ryu, Simon Scheiter, Stanislaus J. Schymanski, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, https://doi.org/10.5194/bg-14-4711-2017, 2017
Short summary
Short summary
This paper attempts to review some of the current challenges faced by the modelling community in simulating the behaviour of savanna ecosystems. We provide a particular focus on three dynamic processes (phenology, root-water access, and fire) that are characteristic of savannas, which we believe are not adequately represented in current-generation terrestrial biosphere models. We highlight reasons for these misrepresentations, possible solutions and a future direction for research in this area.
Rachel M. Law, Tilo Ziehn, Richard J. Matear, Andrew Lenton, Matthew A. Chamberlain, Lauren E. Stevens, Ying-Ping Wang, Jhan Srbinovsky, Daohua Bi, Hailin Yan, and Peter F. Vohralik
Geosci. Model Dev., 10, 2567–2590, https://doi.org/10.5194/gmd-10-2567-2017, https://doi.org/10.5194/gmd-10-2567-2017, 2017
Short summary
Short summary
The paper describes a version of the Australian Community Climate and Earth System Simulator that has been enabled to simulate the carbon cycle, which is designated ACCESS-ESM1. The model performance for pre-industrial conditions is assessed and land and ocean carbon fluxes are found to be simulated realistically.
Daniel S. Goll, Alexander J. Winkler, Thomas Raddatz, Ning Dong, Ian Colin Prentice, Philippe Ciais, and Victor Brovkin
Geosci. Model Dev., 10, 2009–2030, https://doi.org/10.5194/gmd-10-2009-2017, https://doi.org/10.5194/gmd-10-2009-2017, 2017
Short summary
Short summary
The response of soil organic carbon decomposition to warming and the interactions between nitrogen and carbon cycling affect the feedbacks between the land carbon cycle and the climate. In the model JSBACH carbon–nitrogen interactions have only a small effect on the feedbacks, whereas modifications of soil organic carbon decomposition have a large effect. The carbon cycle in the improved model is more resilient to climatic changes than in previous version of the model.
Tyler W. Davis, I. Colin Prentice, Benjamin D. Stocker, Rebecca T. Thomas, Rhys J. Whitley, Han Wang, Bradley J. Evans, Angela V. Gallego-Sala, Martin T. Sykes, and Wolfgang Cramer
Geosci. Model Dev., 10, 689–708, https://doi.org/10.5194/gmd-10-689-2017, https://doi.org/10.5194/gmd-10-689-2017, 2017
Short summary
Short summary
This research presents a comprehensive description for calculating necessary, but sparsely observed, factors related to Earth's surface energy and water budgets relevant in, but not limited to, the study of ecosystems. We present the equations, including their derivations and assumptions, as well as example indicators relevant to plant-available moisture. The robustness of these relatively simple equations provides a tool to be used across broad fields of scientific research.
Ning Dong, Iain Colin Prentice, Bradley J. Evans, Stefan Caddy-Retalic, Andrew J. Lowe, and Ian J. Wright
Biogeosciences, 14, 481–495, https://doi.org/10.5194/bg-14-481-2017, https://doi.org/10.5194/bg-14-481-2017, 2017
Short summary
Short summary
The nitrogen content of leaves is a key quantity for understanding ecosystem function. We analysed variations in nitrogen per unit leaf area among species at sites along a transect across Australia including many climates and ecosystem types. The data could be explained by the idea that leaf nitrogen comprises two parts, one proportional to leaf mass, the other (metabolic) part proportional to light intensity and declining with CO2 drawdown and temperature, as optimal allocation theory predicts.
Yiqi Luo, Zheng Shi, Xingjie Lu, Jianyang Xia, Junyi Liang, Jiang Jiang, Ying Wang, Matthew J. Smith, Lifen Jiang, Anders Ahlström, Benito Chen, Oleksandra Hararuk, Alan Hastings, Forrest Hoffman, Belinda Medlyn, Shuli Niu, Martin Rasmussen, Katherine Todd-Brown, and Ying-Ping Wang
Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, https://doi.org/10.5194/bg-14-145-2017, 2017
Short summary
Short summary
Climate change is strongly regulated by land carbon cycle. However, we lack the ability to predict future land carbon sequestration. Here, we develop a novel framework for understanding what determines the direction and rate of future change in land carbon storage. The framework offers a suite of new approaches to revolutionize land carbon model evaluation and improvement.
Eva A. Kowalczyk, Lauren E. Stevens, Rachel M. Law, Ian N. Harman, Martin Dix, Charmaine N. Franklin, and Ying-Ping Wang
Geosci. Model Dev., 9, 2771–2791, https://doi.org/10.5194/gmd-9-2771-2016, https://doi.org/10.5194/gmd-9-2771-2016, 2016
Short summary
Short summary
This paper compares two ACCESS model versions that differ only in their land surface scheme. Differences in the simulated present-day climate are attributed to differences in the representation of various land surface processes.
Rashid Rafique, Jianyang Xia, Oleksandra Hararuk, Ghassem R. Asrar, Guoyong Leng, Yingping Wang, and Yiqi Luo
Earth Syst. Dynam., 7, 649–658, https://doi.org/10.5194/esd-7-649-2016, https://doi.org/10.5194/esd-7-649-2016, 2016
Short summary
Short summary
Traceability analysis was used to diagnose the causes of differences in simulating ecosystem carbon storage capacity between two land models: CLMA-CASA and CABLE. Results showed that the simulated ecosystem carbon storage capacity is largely influenced by the photosynthesis parameterization, residence time and organic matter decomposition.
Corinne Le Quéré, Erik T. Buitenhuis, Róisín Moriarty, Séverine Alvain, Olivier Aumont, Laurent Bopp, Sophie Chollet, Clare Enright, Daniel J. Franklin, Richard J. Geider, Sandy P. Harrison, Andrew G. Hirst, Stuart Larsen, Louis Legendre, Trevor Platt, I. Colin Prentice, Richard B. Rivkin, Sévrine Sailley, Shubha Sathyendranath, Nick Stephens, Meike Vogt, and Sergio M. Vallina
Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, https://doi.org/10.5194/bg-13-4111-2016, 2016
Short summary
Short summary
We present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types, and use the model to assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean. Our results suggest that observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton growth.
Anna M. Ukkola, Andy J. Pitman, Mark Decker, Martin G. De Kauwe, Gab Abramowitz, Jatin Kala, and Ying-Ping Wang
Hydrol. Earth Syst. Sci., 20, 2403–2419, https://doi.org/10.5194/hess-20-2403-2016, https://doi.org/10.5194/hess-20-2403-2016, 2016
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gab Abramowitz, Martin G. De Kauwe, Remko Duursma, Bradley Evans, Vanessa Haverd, Longhui Li, Youngryel Ryu, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, https://doi.org/10.5194/bg-13-3245-2016, 2016
Short summary
Short summary
In this study we assess how well terrestrial biosphere models perform at predicting water and carbon cycling for savanna ecosystems. We apply our models to five savanna sites in Northern Australia and highlight key causes for model failure. Our assessment of model performance uses a novel benchmarking system that scores a model’s predictive ability based on how well it is utilizing its driving information. On average, we found the models as a group display only moderate levels of performance.
Y. P. Wang, J. Jiang, B. Chen-Charpentier, F. B. Agusto, A. Hastings, F. Hoffman, M. Rasmussen, M. J. Smith, K. Todd-Brown, Y. Wang, X. Xu, and Y. Q. Luo
Biogeosciences, 13, 887–902, https://doi.org/10.5194/bg-13-887-2016, https://doi.org/10.5194/bg-13-887-2016, 2016
Short summary
Short summary
Comparing two nonlinear microbial models, we found that,
in response to warming, soil C decreases in one model but can increase or decrease in the other model, and sensitivity of priming response to carbon input increases with soil T in one model but decreases in the other model
Significance: these differences in the responses can be used to discern which model is more realistic, which will improve our understanding of the significance of soil microbial processes in the terrestrial C cycle.
A. V. Gallego-Sala, D. J. Charman, S. P. Harrison, G. Li, and I. C. Prentice
Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, https://doi.org/10.5194/cp-12-129-2016, 2016
Short summary
Short summary
It has become a well-established paradigm that blanket bog landscapes in the British Isles are a result of forest clearance by early human populations. We provide a novel test of this hypothesis using results from bioclimatic modelling driven by cimate reconstructions compared with a database of peat initiation dates. Both results show similar patterns of peat initiation over time and space. This suggests that climate was the main driver of blanket bog inception and not human disturbance.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
M. G. De Kauwe, S.-X. Zhou, B. E. Medlyn, A. J. Pitman, Y.-P. Wang, R. A. Duursma, and I. C. Prentice
Biogeosciences, 12, 7503–7518, https://doi.org/10.5194/bg-12-7503-2015, https://doi.org/10.5194/bg-12-7503-2015, 2015
Short summary
Short summary
Future climate change has the potential to increase drought in many regions of the globe. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art models currently assume the same drought sensitivity for all vegetation. Our results indicate that models will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.
J. Kala, M. G. De Kauwe, A. J. Pitman, R. Lorenz, B. E. Medlyn, Y.-P Wang, Y.-S Lin, and G. Abramowitz
Geosci. Model Dev., 8, 3877–3889, https://doi.org/10.5194/gmd-8-3877-2015, https://doi.org/10.5194/gmd-8-3877-2015, 2015
Short summary
Short summary
We implement a new stomatal conductance scheme within a land surface model coupled to a global climate model. The new model differs from the default in that it allows model parameters to vary by the different plant functional types, derived from global synthesis of observations. We show that the new scheme results in improvements in the model climatology and improves existing biases in warm temperature extremes by up to 10-20% over the boreal forests during summer.
