Articles | Volume 14, issue 22
Atmos. Chem. Phys., 14, 12357–12371, 2014
Atmos. Chem. Phys., 14, 12357–12371, 2014

Research article 25 Nov 2014

Research article | 25 Nov 2014

Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions

N. B. Magee et al.

Related authors

Captured cirrus ice particles in high definition
Nathan Magee, Katie Boaggio, Samantha Staskiewicz, Aaron Lynn, Xuanyi Zhao, Nicholas Tusay, Terance Schuh, Manisha Bandamede, Lucas Bancroft, David Connelly, Kevin Hurler, Bryan Miner, and Elissa Khoudary
Atmos. Chem. Phys., 21, 7171–7185,,, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ice-nucleating particles in precipitation samples from the Texas Panhandle
Hemanth S. K. Vepuri, Cheyanne A. Rodriguez, Dimitrios G. Georgakopoulos, Dustin Hume, James Webb, Gregory D. Mayer, and Naruki Hiranuma
Atmos. Chem. Phys., 21, 4503–4520,,, 2021
Short summary
Comparative study on immersion freezing utilizing single-droplet levitation methods
Miklós Szakáll, Michael Debertshäuser, Christian Philipp Lackner, Amelie Mayer, Oliver Eppers, Karoline Diehl, Alexander Theis, Subir Kumar Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 21, 3289–3316,,, 2021
Short summary
Exploratory experiments on pre-activated freezing nucleation on mercuric iodide
Gabor Vali
Atmos. Chem. Phys., 21, 2551–2568,,, 2021
Short summary
Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals
Maximilian Weitzel, Subir K. Mitra, Miklós Szakáll, Jacob P. Fugal, and Stephan Borrmann
Atmos. Chem. Phys., 20, 14889–14901,,, 2020
Short summary
Review of experimental studies of secondary ice production
Alexei Korolev and Thomas Leisner
Atmos. Chem. Phys., 20, 11767–11797,,, 2020
Short summary

Cited articles

Bailey, M. and Hallett, J.: Growth Rates and Habits of Ice Crystals between −20° and −70 °C, J. Atmos. Sci., 61, 514–554, 2004.
Baran, A. J. and Labonnote, L.: On the reflection and polarization properties of ice clouds, J. Quant. Spectrosc. Ra., 100, 41–54, 2006.
Baran, A. J.: From the single-scattering properties of ice crystals to climate prediction: a way forward, Atmos. Res., 112, 45–69, 2012.
Baum, B. A., Yang, P., Hu, Y., and Feng, Q.: The impact of ice particle roughness on the scattering phase matrix, J. Quant. Spectrosc. Ra., 111, 2534–2549, 2010.
Baum, B. A., Yang, P., Heymsfield, A. J., Schmitt, C. G., Xie, Y., Bansemer, A., Hu, Y., J., and Zhang, Z.: Improvements in shortwave scattering and absorption models for the remote sensing of ice clouds, J. Appl. Meteorol. Clim., 50, 1037–1056, 2011.
Short summary
High-resolution images of ice crystals acquired by environmental scanning electron microscope reveal a wide array of surface complexities at scales from 100 nm to greater than 10 microns. These observations include ice crystals grown in the low-pressure microscope chamber and crystals grown externally under cirrus cloud conditions and then transferred for imaging. The results suggest that accounting for microscale complexity is critical for understanding cirrus interactions with radiation.
Final-revised paper