Articles | Volume 14, issue 21
https://doi.org/10.5194/acp-14-11893-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-11893-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Chemical climatology of the southeastern United States, 1999–2013
G. M. Hidy
Envair/Aerochem, Placitas, NM, USA
C. L. Blanchard
Envair, Albany, CA, USA
K. Baumann
Atmospheric Research and Analysis, Cary, NC, USA
E. Edgerton
Atmospheric Research and Analysis, Cary, NC, USA
S. Tanenbaum
Envair, Albany, CA, USA
S. Shaw
Environment Sector, Electric Power Research Institute, Palo Alto, CA, USA
E. Knipping
Environment Sector, Electric Power Research Institute, Palo Alto, CA, USA
I. Tombach
Environmental Consultant, Camarillo, CA, USA
J. Jansen
Research and Environmental Affairs Department, Southern Company, Inc., Birmingham, AL, USA
J. Walters
Research and Environmental Affairs Department, Southern Company, Inc., Birmingham, AL, USA
Related authors
C. L. Blanchard, G. M. Hidy, S. Shaw, K. Baumann, and E. S. Edgerton
Atmos. Chem. Phys., 16, 215–238, https://doi.org/10.5194/acp-16-215-2016, https://doi.org/10.5194/acp-16-215-2016, 2016
Short summary
Short summary
Fifteen years of gas and particle measurements at eight monitoring sites comprising the Southeastern Aerosol Research and Characterization (SEARCH) network offer insights into the sources of organic aerosol in the southeastern United States. Between 1999 and 2013, mean organic aerosol concentrations declined due to decreasing particle emissions from motor vehicles and to less secondary organic aerosol with declining emissions of sulfur dioxide, nitrogen oxides, and volatile organic compounds.
John T. Walker, Xi Chen, Zhiyong Wu, Donna Schwede, Ryan Daly, Aleksandra Djurkovic, A. Christopher Oishi, Eric Edgerton, Jesse Bash, Jennifer Knoepp, Melissa Puchalski, John Iiames, and Chelcy F. Miniat
Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, https://doi.org/10.5194/bg-20-971-2023, 2023
Short summary
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Stephanie L. Shaw, Eric S. Edgerton, Taekyu Joo, Nga L. Ng, and Ann M. Dillner
Atmos. Meas. Tech., 14, 4355–4374, https://doi.org/10.5194/amt-14-4355-2021, https://doi.org/10.5194/amt-14-4355-2021, 2021
Short summary
Short summary
Infrared spectrometry can be applied in routine monitoring of atmospheric particles to give comprehensive characterization of the organic material by bond rather than species. Using this technique, the concentrations of particle organic material were found to decrease 2011–2016 in the southeastern US, driven by a decline in highly aged material, concurrent with declining anthropogenic emissions. However, an increase was observed in the fraction of more moderately aged organic matter.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Paul A. Solomon, Dena Vallano, Melissa Lunden, Brian LaFranchi, Charles L. Blanchard, and Stephanie L. Shaw
Atmos. Meas. Tech., 13, 3277–3301, https://doi.org/10.5194/amt-13-3277-2020, https://doi.org/10.5194/amt-13-3277-2020, 2020
Short summary
Short summary
Analyzing street-level air pollutants (2016–2017), this assessment indicates that mobile measurement is precise and accurate (5 % to 25 % bias) relative to regulatory sites, with higher spatial resolution. Collocated sensor measurements in California showed differences less than 20 %, suggesting that greater differences represent spatial variability. Mobile data confirm regulatory-site spatial representation and that pollutant levels can also be 6 to 8 times higher just blocks apart.
Charlotte Bürki, Matteo Reggente, Ann M. Dillner, Jenny L. Hand, Stephanie L. Shaw, and Satoshi Takahama
Atmos. Meas. Tech., 13, 1517–1538, https://doi.org/10.5194/amt-13-1517-2020, https://doi.org/10.5194/amt-13-1517-2020, 2020
Short summary
Short summary
Infrared spectroscopy is a chemically informative method for particulate matter characterization. However, recent work has demonstrated that predictions depend heavily on the choice of calibration model parameters. We propose a means for managing parameter uncertainties by combining available data from laboratory standards, molecular databases, and collocated ambient measurements to provide useful characterization of atmospheric organic matter on a large scale.