T.-T. Meng, H. Wang, S. P. Harrison, I. C. Prentice, J. Ni, and G. Wang
Biogeosciences, 12, 5339–5352, https://doi.org/10.5194/bg-12-5339-2015, https://doi.org/10.5194/bg-12-5339-2015, 2015
Short summary
Short summary
By analysing the quantitative leaf-traits along extensive temperature and moisture gradients with generalized linear models, we found that metabolism-related traits are universally acclimated to environmental conditions, rather than being fixed within plant functional types. The results strongly support a move towards Dynamic Global Vegetation Models in which continuous, adaptive trait variation provides the fundamental mechanism for changes in ecosystem properties along environmental gradients.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
G. Li, S. P. Harrison, and I. C. Prentice
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-4769-2015, https://doi.org/10.5194/bgd-12-4769-2015, 2015
Revised manuscript has not been submitted
M. G. De Kauwe, J. Kala, Y.-S. Lin, A. J. Pitman, B. E. Medlyn, R. A. Duursma, G. Abramowitz, Y.-P. Wang, and D. G. Miralles
Geosci. Model Dev., 8, 431–452, https://doi.org/10.5194/gmd-8-431-2015, https://doi.org/10.5194/gmd-8-431-2015, 2015
Short summary
Short summary
Stomatal conductance affects the fluxes of carbon, energy and water between the vegetated land surface and the atmosphere. We test an implementation of an optimal stomatal conductance model within the CABLE land surface model (LSM). The new implementation resulted in a large reduction in the annual fluxes of transpiration across evergreen needleleaf, tundra and C4 grass regions. We conclude that optimisation theory can yield a tractable approach to predicting stomatal conductance in LSMs.
G. Li, S. P. Harrison, I. C. Prentice, and D. Falster
Biogeosciences, 11, 6711–6724, https://doi.org/10.5194/bg-11-6711-2014, https://doi.org/10.5194/bg-11-6711-2014, 2014
M. Martin Calvo, I. C. Prentice, and S. P. Harrison
Biogeosciences, 11, 6017–6027, https://doi.org/10.5194/bg-11-6017-2014, https://doi.org/10.5194/bg-11-6017-2014, 2014
H. Wang, I. C. Prentice, and T. W. Davis
Biogeosciences, 11, 5987–6001, https://doi.org/10.5194/bg-11-5987-2014, https://doi.org/10.5194/bg-11-5987-2014, 2014
D. I. Kelley, S. P. Harrison, and I. C. Prentice
Geosci. Model Dev., 7, 2411–2433, https://doi.org/10.5194/gmd-7-2411-2014, https://doi.org/10.5194/gmd-7-2411-2014, 2014
I. Bistinas, S. P. Harrison, I. C. Prentice, and J. M. C. Pereira
Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, https://doi.org/10.5194/bg-11-5087-2014, 2014
P. N. Foster, I. C. Prentice, C. Morfopoulos, M. Siddall, and M. van Weele
Biogeosciences, 11, 3437–3451, https://doi.org/10.5194/bg-11-3437-2014, https://doi.org/10.5194/bg-11-3437-2014, 2014
Y. P. Wang, B. C. Chen, W. R. Wieder, M. Leite, B. E. Medlyn, M. Rasmussen, M. J. Smith, F. B. Agusto, F. Hoffman, and Y. Q. Luo
Biogeosciences, 11, 1817–1831, https://doi.org/10.5194/bg-11-1817-2014, https://doi.org/10.5194/bg-11-1817-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
J.-F. Exbrayat, A. J. Pitman, Q. Zhang, G. Abramowitz, and Y.-P. Wang
Biogeosciences, 10, 7095–7108, https://doi.org/10.5194/bg-10-7095-2013, https://doi.org/10.5194/bg-10-7095-2013, 2013
A. M. Ukkola and I. C. Prentice
Hydrol. Earth Syst. Sci., 17, 4177–4187, https://doi.org/10.5194/hess-17-4177-2013, https://doi.org/10.5194/hess-17-4177-2013, 2013
Q. Zhang, A. J. Pitman, Y. P. Wang, Y. J. Dai, and P. J. Lawrence
Earth Syst. Dynam., 4, 333–345, https://doi.org/10.5194/esd-4-333-2013, https://doi.org/10.5194/esd-4-333-2013, 2013
H. Wang, I. C. Prentice, and J. Ni
Biogeosciences, 10, 5817–5830, https://doi.org/10.5194/bg-10-5817-2013, https://doi.org/10.5194/bg-10-5817-2013, 2013
D. I. Kelley, I. C. Prentice, S. P. Harrison, H. Wang, M. Simard, J. B. Fisher, and K. O. Willis
Biogeosciences, 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, https://doi.org/10.5194/bg-10-3313-2013, 2013
F. J. Bragg, I. C. Prentice, S. P. Harrison, G. Eglinton, P. N. Foster, F. Rommerskirchen, and J. Rullkötter
Biogeosciences, 10, 2001–2010, https://doi.org/10.5194/bg-10-2001-2013, https://doi.org/10.5194/bg-10-2001-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Why do inverse models disagree? A case study with two European CO2 inversions
Net ecosystem exchange (NEE) estimates 2006–2019 over Europe from a pre-operational ensemble-inversion system
Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models
Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect
Was Australia a sink or source of CO2 in 2015? Data assimilation using OCO-2 satellite measurements
CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review
Effects of aerosol dynamics and gas–particle conversion on dry deposition of inorganic reactive nitrogen in a temperate forest
Ozone–vegetation feedback through dry deposition and isoprene emissions in a global chemistry–carbon–climate model
Pathway dependence of ecosystem responses in China to 1.5 °C global warming
A model-based analysis of foliar NOx deposition
Quantifying the UK's carbon dioxide flux: an atmospheric inverse modelling approach using a regional measurement network
Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory
Technical note: How are NH3 dry deposition estimates affected by combining the LOTOS-EUROS model with IASI-NH3 satellite observations?
Isoprene and monoterpene emissions in south-east Australia: comparison of a multi-layer canopy model with MEGAN and with atmospheric observations
Particulate matter air pollution may offset ozone damage to global crop production
Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone
The influence of idealized surface heterogeneity on virtual turbulent flux measurements
Technical Note: Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: methodology and system evaluation
Atmospheric CO2 inversions on the mesoscale using data-driven prior uncertainties: quantification of the European terrestrial CO2 fluxes
Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks
Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America
Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: current status and outlook
Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems
A wedge strategy for mitigation of urban warming in future climate scenarios
The boundary condition for vertical velocity and its interdependence with surface gas exchange
Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region
Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of CO2
Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI
A study of the influence of forest gaps on fire–atmosphere interactions
Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate
Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades
Granger causality from changes in level of atmospheric CO2 to global surface temperature and the El Niño–Southern Oscillation, and a candidate mechanism in global photosynthesis
MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe
Stably stratified canopy flow in complex terrain
Fire emission heights in the climate system – Part 1: Global plume height patterns simulated by ECHAM6-HAM2
Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation
Biases in atmospheric CO2 estimates from correlated meteorology modeling errors
Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements
Greenhouse gas network design using backward Lagrangian particle dispersion modelling − Part 1: Methodology and Australian test case
Sensitivity analysis of an updated bidirectional air–surface exchange model for elemental mercury vapor
Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion
Quantifying the constraint of biospheric process parameters by CO2 concentration and flux measurement networks through a carbon cycle data assimilation system
Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model
Present and future nitrogen deposition to national parks in the United States: critical load exceedances
Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions
Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems?
The effect of climate and climate change on ammonia emissions in Europe
Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design
CO2 flux estimation errors associated with moist atmospheric processes
DO3SE modelling of soil moisture to determine ozone flux to forest trees
Saqr Munassar, Guillaume Monteil, Marko Scholze, Ute Karstens, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, and Christoph Gerbig
Atmos. Chem. Phys., 23, 2813–2828, https://doi.org/10.5194/acp-23-2813-2023, https://doi.org/10.5194/acp-23-2813-2023, 2023
Short summary
Short summary
Using different transport models results in large errors in optimized fluxes in the atmospheric inversions. Boundary conditions and inversion system configurations lead to a smaller but non-negligible impact. The findings highlight the importance to validate transport models for further developments but also to properly account for such errors in inverse modelling. This will help narrow the convergence of gas estimates reported in the scientific literature from different inversion frameworks.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Hao Zhou, Xu Yue, Yadong Lei, Chenguang Tian, Jun Zhu, Yimian Ma, Yang Cao, Xixi Yin, and Zhiding Zhang
Atmos. Chem. Phys., 22, 693–709, https://doi.org/10.5194/acp-22-693-2022, https://doi.org/10.5194/acp-22-693-2022, 2022
Short summary
Short summary
Aerosols enhance plant photosynthesis by increasing diffuse radiation. In this study, we found that the aerosol impacts are quite different for varied species. Scattering aerosols such as sulfate and organic carbon promote photosynthesis while absorbing aerosols such as black carbon have negative impacts. Earth system models should consider the impacts of cloud and aerosol species on terrestrial ecosystems so as to better predict carbon cycles under different emission scenarios.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021, https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary
Short summary
Semi-arid ecosystems such as those in Australia are evolving and might play an essential role in the future of climate change. We use carbon dioxide concentrations derived from the OCO-2 satellite instrument and a regional transport model to understand if Australia was a carbon sink or source of CO2 in 2015. Our research's main findings suggest that Australia acted as a carbon sink of about −0.41 ± 0.08 petagrams of carbon in 2015, driven primarily by savanna and sparsely vegetated ecosystems.
Ryan M. Bright and Marianne T. Lund
Atmos. Chem. Phys., 21, 9887–9907, https://doi.org/10.5194/acp-21-9887-2021, https://doi.org/10.5194/acp-21-9887-2021, 2021
Short summary
Short summary
Humans affect the reflective properties (albedo) of Earth's surface and the amount of solar energy that it absorbs, in turn affecting climate. In recent years, a variety of climate metrics have been applied to characterize albedo perturbations in terms of their
CO2-equivalenteffects, despite the lack of scientific consensus surrounding the methods behind them. We review these metrics, evaluate their (de)merits, provide guidance for future application, and suggest avenues for future research.
Genki Katata, Kazuhide Matsuda, Atsuyuki Sorimachi, Mizuo Kajino, and Kentaro Takagi
Atmos. Chem. Phys., 20, 4933–4949, https://doi.org/10.5194/acp-20-4933-2020, https://doi.org/10.5194/acp-20-4933-2020, 2020
Short summary
Short summary
This work quantified the role of aerosol dynamics and gas–particle conversion processes in the dry deposition of inorganic reactive nitrogen using a new multilayer land surface model. It also revealed a potential impact of the above processes on improving the predictive accuracy of chemical transport models.
Cheng Gong, Yadong Lei, Yimian Ma, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 20, 3841–3857, https://doi.org/10.5194/acp-20-3841-2020, https://doi.org/10.5194/acp-20-3841-2020, 2020
Short summary
Short summary
We evaluate ozone–vegetation feedback using a fully coupled chemistry–carbon–climate global model (ModelE2-YIBs). Ozone damage to photosynthesis, stomatal conductance, and isoprene emissions parameterized by different schemes and sensitivities is jointly considered. In general, surface ozone concentrations are increased due to ozone–vegetation interactions, especially over the regions with a high ambient ozone level such as the eastern US, eastern China, and western Europe.
Xu Yue, Hong Liao, Huijun Wang, Tianyi Zhang, Nadine Unger, Stephen Sitch, Zhaozhong Feng, and Jia Yang
Atmos. Chem. Phys., 20, 2353–2366, https://doi.org/10.5194/acp-20-2353-2020, https://doi.org/10.5194/acp-20-2353-2020, 2020
Short summary
Short summary
We explore ecosystem responses in China to 1.5 °C global warming under stabilized versus transient pathways. Remarkably, GPP shows 30 % higher enhancement in the stabilized than the transient pathway because of the lower ozone (smaller damages to photosynthesis) and fewer aerosols (higher light availability) in the former pathway. Our analyses suggest that an associated reduction of CO2 and pollution emissions brings more benefits to ecosystems in China via 1.5 °C global warming.
Erin R. Delaria and Ronald C. Cohen
Atmos. Chem. Phys., 20, 2123–2141, https://doi.org/10.5194/acp-20-2123-2020, https://doi.org/10.5194/acp-20-2123-2020, 2020
Short summary
Short summary
Uptake of nitrogen dioxide (NO2) through pores in the surfaces of leaves has been identified as a significant, but inadequately understood, loss process of atmospheric nitrogen oxides. We have constructed a simple model for examining the impact of NO2 foliar uptake on the atmospheric chemistry of nitrogen oxides. We show that an accurate representation in atmospheric models of the effects of weather and soil conditions on leaf NO2 uptake may be important for accurately predicting NO2 deposition.
Emily D. White, Matthew Rigby, Mark F. Lunt, T. Luke Smallman, Edward Comyn-Platt, Alistair J. Manning, Anita L. Ganesan, Simon O'Doherty, Ann R. Stavert, Kieran Stanley, Mathew Williams, Peter Levy, Michel Ramonet, Grant L. Forster, Andrew C. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 4345–4365, https://doi.org/10.5194/acp-19-4345-2019, https://doi.org/10.5194/acp-19-4345-2019, 2019
Short summary
Short summary
Understanding carbon dioxide (CO2) fluxes from the terrestrial biosphere on a national scale is important for evaluating land use strategies to mitigate climate change. We estimate emissions of CO2 from the UK biosphere using atmospheric data in a top-down approach. Our findings show that bottom-up estimates from models of biospheric fluxes overestimate the amount of CO2 uptake in summer. This suggests these models wrongly estimate or omit key processes, e.g. land disturbance due to harvest.
Pertti Hari, Steffen Noe, Sigrid Dengel, Jan Elbers, Bert Gielen, Veli-Matti Kerminen, Bart Kruijt, Liisa Kulmala, Anders Lindroth, Ivan Mammarella, Tuukka Petäjä, Guy Schurgers, Anni Vanhatalo, Markku Kulmala, and Jaana Bäck
Atmos. Chem. Phys., 18, 13321–13328, https://doi.org/10.5194/acp-18-13321-2018, https://doi.org/10.5194/acp-18-13321-2018, 2018
Short summary
Short summary
The development of eddy-covariance measurements of ecosystem CO2 fluxes began a new era in the field studies of photosynthesis. The interpretation of the very variable CO2 fluxes in evergreen forests has been problematic especially in seasonal transition times. We apply two theoretical needle-level equations and show they can predict photosynthetic CO2 flux between the atmosphere and Scots pine forests. This has strong implications for the interpretation of the global change and boreal forests.
Shelley C. van der Graaf, Enrico Dammers, Martijn Schaap, and Jan Willem Erisman
Atmos. Chem. Phys., 18, 13173–13196, https://doi.org/10.5194/acp-18-13173-2018, https://doi.org/10.5194/acp-18-13173-2018, 2018
Short summary
Short summary
A combination of NH3 satellite observations from IASI and the LOTOS-EUROS model is used to derive NH3 surface concentrations and dry deposition fluxes over Europe. The results were evaluated using surface measurements (EMEP, LML, MAN) and a sensitivity study. This is a first step in further integration of surface measurements, satellite observations and an atmospheric transport model to derive accurate NH3 surface concentrations and dry deposition fluxes on a large scale.
Kathryn M. Emmerson, Martin E. Cope, Ian E. Galbally, Sunhee Lee, and Peter F. Nelson
Atmos. Chem. Phys., 18, 7539–7556, https://doi.org/10.5194/acp-18-7539-2018, https://doi.org/10.5194/acp-18-7539-2018, 2018
Short summary
Short summary
We compare the CSIRO in-house biogenic emissions model (ABCGEM) with the Model of Emissions of Gases and Aerosols from Nature (MEGAN), for eucalypt-rich south-east Australia. Differences in emissions are not only due to the emission factors, but also how these emission factors are processed. ABCGEM assumes monoterpenes are not light dependent, whilst MEGAN does. Comparison with observations suggests that Australian monoterpenes may not be as light dependent as other vegetation globally.
Luke D. Schiferl and Colette L. Heald
Atmos. Chem. Phys., 18, 5953–5966, https://doi.org/10.5194/acp-18-5953-2018, https://doi.org/10.5194/acp-18-5953-2018, 2018
Short summary
Short summary
Global population growth and industrialization have contributed to poor air quality worldwide, and increasing population will put pressure on global food production. We therefore assess how air pollution may impact crop growth. Ozone has previously been shown to damage crops. We demonstrate that the impact of particles associated with enhanced light scattering promotes growth, offsetting much, if not all, ozone damage. This has implications for air quality management and global food security.
Alessandro Anav, Chiara Proietti, Laurent Menut, Stefano Carnicelli, Alessandra De Marco, and Elena Paoletti
Atmos. Chem. Phys., 18, 5747–5763, https://doi.org/10.5194/acp-18-5747-2018, https://doi.org/10.5194/acp-18-5747-2018, 2018
Short summary
Short summary
Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, the role of water availability is often neglected in atmospheric chemistry modelling studies.
We show how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in semi-arid environments. Despite the fact that dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere.
Frederik De Roo and Matthias Mauder
Atmos. Chem. Phys., 18, 5059–5074, https://doi.org/10.5194/acp-18-5059-2018, https://doi.org/10.5194/acp-18-5059-2018, 2018
Short summary
Short summary
We investigate the mismatch between incoming energy and the turbulent flux of sensible heat at the Earth's surface and how surface heterogeneity affects this imbalance. To resolve the turbulent fluxes we employ large-eddy simulations. We study terrain with different heterogeneity lengths and quantify the contributions of advection by the mean flow and horizontal flux-divergence in the surface energy budget. We find that the latter contributions depend on the scale of the heterogeneity length.
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas Frank Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3027–3045, https://doi.org/10.5194/acp-18-3027-2018, https://doi.org/10.5194/acp-18-3027-2018, 2018
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas F. Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3047–3064, https://doi.org/10.5194/acp-18-3047-2018, https://doi.org/10.5194/acp-18-3047-2018, 2018
Sara C. Pryor, Ryan C. Sullivan, and Justin T. Schoof
Atmos. Chem. Phys., 17, 14457–14471, https://doi.org/10.5194/acp-17-14457-2017, https://doi.org/10.5194/acp-17-14457-2017, 2017
Short summary
Short summary
The air temperature and water vapor content are increasing globally due to the increased concentration of "heat-trapping" (greenhouse) gases. But not all regions are warming at the same rate. This analysis is designed to improve understanding of the causes of recent trends and year-to-year variability in summertime heat indices over the eastern US and to present a new model that can be used to make projections of future events that may cause loss of life and/or decreased human well-being.
Xu Yue, Susanna Strada, Nadine Unger, and Aihui Wang
Atmos. Chem. Phys., 17, 13699–13719, https://doi.org/10.5194/acp-17-13699-2017, https://doi.org/10.5194/acp-17-13699-2017, 2017
Short summary
Short summary
Climate change will significantly increase wildfire emissions in boreal North America by the midcentury, leading to increased surface ozone and atmospheric aerosols. These air pollutants can affect vegetation photosynthesis through stomatal uptake (for ozone) and radiative and climatic perturbations (for aerosols). Using a carbon–chemistry–climate model, we estimate trivial ozone vegetation damages but significant aerosol-induced reduction in ecosystem productivity by the 2050s.
Mikhail Sofiev, Olga Ritenberga, Roberto Albertini, Joaquim Arteta, Jordina Belmonte, Carmi Geller Bernstein, Maira Bonini, Sevcan Celenk, Athanasios Damialis, John Douros, Hendrik Elbern, Elmar Friese, Carmen Galan, Gilles Oliver, Ivana Hrga, Rostislav Kouznetsov, Kai Krajsek, Donat Magyar, Jonathan Parmentier, Matthieu Plu, Marje Prank, Lennart Robertson, Birthe Marie Steensen, Michel Thibaudon, Arjo Segers, Barbara Stepanovich, Alvaro M. Valdebenito, Julius Vira, and Despoina Vokou
Atmos. Chem. Phys., 17, 12341–12360, https://doi.org/10.5194/acp-17-12341-2017, https://doi.org/10.5194/acp-17-12341-2017, 2017
Short summary
Short summary
This work presents the features and evaluates the quality of the Copernicus Atmospheric Monitoring Service forecasts of olive pollen distribution in Europe. It is shown that the models can predict the main features of the observed pollen distribution but have more difficulties in capturing the season start and end, which appeared shifted by a few days. We also demonstrated that the combined use of model predictions with up-to-date measurements (data fusion) can strongly improve the results.
Guocheng Wang, Wen Zhang, Wenjuan Sun, Tingting Li, and Pengfei Han
Atmos. Chem. Phys., 17, 11849–11859, https://doi.org/10.5194/acp-17-11849-2017, https://doi.org/10.5194/acp-17-11849-2017, 2017
Short summary
Short summary
Cropland soil carbon sequestration contribute to not only climate change mitigation but also to sustainable agricultural production. This paper investigates soil carbon dynamics across the global main cereal cropping systems at a fine spatial resolution, using a modeling approach based on state-of-the-art databases of soil and climate. The key environmental controls on soil carbon changes were also identified.
Lei Zhao, Xuhui Lee, and Natalie M. Schultz
Atmos. Chem. Phys., 17, 9067–9080, https://doi.org/10.5194/acp-17-9067-2017, https://doi.org/10.5194/acp-17-9067-2017, 2017
Short summary
Short summary
Heat stress associated with climate change is one of most severe threats to human society. The problem is further compounded in urban areas by urban heat islands (UHIs). We use an urban climate model to evaluate the cooling benefits of active urban heat mitigation strategies both individually and collectively. We show that by forming UHI mitigation wedges, these strategies have the potential to significantly reduce the UHI effect plus warming induced by greenhouse gases.