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Carley D. Fredrickson, Martin Esparza-Sanchez, Charlotte Burki, Matteo Reggente, Stephanie L. Shaw, Eric S. Edgerton, and Ann M. Dillner
Atmos. Meas. Tech., 12, 5391–5415, https://doi.org/10.5194/amt-12-5391-2019, https://doi.org/10.5194/amt-12-5391-2019, 2019
Short summary
Short summary
Organic species are abundant in atmospheric particle-phase (aerosol) pollution and originate from a variety of biogenic and anthropogenic sources. Infrared spectrometry of filter-based atmospheric particle samples can afford a direct measurement of the particulate organic matter concentration and a characterization of its composition. This work discusses recent method improvements and compositions measured in samples from the SouthEastern Aerosol Research and Characterization (SEARCH) network.
Shino Toma, Steve Bertman, Christopher Groff, Fulizi Xiong, Paul B. Shepson, Paul Romer, Kaitlin Duffey, Paul Wooldridge, Ronald Cohen, Karsten Baumann, Eric Edgerton, Abigail R. Koss, Joost de Gouw, Allen Goldstein, Weiwei Hu, and Jose L. Jimenez
Atmos. Chem. Phys., 19, 1867–1880, https://doi.org/10.5194/acp-19-1867-2019, https://doi.org/10.5194/acp-19-1867-2019, 2019
Short summary
Short summary
Acyl peroxy nitrates (APN) were measured near the ground in Alabama using GC in summer 2013 to study biosphere–atmosphere interactions. APN were lower than measured in the SE USA over the past 2 decades. Historical data showed APN in 2013 was limited by NOx and production was dominated by biogenic precursors more than in the past. Isoprene-derived MPAN correlated with isoprene hydroxynitrates as NOx-dependent products. MPAN varied with aerosol growth, but not with N-containing particles.
Charles L. Blanchard and George M. Hidy
Atmos. Chem. Phys., 18, 8183–8202, https://doi.org/10.5194/acp-18-8183-2018, https://doi.org/10.5194/acp-18-8183-2018, 2018
Short summary
Short summary
Ozone (O3) formation in the southeastern US was studied in relation to nitrogen oxide (NOx) emissions using long-term (1990s–2015) measurements of the SEARCH network and U.S. EPA data. NOx emissions decreased by ~ 60 %. Annual fourth-highest daily peak 8 h O3 mixing ratios declined toward ~ 45–50 ppbv at ~1 ppbv yr−1 and O3 exhibited increasing sensitivity to NOx. This study illustrates the value of consistent, long-term measurements of O3 and reactive nitrogen made at both urban and rural sites.
Xi Chen, Mingjie Xie, Michael D. Hays, Eric Edgerton, Donna Schwede, and John T. Walker
Atmos. Chem. Phys., 18, 6829–6846, https://doi.org/10.5194/acp-18-6829-2018, https://doi.org/10.5194/acp-18-6829-2018, 2018
Paul S. Romer, Kaitlin C. Duffey, Paul J. Wooldridge, Eric Edgerton, Karsten Baumann, Philip A. Feiner, David O. Miller, William H. Brune, Abigail R. Koss, Joost A. de Gouw, Pawel K. Misztal, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 18, 2601–2614, https://doi.org/10.5194/acp-18-2601-2018, https://doi.org/10.5194/acp-18-2601-2018, 2018
Short summary
Short summary
Observations of increased ozone on hotter days are widely reported, but the mechanisms driving this relationship remain uncertain. We use measurements from the rural southeastern United States to study how temperature affects ozone production. We find that changing NOx emissions, most likely from soil microbes, can be a major driver of increased ozone with temperature in the continental background. These findings suggest that ozone will increase with temperature under a wide range of conditions.
Jiaoyan Huang, Matthieu B. Miller, Eric Edgerton, and Mae Sexauer Gustin
Atmos. Chem. Phys., 17, 1689–1698, https://doi.org/10.5194/acp-17-1689-2017, https://doi.org/10.5194/acp-17-1689-2017, 2017
Short summary
Short summary
The highest mercury (Hg) wet deposition in USA occurs along the Gulf of Mexico. Gaseous oxidized Hg (GOM) is a major contributor due to high water solubility and reactivity. Concentration and dry deposition of GOM were determined for OLF, Florida. Results indicated at least 5 GOM compounds in this area including HgBr2, HgO, and Hg–nitrogen and –sulfur forms. GOM chemistry indicates reactions with local mobile source pollutants and long-range transport from outside of the USA.