Andrew S. Kowalski
Atmos. Chem. Phys., 17, 8177–8187, https://doi.org/10.5194/acp-17-8177-2017, https://doi.org/10.5194/acp-17-8177-2017, 2017
Short summary
Short summary
An analysis based on physical conservation law demonstrates that surface–atmosphere exchanges include a non-diffusive component. This implies the need to revise flux gradient relationships including eddy diffusivities in micrometeorology and stomatal conductances in plant physiology.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Saroja M. Polavarapu, Michael Neish, Monique Tanguay, Claude Girard, Jean de Grandpré, Kirill Semeniuk, Sylvie Gravel, Shuzhan Ren, Sébastien Roche, Douglas Chan, and Kimberly Strong
Atmos. Chem. Phys., 16, 12005–12038, https://doi.org/10.5194/acp-16-12005-2016, https://doi.org/10.5194/acp-16-12005-2016, 2016
Short summary
Short summary
CO2 predictions are used to compute model–data mismatches when estimating surfaces fluxes using atmospheric observations together with an atmospheric transport model. By isolating the component of transport error which is due to uncertain meteorological analyses, it is demonstrated that CO2 can only be defined on large spatial scales. Thus, there is a spatial scale below which we cannot infer fluxes simply due to the fact that meteorological analyes are imperfect.
Lisa R. Welp, Prabir K. Patra, Christian Rödenbeck, Rama Nemani, Jian Bi, Stephen C. Piper, and Ralph F. Keeling
Atmos. Chem. Phys., 16, 9047–9066, https://doi.org/10.5194/acp-16-9047-2016, https://doi.org/10.5194/acp-16-9047-2016, 2016
Short summary
Short summary
Boreal and arctic ecosystems have been responding to elevated temperatures and atmospheric CO2 over the last decades. It is not clear if these ecosystems are sequestering more carbon or possibly becoming sources. This is an important feedback of the carbon cycle to global warming. We studied monthly biological land CO2 fluxes inferred from atmospheric CO2 concentrations using inverse models and found that net summer CO2 uptake increased, resulting in a small increase in annual CO2 uptake.
Michael T. Kiefer, Warren E. Heilman, Shiyuan Zhong, Joseph J. Charney, and Xindi Bian
Atmos. Chem. Phys., 16, 8499–8509, https://doi.org/10.5194/acp-16-8499-2016, https://doi.org/10.5194/acp-16-8499-2016, 2016
Short summary
Short summary
Studies of fire–atmosphere interactions in horizontally heterogeneous forests are limited in number. This study considers the sensitivity of fire-perturbed variables (e.g., vertical velocity, turbulent kinetic energy) to gaps in forest cover using ARPS-CANOPY, an atmospheric numerical model with a canopy sub-model. Results show that the atmosphere is most sensitive to the fire when the gap is centered on the fire and least sensitive when the gap is upstream of the fire.
L. Xia, A. Robock, S. Tilmes, and R. R. Neely III
Atmos. Chem. Phys., 16, 1479–1489, https://doi.org/10.5194/acp-16-1479-2016, https://doi.org/10.5194/acp-16-1479-2016, 2016
Short summary
Short summary
Climate model simulations show that stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. Enhanced downward diffuse radiation, combined with cooling, could stimulate plants to grow more and absorb more carbon dioxide. This beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about implementation of geoengineering.
X. Yue, N. Unger, and Y. Zheng
Atmos. Chem. Phys., 15, 11931–11948, https://doi.org/10.5194/acp-15-11931-2015, https://doi.org/10.5194/acp-15-11931-2015, 2015
Short summary
Short summary
We estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) during 1982-2011, with a focus on the feedback from biosphere (such as tree growth and phenology). Increases of LAI at peak season accounts for ~25% of the trends in GPP and isoprene emissions at the northern lands. However, phenological change alone does not promote regional carbon uptake and BVOC emissions.
L. M. W. Leggett and D. A. Ball
Atmos. Chem. Phys., 15, 11571–11592, https://doi.org/10.5194/acp-15-11571-2015, https://doi.org/10.5194/acp-15-11571-2015, 2015
Short summary
Short summary
The previously expected linear relationship between atmospheric CO2 and climate variables including temperature is showing an increasing mismatch. This paper nonetheless provides fresh and possibly definitive support for a major relationship between CO2 and climate. Granger causality analysis provides evidence that change in level not level of CO2 primarily influences both global temperature and the El Niño–Southern Oscillation. The results may contribute to the prediction of future climate.
M. Sofiev, U. Berger, M. Prank, J. Vira, J. Arteta, J. Belmonte, K.-C. Bergmann, F. Chéroux, H. Elbern, E. Friese, C. Galan, R. Gehrig, D. Khvorostyanov, R. Kranenburg, U. Kumar, V. Marécal, F. Meleux, L. Menut, A.-M. Pessi, L. Robertson, O. Ritenberga, V. Rodinkova, A. Saarto, A. Segers, E. Severova, I. Sauliene, P. Siljamo, B. M. Steensen, E. Teinemaa, M. Thibaudon, and V.-H. Peuch
Atmos. Chem. Phys., 15, 8115–8130, https://doi.org/10.5194/acp-15-8115-2015, https://doi.org/10.5194/acp-15-8115-2015, 2015
Short summary
Short summary
The paper presents the first ensemble modelling experiment for forecasting the atmospheric dispersion of birch pollen in Europe. The study included 7 models of MACC-ENS tested over the season of 2010 and applied for 2013 in forecasting and reanalysis modes. The results were compared with observations in 11 countries, members of European Aeroallergen Network. The models successfully reproduced the timing of the unusually late season of 2013 but had more difficulties with absolute concentration.
X. Xu, C. Yi, and E. Kutter
Atmos. Chem. Phys., 15, 7457–7470, https://doi.org/10.5194/acp-15-7457-2015, https://doi.org/10.5194/acp-15-7457-2015, 2015
A. Veira, S. Kloster, S. Wilkenskjeld, and S. Remy
Atmos. Chem. Phys., 15, 7155–7171, https://doi.org/10.5194/acp-15-7155-2015, https://doi.org/10.5194/acp-15-7155-2015, 2015
Short summary
Short summary
We discuss the representation of wildfire emission heights in global climate models. Our implementation of a simple, semi-empirical plume height parametrization in the aerosol-climate model ECHAM6-HAM2 shows reasonable agreement with observations and with a more complex plume rise model. In contrast, prescribed emission heights, which do not consider the intensity of individual fires, fail to adequately simulate global plume height patterns. Diurnal and seasonal cycles are of minor importance.
A. Veira, S. Kloster, N. A. J. Schutgens, and J. W. Kaiser
Atmos. Chem. Phys., 15, 7173–7193, https://doi.org/10.5194/acp-15-7173-2015, https://doi.org/10.5194/acp-15-7173-2015, 2015
Short summary
Short summary
Global aerosol-climate models usually prescribe wildfire emission injections at fixed atmospheric levels. Here, we quantify the impact of prescribed and parametrized emission heights on aerosol long-range transport and radiation. For global emission height changes of 1.5-3.5km, we find a top-of-atmosphere radiative forcing of 0.05-0.1Wm-2. Replacing prescribed emission heights by a simple plume height parametrization only marginally improves the model performance in aerosol optical thickness.
S. M. Miller, M. N. Hayek, A. E. Andrews, I. Fung, and J. Liu
Atmos. Chem. Phys., 15, 2903–2914, https://doi.org/10.5194/acp-15-2903-2015, https://doi.org/10.5194/acp-15-2903-2015, 2015
F. Jiang, H. M. Wang, J. M. Chen, T. Machida, L. X. Zhou, W. M. Ju, H. Matsueda, and Y. Sawa
Atmos. Chem. Phys., 14, 10133–10144, https://doi.org/10.5194/acp-14-10133-2014, https://doi.org/10.5194/acp-14-10133-2014, 2014
T. Ziehn, A. Nickless, P. J. Rayner, R. M. Law, G. Roff, and P. Fraser
Atmos. Chem. Phys., 14, 9363–9378, https://doi.org/10.5194/acp-14-9363-2014, https://doi.org/10.5194/acp-14-9363-2014, 2014
X. Wang, C.-J. Lin, and X. Feng
Atmos. Chem. Phys., 14, 6273–6287, https://doi.org/10.5194/acp-14-6273-2014, https://doi.org/10.5194/acp-14-6273-2014, 2014
R. L. Thompson, F. Chevallier, A. M. Crotwell, G. Dutton, R. L. Langenfelds, R. G. Prinn, R. F. Weiss, Y. Tohjima, T. Nakazawa, P. B. Krummel, L. P. Steele, P. Fraser, S. O'Doherty, K. Ishijima, and S. Aoki
Atmos. Chem. Phys., 14, 1801–1817, https://doi.org/10.5194/acp-14-1801-2014, https://doi.org/10.5194/acp-14-1801-2014, 2014
E. N. Koffi, P. J. Rayner, M. Scholze, F. Chevallier, and T. Kaminski
Atmos. Chem. Phys., 13, 10555–10572, https://doi.org/10.5194/acp-13-10555-2013, https://doi.org/10.5194/acp-13-10555-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
R. A. Ellis, D. J. Jacob, M. P. Sulprizio, L. Zhang, C. D. Holmes, B. A. Schichtel, T. Blett, E. Porter, L. H. Pardo, and J. A. Lynch
Atmos. Chem. Phys., 13, 9083–9095, https://doi.org/10.5194/acp-13-9083-2013, https://doi.org/10.5194/acp-13-9083-2013, 2013
M. Sofiev, R. Vankevich, T. Ermakova, and J. Hakkarainen
Atmos. Chem. Phys., 13, 7039–7052, https://doi.org/10.5194/acp-13-7039-2013, https://doi.org/10.5194/acp-13-7039-2013, 2013
L. D. Emberson, N. Kitwiroon, S. Beevers, P. Büker, and S. Cinderby
Atmos. Chem. Phys., 13, 6741–6755, https://doi.org/10.5194/acp-13-6741-2013, https://doi.org/10.5194/acp-13-6741-2013, 2013
C. A. Skjøth and C. Geels
Atmos. Chem. Phys., 13, 117–128, https://doi.org/10.5194/acp-13-117-2013, https://doi.org/10.5194/acp-13-117-2013, 2013
T. Kaminski, P. J. Rayner, M. Voßbeck, M. Scholze, and E. Koffi
Atmos. Chem. Phys., 12, 7867–7879, https://doi.org/10.5194/acp-12-7867-2012, https://doi.org/10.5194/acp-12-7867-2012, 2012
N. C. Parazoo, A. S. Denning, S. R. Kawa, S. Pawson, and R. Lokupitiya
Atmos. Chem. Phys., 12, 6405–6416, https://doi.org/10.5194/acp-12-6405-2012, https://doi.org/10.5194/acp-12-6405-2012, 2012
P. Büker, T. Morrissey, A. Briolat, R. Falk, D. Simpson, J.-P. Tuovinen, R. Alonso, S. Barth, M. Baumgarten, N. Grulke, P. E. Karlsson, J. King, F. Lagergren, R. Matyssek, A. Nunn, R. Ogaya, J. Peñuelas, L. Rhea, M. Schaub, J. Uddling, W. Werner, and L. D. Emberson
Atmos. Chem. Phys., 12, 5537–5562, https://doi.org/10.5194/acp-12-5537-2012, https://doi.org/10.5194/acp-12-5537-2012, 2012
Cited articles
Abramowitz, G.: Towards a benchmark for land surface models, Geophys. Res. Lett., 32, L22702, https://doi.org/10.1029/2005GL024419, 2005.