Anusha P. S. Hettiyadura, Thilina Jayarathne, Karsten Baumann, Allen H. Goldstein, Joost A. de Gouw, Abigail Koss, Frank N. Keutsch, Kate Skog, and Elizabeth A. Stone
Atmos. Chem. Phys., 17, 1343–1359, https://doi.org/10.5194/acp-17-1343-2017, https://doi.org/10.5194/acp-17-1343-2017, 2017
Short summary
Short summary
Organosulfates are components of secondary organic aerosol (SOA) formed in the presence of sulfate. Herein, their abundance, identity, and potential to form as sampling artifacts were studied in Centreville, AL, USA. The 10 most abundant signals accounted for 58–78 % of the total, with at least 20–200 other species accounting for the remainder. These major species were largely associated with biogenic gases, like isoprene and monoterpenes, and are proposed targets for future standard development.
Weiwei Hu, Brett B. Palm, Douglas A. Day, Pedro Campuzano-Jost, Jordan E. Krechmer, Zhe Peng, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Karsten Baumann, Lina Hacker, Astrid Kiendler-Scharr, Abigail R. Koss, Joost A. de Gouw, Allen H. Goldstein, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Francesco Canonaco, André S. H. Prévôt, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016, https://doi.org/10.5194/acp-16-11563-2016, 2016
Short summary
Short summary
IEPOX-SOA is biogenically derived secondary organic aerosol under anthropogenic influence, which has been shown to comprise a substantial fraction of OA globally. We investigated the lifetime of ambient IEPOX-SOA in the SE US and Amazonia, with an oxidation flow reactor and thermodenuder coupled with MS-based instrumentation. The low volatility and long lifetime of IEPOX-SOA against OH radicals' oxidation (> 2 weeks) was observed, which can help to constrain OA impact on air quality and climate.
J. Kaiser, K. M. Skog, K. Baumann, S. B. Bertman, S. B. Brown, W. H. Brune, J. D. Crounse, J. A. de Gouw, E. S. Edgerton, P. A. Feiner, A. H. Goldstein, A. Koss, P. K. Misztal, T. B. Nguyen, K. F. Olson, J. M. St. Clair, A. P. Teng, S. Toma, P. O. Wennberg, R. J. Wild, L. Zhang, and F. N. Keutsch
Atmos. Chem. Phys., 16, 9349–9359, https://doi.org/10.5194/acp-16-9349-2016, https://doi.org/10.5194/acp-16-9349-2016, 2016
Short summary
Short summary
OH reactivity can be used to assess the amount of reactive carbon in an air mass. “Missing” reactivity is commonly found in forested environments and is attributed to either direct emissions of unmeasured volatile organic compounds or to unmeasured/underpredicted oxidation products. Using a box model and measurements from the 2013 SOAS campaign, we find only small discrepancies in measured and calculated reactivity. Our results suggest the discrepancies stem from unmeasured direct emissions.
Luping Su, Edward G. Patton, Jordi Vilà-Guerau de Arellano, Alex B. Guenther, Lisa Kaser, Bin Yuan, Fulizi Xiong, Paul B. Shepson, Li Zhang, David O. Miller, William H. Brune, Karsten Baumann, Eric Edgerton, Andrew Weinheimer, Pawel K. Misztal, Jeong-Hoo Park, Allen H. Goldstein, Kate M. Skog, Frank N. Keutsch, and John E. Mak
Atmos. Chem. Phys., 16, 7725–7741, https://doi.org/10.5194/acp-16-7725-2016, https://doi.org/10.5194/acp-16-7725-2016, 2016
Sri Hapsari Budisulistiorini, Karsten Baumann, Eric S. Edgerton, Solomon T. Bairai, Stephen Mueller, Stephanie L. Shaw, Eladio M. Knipping, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 5171–5189, https://doi.org/10.5194/acp-16-5171-2016, https://doi.org/10.5194/acp-16-5171-2016, 2016
Short summary
Short summary
A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor, collocated with established air-monitoring network measurements, to identify sources of organic aerosol (OA). Further, high-volume filter samples were collected for measurements of OA tracers by offline mass spectrometry tools.
Weruka Rattanavaraha, Kevin Chu, Sri Hapsari Budisulistiorini, Matthieu Riva, Ying-Hsuan Lin, Eric S. Edgerton, Karsten Baumann, Stephanie L. Shaw, Hongyu Guo, Laura King, Rodney J. Weber, Miranda E. Neff, Elizabeth A. Stone, John H. Offenberg, Zhenfa Zhang, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 4897–4914, https://doi.org/10.5194/acp-16-4897-2016, https://doi.org/10.5194/acp-16-4897-2016, 2016
Short summary
Short summary
The mechanisms by which specific anthropogenic pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected from Birmingham, AL, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Isoprene SOA tracers were measured from these samples and compared to gas and aerosol data collected from the SEARCH network.
Sean Coburn, Barbara Dix, Eric Edgerton, Christopher D. Holmes, Douglas Kinnison, Qing Liang, Arnout ter Schure, Siyuan Wang, and Rainer Volkamer
Atmos. Chem. Phys., 16, 3743–3760, https://doi.org/10.5194/acp-16-3743-2016, https://doi.org/10.5194/acp-16-3743-2016, 2016
Short summary
Short summary
Here we present a day of case study measurements of the vertical distribution of bromine monoxide over the coastal region of the Gulf of Mexico. These measurements are used to assess the contribution of bromine radicals to the oxidation of elemental mercury in the troposphere. We find that the measured levels of bromine in the troposphere are sufficient to quickly oxidize mercury, which has significant implications for our understanding of atmospheric mercury processes.
C. L. Blanchard, G. M. Hidy, S. Shaw, K. Baumann, and E. S. Edgerton
Atmos. Chem. Phys., 16, 215–238, https://doi.org/10.5194/acp-16-215-2016, https://doi.org/10.5194/acp-16-215-2016, 2016
Short summary
Short summary
Fifteen years of gas and particle measurements at eight monitoring sites comprising the Southeastern Aerosol Research and Characterization (SEARCH) network offer insights into the sources of organic aerosol in the southeastern United States. Between 1999 and 2013, mean organic aerosol concentrations declined due to decreasing particle emissions from motor vehicles and to less secondary organic aerosol with declining emissions of sulfur dioxide, nitrogen oxides, and volatile organic compounds.
B. R. Ayres, H. M. Allen, D. C. Draper, S. S. Brown, R. J. Wild, J. L. Jimenez, D. A. Day, P. Campuzano-Jost, W. Hu, J. de Gouw, A. Koss, R. C. Cohen, K. C. Duffey, P. Romer, K. Baumann, E. Edgerton, S. Takahama, J. A. Thornton, B. H. Lee, F. D. Lopez-Hilfiker, C. Mohr, P. O. Wennberg, T. B. Nguyen, A. Teng, A. H. Goldstein, K. Olson, and J. L. Fry
Atmos. Chem. Phys., 15, 13377–13392, https://doi.org/10.5194/acp-15-13377-2015, https://doi.org/10.5194/acp-15-13377-2015, 2015
Short summary
Short summary
This paper reports atmospheric gas- and aerosol-phase field measurements from the southeastern United States in summer 2013 to demonstrate that the oxidation of biogenic volatile organic compounds by nitrate radical produces a substantial amount of secondary organic aerosol in this region. This process, driven largely by monoterpenes, results in a comparable aerosol nitrate production rate to inorganic nitrate formation by heterogeneous uptake of HNO3 onto dust particles.
F. Xiong, K. M. McAvey, K. A. Pratt, C. J. Groff, M. A. Hostetler, M. A. Lipton, T. K. Starn, J. V. Seeley, S. B. Bertman, A. P. Teng, J. D. Crounse, T. B. Nguyen, P. O. Wennberg, P. K. Misztal, A. H. Goldstein, A. B. Guenther, A. R. Koss, K. F. Olson, J. A. de Gouw, K. Baumann, E. S. Edgerton, P. A. Feiner, L. Zhang, D. O. Miller, W. H. Brune, and P. B. Shepson
Atmos. Chem. Phys., 15, 11257–11272, https://doi.org/10.5194/acp-15-11257-2015, https://doi.org/10.5194/acp-15-11257-2015, 2015
Short summary
Short summary
Hydroxynitrates from isoprene oxidation were quantified both in the laboratory and through field studies. The yield of hydroxynitrates 9(+4/-3)% derived from chamber experiments was applied in a zero-dimensional model to simulate the production and loss of isoprene hydroxynitrates in an ambient environment during the 2013 Southern Oxidant and Aerosol Study (SOAS). NOx was determined to be the limiting factor for the formation of isoprene hydroxynitrates during SOAS.