Ahlström, A., Schurgers, G., Arneth, A., and Smith, B.: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections, Environ. Res. Lett., 7, 044008, https://doi.org/10.1088/1748-9326/7/4/044008, 2012.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, 2005.
Amenu, G. G. and Kumar, P.: A model for hydraulic redistribution incorporating coupled soil-root moisture transport, Hydrol. Earth Syst. Sci., 12, 55–74, https://doi.org/10.5194/hess-12-55-2008, 2008.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system mode, J. Climate, 26, 6801–6843, 2013.
Arnold, H. M., Moroz, I. M., and Palmer, T. N.: Stochastic parameterisations and model uncertainty in the Lorenz '96 system, Philos. T. R. Soc. A, 371, 201110479, https://doi.org/10.1098/rsta.2011.0479, 2013.
Arora, V.: Modelling vegetation as a dynamic component in soil–vegetation–atmosphere transfer schemes and hydrological models, Rev. Geophys., 40, 1006, https://doi.org/10.1029/2001RG000103, 2002.
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and Tongwen, W.: Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models, J. Climate, 26, 5289–5314, 2013.
Bonan, G. B.: land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model, J. Geophys. Res., 100, 2817–2831, 1995.
Bowling, L. C., Lettenmaier, D. P., Nijssen, B., Graham, L. P., Clark, D. B., El Maayar, M., Essery, R., Goers, S., Gusev, Y., Habets, F.,van den Hurk, B., Jin, J., Kahan, D., Lohmann, D., Ma, X., Mahanama, S., Mocko, D., Nasonova, O., Niu, G., Samuelsson, P., Shmakin, A. B., Takata, K., Verseghy, D., Viterbo, P., Xia, Y., Xue, Y., and Yang, Z. L.: Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 1. Experiment description and summary intercomparisons, Global Planet. Change, 38, 1–30, 2003a.
Bowling, L. C., Nijssen, B., Lettenmaier, D. P., Polcher, J., Koster, R. D., and Lohmann, D.: Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 3. Sensitivity analysis, Global Planet. Change, 38, 55–71, 2003b.
Caldararu, S., Purves, D. W., and Palmer, P. I.: Phenology as a strategy for carbon optimality: a global model, Biogeosciences, 11, 763–778, https://doi.org/10.5194/bg-11-763-2014, 2014.
Chen, F., Mitchell, K., Schaake, J., Xue, J. K., Pan, H. L., Koren, V., Duan, Q. Y., Ek, M., and Betts, A.: Modelling of land surface evaporation by four schemes and comparison with FIFE observations, J. Geophys. Res., 101, 7251–7268, 1996.
Chen, T., Henderson-Sellers, A., Milly, P., Pitman, A., Beljaars, A., Abramopoulos, F., Boone, A., Chang, S., Chen, F., Dai, Y., Desborough, C., Dickinson, R., Dumenil, L., Ek, M., Garratt, J., Gedney, N., Gusev, Y., Kim, J., Koster, R., Kowalczyk, E., Laval, K., Lean, J., Lettenmaier, D., Liang, X., Mahfouf, J., Mengelkamp, H. -T., Mitchell, K., Nasonova, O., Noilhan, J., Polcher, J., Robock, A., Rosenzweig, C., Schaake, J., Schlosser, C., Schulz, J.P., Shao, Y., Shmakin, A., Verseghy, D., Wetzel, P., Wood, E., Xue, Y., Yang, Z. L., and Zeng, Q.: Cabauw experimental results from the Project for Intercomparison of Land-surface Parameterization Schemes – PILPS, J. Climate, 10, 1194–1215, 1997.
Cherkauer, K. A. and Lettenmaier D. P.: Simulation of spatial variability in snow and frozen soil, J. Geophys. Res., 108, 8858, https://doi.org/10.1029/2003JD003575, 2003.
Chou, K. C., Willsky, A. S., and Benveniste, A.: Multiscale recursive estimation, data fusion, and regularization, IEEE T. Automat. Contr., 39, 479–492, 1994.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and other biogeochemical cycles, in: Climate Change 2013: The Physical Science Basis, edited by: Stocker, T. F., Qin, D., Plattner, G. -K., Tignore, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M., Cambridge University Press, Cambridge, 2014.
Collatz, G. J., Ball, J. T.,Grivet, C., and Berry, J. A.: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agr. For. Meteorol., 54, 107–136, 1991.
Cowan, I. R.: Transport of water in the soil–plant–atmosphere system, J. Appl. Ecol., 2, 221–239, 1965.
Cox, P. M., Huntingford, C., and Harding, R. J.: A canopy conductance and photosynthesis model for use in a GCM land surface scheme, J. Hydrol., 213, 79–94, 1998.
Crossley, J. F., Polcher, J., Cox, P. M., Gedney, N., and Planton, S.: Uncertainties linked to land-surface processes in climate change simulations, Clim. Dyn., 16, 949–961, 2000.
Crow, W. T. and Wood, E. F.: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97, Adv. Water. Resour., 26, 137–149, 2003.
Dai, Y. J., Zeng, X. B., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G. Y., Oleson, K. W., Schlosser, C. A., and Yang, Z. L.: The Common Land Model, B. Am. Meteorol. Soc., 84, 1013–1023, 2003.
Deardorff, J. W.: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation, J. Geophys. Res., 83, 1889–1903, 1978.
Desborough, C. E. and Pitman, A. J.: The BASE land surface model, Global Planet. Change, 19, 3–18, 1998.
Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: Coupling between changes in the climate system and biogeochemistry, in: Climate Change 2007: The Physical Science Basis, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, 2007.
Dewar, R. C.: The correlation between plant growth and intercepted radiation: an interpretation in tems of optimal plant nitrogen content, Ann. Bot., 78, 125–136, 1996.
Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., and Wilson, M. F.: Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model, NCAR Tech. Note, TN–275 + STR, 1986.
Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., and Wilson, M. F.: Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to Community Climate Model, NCAR Tech. Note, TN–387 + STR, 1993.
Dirmeyer, P. A., Dolman, A., and Sato, N.: The pilot phase of the Global Soil Wetness Project, B. Am. Meteorol. Soc., 80, 851–878, 1999.
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.: GSWP-2: Multimodel analysis and implications for our perception of the land surface, B. Am. Meteorol. Soc., 87, 1381–1397, 2006.
Drewniak, B., Song, J., Prell, J., Kotamarthi, V. R., and Jacob, R.: Modeling agriculture in the Community Land Model, Geosci. Model Dev., 6, 495–515, https://doi.org/10.5194/gmd-6-495-2013, 2013.
Ducharne, A., Koster, R. D., Suarez, M. J., and Kumar, P.: A catchment-based land surface model for GCMs and the framework for its evaluation, Phys. Chem. Earth B, 24, 769–773, 1999.
Ducoudré, N. I., Laval, K., and Perrier, A.: SECHIBA: a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model, J. Climate, 6, 248–273, 1993.
Eagelson, P. S.: The emergence of global-scale hydrology, Water Resour. Res., 22, 6S–14S, 1986.
Famiglietti, J. S. and Wood, E. F.: Multiscale modeling of spatially-variable water and energy-balance processes, Water Resour. Res., 30, 3061–3078, 1994.
Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R., and Robock, A.: Incorporating water table dynamics in climate modelling: 1. Water table observations and equilibrium water table simulations, J. Geophys.. Res., 112, D10125, https://doi.org/10.1029/2006JD008111, 2007.
Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campiolo, M., Chapin III, F. S., Ciais, P., Malhi, Y., Obersteiner, M., Paple, D., Piao, S. L., Reichstein, M., Roda, F. and Peñuelas, J.: Nutrient availability as the key regulator of global forest carbon balance, Nature Clim. Change, 4, 471–476, 2014.
Fieguth, P. W., Karl, W. C., Willsky, A. S., and Wunsch, C.: Multi-resolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry, IEEE T. Geosci. Remote, 33, 280–292, 1995.
Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Glob. Biogeochem. Cy., 10, 603–628, 1996.
Foley, A. M., Dalmonech, D., Friend, A. D., Aires, F., Archibald, A. T., Bartlein, P., Bopp, L., Chappellaz, J., Cox, P., Edwards, N. R., Feulner, G., Friedlingstein, P., Harrison, S. P., Hopcroft, P. O., Jones, C. D., Kolassa, J., Levine, J. G., Prentice, I. C., Pyle, J., Vázquez Riveiros, N., Wolff, E. W., and Zaehle, S.: Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art, Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, 2013.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Broukin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Raynor, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassman, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon feedback analysis: results from the C4MIP model intercomparison, J. Climate, 19, 3337–3353, 2006.
Friedlingstein, P., Houghton, R. A., Marland, G., Hackler, J., Boden, T. A., Conway, T. J., Canadell, J. G., Raypach, M. R., Ciais, P., and Le Quéré, C.: Update on CO2 emissions, Nature Geosci., 3, 811–812, 2010.
Friedlingstein, P., Gallego-Sala, A. V., Blyth, E. M., Hewer, F. E., Seneviratne, S. O., Spessa, A., Suntharalingam, P., and Scholze, M.: The Earth system feedbacks that matter for contemporary climate, in: Understanding the Earth System: Global change science for applications, edited by: Cornell, S. E., Prentice, I. C., House, J. I., and Downy C. J., Cambridge University Press, Cambridge, 102–128, 2013.
Gedney, N. and Cox, P. M.: The sensitivity of global climate model simulations to the representation of soil moisture heterogeneity, J. Hydrometeorol., 4, 1265–1275, 2003.
Guo, J., Liang, X., and Leung, L. R.: A new multi-scale flow network generation scheme for land surface models, Geophys. Res. Lett., 31, L23502, https://doi.org/10.1029/2004GL021381, 2004.
Gutowski, W. J., Vorosmarty, C. J., Person, M., Otles, Z., Fekete, B., and York, J. A.: Coupled land–atmosphere simulation program (CLASP): calibration and validation, J. Geophys. Res., 107, 4283, https://doi.org/10.1029/2001JD000392, 2002.
Habets, F., Noilhan, J., Golaz, C., Goutorbe, J. P., Lacarrère, P., Leblois, E., Ledoux, E., Martin, E., Ottlé, C., and Vidal-Madjar, D.: The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area Part 1: Model and database, J. Hydrol., 217, 75–96, 1999.
Harrison, S. P., Choudhury, B. J., Cogley, G., Cramer, W., Hutchinson, M. F., Prentice, I. C., and Running, S.: A rationale, structure and research strategy for a global hydrological model, IIASA Working Papers, WP–91–27, 1–21, 1991.
Haxeltine, A. and Prentice, I. C.: BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant function types, Glob. Biogeochem. Cy., 10, 693–709, 1996.
Henderson-Sellers, A., Yang, Z. L., and Dickinson, R. E.: The project for intercomparison of land-surface parameterization schemes, B. Am. Meteorol. Soc., 74, 1335–1349, 1993.
Henderson-Sellers, A., Pitman, A. J., Love, P. K., Irannejad, P., and Chen, T. H.: The project for intercomparison of land surface parameterization schemes (PILPS): phases 2 and 3, B. Am. Meteorol. Soc., 76, 489–503, 1995.
Henderson-Sellers, A., McGuffie, K., and Pitman, A. J.: The project for intercomparison of land-surface parameterization schemes (PILPS): 1992 to 1995, Clim. Dynam., 12, 849–859, 1996.
Hoffman, F. M., Randerson, J. T., Arora, V. K., Bao, Q., Cadule, P., Ji, D., Jones, C. D., Kawamiya, M., Khatiwala, S., Lindsay, K., Obata, A., Shevliakova, E., Six, K. D., Tjiputra, J. F., Volodin, E. M., and Wu, T.: Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models, J. Geophys. Res., 119, 141–162, 2014.
Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V., Syed, K. H., and Goodrich, D. C.: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation, Water Resour. Res., 34, 3405–3420, 1998.
Huang, M., Liang, X., and Leung, L. R.: A generalized subsurface flow parameterization considering subgrid spatial variability of recharge and topography, J. Hydrometeorol., 9, 1151–1171, 2008.
Jones, A. D., Collins, W. D., Edmonds, J., Torn, M. S., Janetos, A., Calvin, K. V., Thomson, P., Hurtt, G. C., and Wise, M.: Greenhouse gas policy influences climate via direct effects of land-use change, J. Climate, 26, 3657–3670, 2013.
Kaminski, T., Knorr, W., Schurmann, G., Scholze, M., Rayner, P. J., Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., Giering, R., Gobron, N., Grant, J. P., Heimann, M., Hooker-Stroud, A., Houweling, S., Kato, T., Kattge, J., Kelley, D., Kemp, S., Koffi E. N., Kostler, C., Mathieu, P.-P., Pinty, B., Reick, C. H., Rodenbeck, C., Schnur, R., Scipal, K., Sebald, C., Stacke, T., Terwisschag Van Scheltinga, A., Vossbeck, M., Widmann, H., and Ziehn, T.: The BETHY/JSBACH carbon cycle data assimilation system: experiences and challenges, J. Geophys. Res., 118, 1414–1426, 2013.
Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, D. Y., Munger, J. W., O'Keefe, J., Schmid, H. P., Wing, I. S., Yang, B., and Richardson, A. D.: Net carbon uptake has increased through warming-induced changes in temperate forest phenology, Nature Clim. Change, 4, 598–604, https://doi.org/10.1038/nclimate2253, 2014.
Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M., Fisher, J. B., and Willis, K. O.: A comprehensive benchmarking system for evaluating global vegetation models, Biogeosciences, 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, 2013.
Kim, Y. and Wang, G.: Modeling seasonal vegetation variation and its validation against Moderate Resolution Imaging Spectroradiometer (MODIS) observations over North America, J. Geophys. Res., 110, D04106, https://doi.org/10.1029/2004JD005436, 2005.
Kleidon, A.: Optimized stomatal conductance and the climate sensitivity to carbon dioxide, Geophys. Res. Lett., 34, L14709, https://doi.org/10.1029/2007GL030342, 2007.
Koren, V. I., Finnerty, B. D., Schaake, J. C., Smith, M. B., Seo, D. J., and Duan, Q. Y.: Scale dependencies of hydrologic models to spatial variability of precipitation, J. Hydrol., 217, 285–302, 1999.
Koster, R. D. and Suarez, M. J.: Modelling the land surface boundary in climate models as a composite of independent vegetation stands, J. Geophys. Res., 97, 2697–2715, 1992.
Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., and Kumar, P.: A catchment-based approach to modelling land surface processes in a general circulation model: 1. Model structure, J. Geophys. Res., 105, 24809–24822, 2000.
Koster, R. D., Dirmeyer, P. A., Hahmann, A. N., Ljpelaar, R., Tyahla, L., Cox, P., and Suarez, M. J.: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models, J. Hydometerol., 3, 363–375, 2002.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kande, S., Kowalczyk, E., Lawrence, D., Lui, P., Lu, C. -H., Malysheu, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T.: Regions of strong coupling between soil moisture and precipitation, Science, 305, 1138–1140, 2004.
Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A., Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C. T., Guo, Z., Jeong, J.-H., Lawrence, D. M., Lee, W. -S., Li, Z., Luo, L., Malyshev, S., Merryfield, W. J., Seneviratne, I., Stanelle, T., Van Den Hurk B. J. J. M., Vitart, F., and Wood, E. F.: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment, Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677, 2010.
Kowalczyk, E., Wang, Y. P., Law, R., Pak, B., and Abramowitz, G.: Land cover coupling to the climate system; implementing an interactive carbon cycle in ACCESS, CSIRO Marine and Atmospheric Research, Research Paper 013, 2006.
Kumar, P.: A multiple scale state-space model for characterizing subgrid scale variability of near-surface soil moisture, IEEE T. Geosci. Remote, 37, 182–197, 1999.
Lannoy, G. J. M., Reichle, R. H., Houser, P. R., Arsenault, K. R., Verhoest, N. E. C., and Pauwles, V. R. N.: Satellite-scale snow water equivalent assimilation into a high-resolution and surface model, J. Hydrometeorol., 11, 352–369, 2010.
Lee, J.-E, Oliveira, R. S., Dawon, T. E., and Fung, I.: Root functioning modifies seasonal climate, P. Natl. Acad. Sci., 102, 17576–17581, 2005.
Levis, S. and Bonan, G. B.: Simulating springtime temperature patterns in the Community Atmosphere Model coupled to Community Land Model using prognostic leaf area, J. Climate, 17, 4531–4540, 2004.
Li, Q. and Ishidaira, H.: Development of a biosphere hydrological model considering vegetation dynamics and its evaluation at basin scale under climate change, J. Hydrol., 412–413, 3–13, 2011.
Li, H., Huang, M., Wigmosta, M. S., Ke, Y., Coleman, A. M., Leung, F. W., Wang, A., and Ricciuto D. M.: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed, J. Geophys. Res., 116, D24120, https://doi.org/10.1029/2011JD016276, 2011.
Liang, X. and Guo, J.: Intercomparison of land-surface parameterization schemes: sensitivity of surface energy and water fluxes to model parameters, J. Hydrol., 279, 182–209, 2003.
Liang, X. and Xie, Z.: A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models, Adv. Water Resour., 24, 1173–1193, 2001.
Liang, X., Lettenmaier, D. P. Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14415–14428, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modifications, Global Planet. Change, 13, 195–206, 1996a.
Liang, X., Lettenmaier, D. P., and Wood, E. F.: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model, J. Geophys. Res., 101, 21403–21422, 1996b.
Liang, X., Wood, E., Lettenmaier, D., Lohmann, D., Boone, A., Chang, S., Chen, F., Dai, Y., Desborough, C., Dickinson, R., Duan, Q., Ek, M., Gusev, Y., Habets, F., Irannejad, P., Koster, R., Mitchell, K., Nasonova, O., Noilhan, J., Schaake, J., Schlosser, A., Shao, Y., Shmakin, A., Verseghy, D., Wang, J., Warrach, K., Wetzel, P., Xue, Y., Yang, Z., and Zeng, Q.: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2c. Red–Arkansas River basin experiment: 2. Spatial and temporal analysis of energy fluxes, Global Planet. Change, 19, 137–159, 1998.
Liang, X., Xie, Z., and Huang, H.: A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model, J. Geophys. Res., 108, 8613, https://doi.org/10.1029/2002JD003090, 2003.
Liang, X., Guo, J., and Leung, L. R.: Assessment of the effects of spatial resolution on daily water flux simulations, J. Hydrol., 298, 287–310, 2004.
Lloyd, J., Bloomfield, K., Domingues, T. F., and Farquhar, G. C.: Photosynthetically relevant foliar traits correlating better on a mass vs area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand?, New Phytol., 199, 311–321, 2013.
Lohman, D., Lettenmaier, D., Liang, X., Wood, E., Boone, A., Chang, S., Chen, F., Dai, Y., Desborough, C., Dickenson, R., Duan, Q., Ek, M., Gusev, Y., Habets, F., Irannejad, P., Koster, R., Mitchell, K., Nasonova, O., Noilhan, J., Schaake, J., Schlosser, A., Shao, Y., Shmakin, A., Verseghy, D., Wang, J., Warrach, K., Wetzel, P., Xue, Y., Yang, Z., and Zeng, Q.: The project for intercomparison of land-surface parameterization schemes (PILPS) Phase 2c. Red-Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes, Global Planet. Change, 19, 161–179, 1998a.
Lohmann, D., Raschke, E., Nijssen B, and Lettenmaier, D. P.: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model, Hydrol. Sci. J., 43, 131–141, 1998b.
Lu, L., Pielke, R. A., Liston, G. E., Parton, W. J., Ojima, D., and Hartman, M.: Implementation of a two-way interactive atmospheric and ecological model and its application to the central United States, J. Climate, 14900–14919, 2001.
Luettgen, M. R. and Willsky, A. S.: Multiscale Smoothing Error Models, IEEE T. Automat. Contr., 40, 173–175, 1995.
Luo, X., Liang, X., and McCarthy, H. R.: VIC+ for water-limited conditions: a study of biological and hydrological processes and their interactions in the soil–plant–atmosphere continuum, Water Resour. Res., 49, 7711–7732, https://doi.org/10.1002/2012WR012851, 2013.
Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., Ciais, P., Dalmonech, D., Fisher, J. B., Fisher, R., Friedlingstein, P., Hibbard, K., Hoffman, F., Huntzinger, D., Jones, C. D., Koven, C., Lawrence, D., Li, D. J., Mahecha, M., Niu, S. L., Norby, R., Piao, S. L., Qi, X., Peylin, P., Prentice, I. C., Riley, W., Reichstein, M., Schwalm, C., Wang, Y. P., Xia, J. Y., Zaehle, S., and Zhou, X. H.: A framework for benchmarking land models, Biogeosciences, 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012, 2012.
Maire, V., Martre, P., Kattge, J., Gastal, F., Esser, G., Fontaine, S., and Soussana, J.-F.: The coordination of leaf photosynthesis links C and N fluxes in C3 plant species, PLoS One, 7, e38345, https://doi.org/10.1371/journal.pone.0038345, 2012.
Manabe, S.: Climate and the ocean circulation: 1, the atmospheric circulation and the hydrology of the Earth's surface, Mon. Weather Rev., 97, 739–805, 1969.
Margulis, S. A., McLaughlin, D., Entekhabi, D., and Dunne, S.: Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 field experiment, Water Resour. Res., 38, 1299, https://doi.org/10.1029/2001WR001114, 2002.
Maxwell, R. M. and Miller, N. L.: Development of a coupled land surface and groundwater model, J. Hydrometeorol., 6, 233–247, 2005.
McGill, B., Enquist, B. J., Weiher, E., and Westoby, M.: Rebuilding community ecology from functional traits, Trends Ecol. Evol., 21, 178–185, 2006.
McLaughlin, D.: An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering, Adv. Water Resour., 25, 1275–1286, 2002.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L.: Reconciling the optimal and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17, 2134–2144, 2011.
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P., Hickler, T., Jain, A., Luo, Y., Parton, W., Prentice, I. C., Thornton, P., Wang, S., Wang, Y. P., Weng, E., Iversen, C. M., McCarthy, H., Warren, J., Oren, R. and Norby, R.: Using ecosystem experiments to improve vegetation models, Nature Clim. Change, in press, 2015.
Mengelkamp, H.-T., Warrach, K., and Raschke, E.: SEWAB – a parameterization of the Surface Energy and Water Balance for atmospheric and hydrologic models, Adv. Water Resour., 23, 165–175, 1999.
Milly, P. C. D. and Shmakin, A. B.: Global modeling of land water and energy balances. Part I: the land dynamics (LaD) model, J. Hydrometeorol., 3, 283–299, 2002.
Montaldo, N. and Albertson, J. D.: Multi-scale assimilation of surface soil moisture data for robust root zone moisture predictions, Adv. Water Resour., 26, 33–44, 2003.
Montzka, C., Moradkhani, H., Weihermüller, L., Hendricks Franssen, H. J., Canty, M., and Vereecken, H.: Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter, J. Hydrol., 399, 410–421, 2011.
Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.: Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28, 135–147, 2005a.
Moradkhani, H., Hsu, K. L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, https://doi.org/10.1029/2004WR003604, 2005b.
Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I.: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.
Murray, S. J., Foster, P. N., and Prentice, I. C.: Evaluation of global continental hydrology as simulated by the Land-surface Processes and eXchanges Dynamic Global Vegetation Model, Hydrol. Earth Syst. Sci., 15, 91–105, https://doi.org/10.5194/hess-15-91-2011, 2011.
Murray, S. J., Foster, P. N., and Prentice, I. C.: Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model, J. Hydrol., 448, 14–29, 2012a.
Murray, S. J., Watson, M., and Prentice, I. C.: The use of Dynamic Global Vegetation Models for simulating hydrology and the potential integration of satellite observations, Progr. Phys. Geogr., 37, 63–97, 2012b.
Nijssen, B., Schnur, R., and Lettenmaier, D. P.: Global retrospective estimation of soil moisture using the VIC land surface model, 1980–1993, J. Climate, 14, 1790–1808, 2001.
Nijssen, B., Bowling, L. C., Lettenmaier, D. P., Clark, D. B., El Maayar, M., Essery, R., Goers, S., Gusev, Y., Habets, F., van den Hurk, B., Jin, J., Kahan, D., Lohmann, D., Ma, X., Mahanama, S., Mocko, D., Nasonova, O., Niu, G., Samuelsson, P., Shmakin, A. B., Takata, K., Verseghy, D., Viterbo, P., Xia, Y., Xue, Y., and Yang, Z. L.: Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 2. Comparison of model results with observations, Global Planet. Change, 38, 31–53, 2003.
Niu, G. Y., Yang, Z. L., Dickinson, R. E., Gulden, L. E., and Su, H.: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data, J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522, 2007.
Noilhan, J. and Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536–549, 1989.
Palmer, T. N.: Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction., Q. J. Roy. Meteor. Soc., 138, 841–861, https://doi.org/10.1002/qj.1923, 2012.
Pan, M. and Wood, E. F.: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter, J. Hydrometeorol., 7, 534–547, 2006.
Pan, M., Wood, E. F., Entekhabi, D., and Luo. L.: A multiscale ensemble filtering system for hydrologic data assimilation. Part I: Implementation and synthetic experiment, J. Hydrometeorol., 10, 794–806, 2009.
Parada, L. M. and Liang, X.: Optimal multiscale Kalman filter for assimilation of near-surface soil moisture into land surface models, J. Geophys. Res., 109, D24109, https://doi.org/10.1029/2004JD004745, 2004.
Parada, L. M. and Liang, X.: Impacts of spatial resolutions and data quality on soil moisture data assimilation, J. Geophys. Res., 113, D10101, https://doi.org/10.1029/2007JD009037, 2008.
Peters-Lidard, C. D., Zion, M. S., and Wood, E. F.: A soil–vegetation–atmosphere transfer scheme for modeling spatially variable water and energy balance processes, J. Geophys. Res., 102, 4303–4324, 1997.
Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A, Anav, A., Candell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends, Glob. Change Biol., 19, 2117–2132, 2013.
Pitman, A. J.: The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Climatol., 23, 479–510, 2003.
Pitman, A. J., Henderson-Sellers, A., and Yang, Z. L.: Sensitivity of regional climates to localized precipitation in global models, Nature, 346, 734–737, 1990.
Pitman, A. J., de Noblet-Ducoudre, N., Cruz, F. T., Davin, E. L., Bonan, G. B., Broukin, V., Claussen, M., Delire, K., Ganzeveld, L., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van der Molen, M. K., Muller, R., Reick, C. H., Seneviratne, S. I., Strengers, B. J., and Voldaire, A.: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study, Geophys. Res. Lett., 36, L14814, https://doi.org/10.1029/2009GL039076, 2009.
Prentice, I. C.: Ecosystem science for a changing world, Grantham Institute for Climate Change Discussion Papers, 4, 1–16, 2013.
Prentice, I. C. and Cowling, S. A.: Dynamic global vegetation models, in Encyclopedia of Biodiversity, 2nd edition, edited by: Levin, S. A., volume 2, Academic Press, 607–689, 2013.
Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T., Lucht, W., Sitch, S., Smith, B., and Sykes, M. T.: Dynamic global vegetation modelling: quantifying terrestrial ecosystem responses to large-scale environmental change, in: Terrestrial Ecosystems in a Changing World, edited by: Canadell, J., Pitelka, L., and Pataki, D., Springer-Verlag, Berlin, 175–192, 2007.
Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J.: Balancing the costs of carbon gain and water loss: testing a new quantitative framework for plant functional ecology, Ecol. Lett., 17, 82–91, 2014.
Qin, J., Liang, S. L., Yang, K., Kaihotsu, I., Liu, R. G., and Koike, T.: Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal, J. Geophys. Res., 114, D15103, https://doi.org/10.1029/2008JD011358, 2009.
Quijano, J. C., Kumar, P., Drewry, D. T., Goldstein, A., and Misson, L.: Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution, Water Resour. Res., 48, W05518, https://doi.org/201210.1029/2011WR011416, 2012.
Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald, N. M., Lindsay, K., Lee, Y. -H., Nevison, C. D., Doney, S. C., Bonan, G., Stöckli, R., Covey, C., Ruming, S. W., and Fung, I. Y.: Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models, Glob. Change Biol., 15, 2462–2484, 2009.
Raupach, M. P., Rayner, P. J., Barrett, D. J., DeFries, R. S. Heimann, M., Ojuma, D. S., Quegan, S., and Schmullius, C. C.: Model-data synthesis in terrestrial carbon observation methods, data requirements and data uncertainty specifications, Glob. Change Biol., 11, 378–394, 2005.
Rayner, P., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and Widmann, H.: Two decades of terrestrial Carbon fluxed from a Carbon Cycle Data Assimilation System (CCDAS), Global Biogeochem. Cy., 19, GB2026, https://doi.org/10.1029/2004GB002254, 2005.
Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hydrologic data assimilation with the ensemble Kalman filter, Mon. Weather Rev., 130, 103–130, 2002a.
Reichle, R. H., Walker, J. P., Koster, R. D., and Houser, P. R.: Extended versus ensemble Kalman filtering for land data assimilation, J. Hydrometeorol., 3, 728–740, 2002b.
Rosnay, P., Polcher, J., Laval, K., and Sabre, M.: Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula, Geophys. Res. Lett., 30, 1986, https://doi.org/10.1029/2003GL018024, 2003.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.: Agricultural green and blue water consumption and its influence on the global water system, Water Resour. Res., 44, WR09405, https://doi.org/10.1029/2007WR006331, 2008.
Ringeval, B., Decharme, B., Piao, S. L., Ciais, P., Papa, F., de Noblet-Ducoudré, N., Prigent, C., Friedlingstein, P., Gouttevin, I., Koven, C., and Ducharne, A.: Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data, Geosci. Model Dev., 5, 941–962, https://doi.org/10.5194/gmd-5-941-2012, 2012.
Saeki, A. and Okamura, M.: A fluid-erosion-based model of landscape evolution, Forma, 25, 23–26, 2010.
Schaake, J. C., Koren, V. I., Duan, Q.-Y., Mitchell, K., and Chen, F.: Simple water balance model for estimating runoff at different spatial and temporal scales, J. Geophys. Res., 101, 7461–7475, 1996.
Schellnhuber, H. J., Frieler, K., and Kabat, P.: The elephant, the blind, and the intersectoral intercomparison of climate impacts, P. Natl. Acad. Sci., 111, 3225–3227, 2014.
Scheiter, S. and Higgins, S.: Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach, Glob. Change Biol., 15, 2224–2246, 2009.
Schlosser, C. A., Slater, A. G., Robock, A., Pitman, A. J., Vinnikov, K. Y., Henderson-Sellers, A., Speranskaya, N. A., Mitchell, K., Boone, A., Baden, H., Chen, F., Cox, P., de Rosnay, P., Desborough, C. E., Dickenson, R. E., Dai, Y., Duan, Q., Entin, J., Etchevers, P., Gedney, N., Gusev, Y., Habets, F., Kim, J., Koren, V., Kowalczyk, E., Nasonova, O., Noilhan, J., Schaake, J., Shmakin, A. B., Smirnova, T. G., Verseghy, D., Wetzel, P., Xue, Y., and Yang, Z.: Standalone simulations of a boreal hydrology with land surface schemes used in atmospheric models: PILPS Phase 2(d), Mon. Weather Rev., 128, 301–321, 2000.
Scholze, M., Allen, J. I., Collins, W. J., Cornell, S. E., Huntingford, C., Joshi, M., Lowe, J. A., Smith, R. S., and Wild, O.: Earth system models: a tool to understand changes in the Earth system, in: Understanding the Earth System. Global Change Science for Applications, edited by: Cornell, S. E., Prentice, I. C., House, J. I., and Downy, C. J., Cambridge University Press, Cambridge, 129–159, 2013.
Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers, A.: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science, 275, 502–509, 1997.
Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 43, 505–531, 1986.
Sellers, P. J., Randall, D. A., Collatz, C. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G., and Bounoua, L.: A revised land-surface parameterization (SiB2) for atmospheric GCMs. Part 1: model formulation, J. Climate, 9, 676–705, 1996.
Shao, Y. and Henderson-Sellers, A.: Validation of soil moisture simulation in land-surface parameterization schemes with HAPEX data, Global Planet. Change, 13, 11–46, 1995.
Shuttleworth, W. J.: Macrohydrology – The new challenge for process hydrology, J. Hydrol., 100, 31–56, 1988.
Siriwardena, L., Finlayson, B. L., and McMahon, T. A.: The impact of land use change on catchment hydrology in large catchments: The Comet River, Central Queensland, Australia, J. Hydrol., 326, 199–214, 2006.
Smith, M. J., Purves, D. W., Vanderwel, M. C., Lyutsarev, V., and Emmott, S.: The climate dependence of the terrestrial carbon cycle, including parameter and structural uncertainties, Biogeosciences, 10, 583–606, https://doi.org/10.5194/bg-10-583-2013, 2013.
Sokolov, A. P., Kicklighter, D. W., Melillo, J. M., Felzer, B., Schlosser, C. A., and Cronin, T. W.: Consequences of considering carbon/nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle, J. Climate, 21, 3776–3796, 2008.
Sun, Y., Gu, L., Dickenson, R. E., Norby, R. J., Pallardy, S. G. and Hoffman, F. M.: Impact of mesophyll diffusion on estimated global land CO2 fertilization, Proc. Natl. Acad. Sci. USA, 111, 15774–15779, 2014.
Tang, G. P. and Bartlein, P. J.: Simulating the climatic effects on vegetation: approaches, issues and challenges, Progr. Phys. Geogr., 32, 543–556, 2008.
Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., and Mahowald, N. M.: Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilisation and climate variability, Global Biogeochem. Cy., 21, GB4018, https://doi.org/10.1029/2006GB002868, 2007.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Turcotte, D. L.: Self-organised complexity in geomorphology: observations and models, Geomorphology, 91, 302–310, 2007.
Tuzet, A., Perrier, A., and Leuning, R.: A coupled model of stomatal conductance, photosynthesis and transpiration, Plant Cell Environ., 26, 1097–1116, 2003.
van Bodegom, P. M., Douma, J. C., Witte, J. P. M., Ordoñez, J. C., Bartholomeus, R. P., and Aerts, R.: Going beyond limitations of plant functional types when predicting global ecosystem–atmosphere fluxes: exploring the merits of traits-based approaches, Glob. Ecol. Biogeogr., 21, 625–636, 2012.
van der Hurk, B., Best, M., Dirmeyer, P., Pitman, A., Polcher, J., and Santanello, J.: Acceleration of land surface model development over a decade of GLASS, B. Am. Meteorol. Soc., 1593–1600, 2011.
Verseghy, D. L., McFarlane, N. A., and Lazare, M.: CLASS – a Canadian Land Surface Scheme for GCMs II: vegetation model and coupled runs, Int. J. Climatol., 13, 347–370, 1993.
Vicca, S., Luyssaert, S., Peñuelas, J., Campiolo, M., Chapin III, F. S., Ciais, P., Heinemeyer, A., Högberg, P., Kutsch, W. L., Law, B. E., Malhi, Y., Papel, D., Piao, S. L., Reichstein, M., Schulze, E. D. and Janssens, I. A.: Fertile forests produce biomass more efficiently, Ecol. Lett, 15, 520–526, 2012.
Viterbo, P. and Beljaars, C. M.: An improved land surface parameterization scheme in the ECMWF model and its validation, J. Climate, 8, 2716–2746, 1995.
Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., and Schoups, G.: Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications, Adv. Water Resour., 51, 457–478, 2013.
Walker, J. P. and Houser, P. R.: A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations, J. Geophys. Res., 106, 11761–11774, 2001.
Wang, D. and Wang, G.: Toward a robust canopy hydrology scheme with precipitation subgrid variability, J. Hydrometeorol., 8, 439–446, 2007.
Wang, G.: Assessing the potential hydrological impacts of hydraulic redistribution in Amazonia using a numerical modeling approach, Water Resour. Res., 47, W02528, https://doi.org/10.1029/2010WR009601, 2011.
Wang, H., Prentice, I. C., and Davis, T. W.: Biophsyical constraints on gross primary production by the terrestrial biosphere, Biogeosciences, 11, 5987–6001, https://doi.org/10.5194/bg-11-5987-2014, 2014.
Wang, Y. P., Trudinger, C. M., and Enting, I. G.: A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales, Agr. For. Meterol., 149, 1829–1842, 2009.
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7, 2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010.
Wang, Y. P., Lu, X. T., Wright, I. J., Dai, Y. J., Raynor, P. J., and Reich, P. B.: Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production, Geophys. Res. Lett., 39, L19405, https://doi.org/10.1029/2012GL053461, 2012.
Webler, G., Roberti, D. R., Cuadra, S. V., Moreira, V. S., and Costa, M. H.: Evaluation of a dynamic Agroecosystem Model (Agro-IBIS) for soybean in Southern Brazil, Earth Interact., 16, 1–15, 2012.
Wen, Z., Liang, X., and Yang, S.: A new multiscale routing framework and its evaluation for land surface modeling applications, Water Resour. Res., W08528, https://doi.org/10.1029/2011WR011337, 2012.
Wetzel, P. J. and Boone, A.: A parameterization for land–atmosphere–cloud exchange (place) – documentation and testing of a detailed process model of the partly cloudy boundary-layer over heterogeneous land, J. Climate, 8, 1810–1837, 1995.
Winter, T. C.: The concept of hydrologic landscapes, J. Am. Water Resour. Ass., 37, 335–349, 2001.
Wood, E. F., Lettenmaier, D. P., Liang, X., Lohmann, D., Boone, A., Change, S., Chen, F., Dai, Y., Dickinson, R., Duan, Q., Ek, M., Gusev, Y., Habets, F., Irannejad, P., Koster, R., Mitchell, K., Nasonova, O., Noilhan, J., Schaake, J., Schlosser, A., Shao, Y., Shmakin, A., Verseghy, D., Warrach, K., Wetzel, P., Xue, Y., Yang, Z., and Zeng, Q.: The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons, Global Planet. Change, 19, 115–135, 1998.
Wright, I. J., Reich, P. B., and Westoby, M.: Least-cost input mixtures of water and nitrogen for photosynthesis, Amer. Nat., 161, 98–111, 2003.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Boners, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexous, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinements, Ü., Oleksyn, J., Osada, N., Poorter, H., Post, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklass, E. J., and Villar, R.: The worldwide leaf economics spectrum, Nature, 428, 821–827, 2004.
Xia, J. X., Luo, Y., Wang, Y.-P., and Hararuk, O.: Traceable components of terrestrial carbon storage capacity in biogeochemical models, Glob. Change Biol., 19, 2104–2116, 2013.
Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A simplified biosphere model for global climate studies, J. Climate, 4, 345–364, 1991.
Yeh, P. J.-F, and Eltahir, E. A. B.: Representation of water table dynamics in a land surface scheme: 1. Model development, J. Climate, 18, 1861–1880, 2005.
York, J. P., Person, M., Gutowski, W. J., and Winter, T. C.: Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, north-eastern Kansas, Adv. Water Resour., 54, 221–238, 2002.
Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A., Wang, S., Wårlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-Budynek, A., McCarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C., Oren, R., and Norby, R. J.: Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies, New Phytol., 202, 803–822, 2014.
Zhou, S., Duursma, R., Medlyn, B. E., Kelley, J. W. G., and Prentice, I. C.: How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress, Agr. For. Meteorol., 182–183, 204–214, 2013.
Short summary
Land surface models (LSMs) describe how carbon and water fluxes react to environmental change. They are key component of climate models, yet they differ enormously. Many perform poorly, despite having many parameters. We outline a development strategy emphasizing robustness, reliability and realism, none of which is guaranteed by complexity alone. We propose multiple constraints, benchmarking and data assimilation, and representing unresolved processes stochastically, as tools in this endeavour.
Land surface models (LSMs) describe how carbon and water fluxes react to environmental change....
Altmetrics
Final-revised paper
Preprint