H. M. Allen, D. C. Draper, B. R. Ayres, A. Ault, A. Bondy, S. Takahama, R. L. Modini, K. Baumann, E. Edgerton, C. Knote, A. Laskin, B. Wang, and J. L. Fry
Atmos. Chem. Phys., 15, 10669–10685, https://doi.org/10.5194/acp-15-10669-2015, https://doi.org/10.5194/acp-15-10669-2015, 2015
Short summary
Short summary
We report ion chromatographic measurements of gas- and aerosol-phase inorganic species at the SOAS 2013 field study. Our particular focus is on inorganic nitrate aerosol formation via HNO3 uptake onto coarse-mode dust and sea salt particles, which we find to be the dominant source of episodic inorganic nitrate at this site, due to the high acidity of the particles preventing formation of NH4NO3. We calculate a production rate of inorganic nitrate aerosol.
S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015, https://doi.org/10.5194/acp-15-8871-2015, 2015
Short summary
Short summary
Isoprene epoxydiols (IEPOX) are major gas-phase products from the atmospheric oxidation of isoprene that yield secondary organic aerosol (SOA) by reactive uptake onto acidic sulfate aerosol. We report a substantial contribution of IEPOX-derived SOA to the total fine aerosol collected during summer. IEPOX-derived SOA measured by online and offline mass spectrometry techniques is correlated with acidic sulfate aerosol, demonstrating the critical role of anthropogenic emissions in its formation.
D. B. Millet, M. Baasandorj, D. K. Farmer, J. A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J. A. de Gouw, M. Graus, L. Hu, A. Koss, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Neuman, F. Paulot, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, B. J. Williams, and J. Xu
Atmos. Chem. Phys., 15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, https://doi.org/10.5194/acp-15-6283-2015, 2015
Short summary
Short summary
Formic acid (HCOOH) is an abundant atmospheric acid that affects precipitation chemistry and acidity. HCOOH measurements over the USA are 2-3× larger than can be explained by known sources and sinks, revealing a key gap in current understanding. Observations indicate a large biogenic source plus chemical production across a range of precursors. Model simulations cannot capture the HCOOH diurnal amplitude or nocturnal profile, implying a deposition bias and possibly even larger missing source.
J. Huang, M. B. Miller, E. Edgerton, and M. S. Gustin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-12069-2015, https://doi.org/10.5194/acpd-15-12069-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Gaseous oxidized Hg (GOM) is a major contributor to Hg in wet and dry deposition. Recent work has indicated that the concentrations of GOM as measured are too low by 3-to-12 times; and that compounds vary across space and time. Data collected in Florida indicate five potential GOM compounds, including HgBr2, HgO, Hg(NO3)2, HgSO4, and an unknown compound. Sources include local combustion (cars and power plants), the marine boundary layer, and long range transport from Asia.
T. Fang, V. Verma, H. Guo, L. E. King, E. S. Edgerton, and R. J. Weber
Atmos. Meas. Tech., 8, 471–482, https://doi.org/10.5194/amt-8-471-2015, https://doi.org/10.5194/amt-8-471-2015, 2015
Short summary
Short summary
This work summarizes a newly developed semi-automated system for quantifying the oxidative potential of aerosol aqueous extracts using the dithiothreitol (DTT) assay. 500 sample analyses indicate that DTT activity in the southeast US is likely not dominated by a unique local source, and sources change with season. The unique large data set generated with the technique described in this paper allows new studies on DTT sources and investigating linkages between reactive oxygen species and health.
V. Verma, T. Fang, H. Guo, L. King, J. T. Bates, R. E. Peltier, E. Edgerton, A. G. Russell, and R. J. Weber
Atmos. Chem. Phys., 14, 12915–12930, https://doi.org/10.5194/acp-14-12915-2014, https://doi.org/10.5194/acp-14-12915-2014, 2014
Short summary
Short summary
The major emission sources of the reactive oxygen species (ROS) associated with ambient particulate matter in the southeastern United States were identified. The study shows biomass burning and secondary aerosol formation as the major sources contributing to the ROS-generating capability of ambient particles. The ubiquitous nature of these two sources suggests widespread population exposures to the toxic aerosol components.
Y. You, V. P. Kanawade, J. A. de Gouw, A. B. Guenther, S. Madronich, M. R. Sierra-Hernández, M. Lawler, J. N. Smith, S. Takahama, G. Ruggeri, A. Koss, K. Olson, K. Baumann, R. J. Weber, A. Nenes, H. Guo, E. S. Edgerton, L. Porcelli, W. H. Brune, A. H. Goldstein, and S.-H. Lee
Atmos. Chem. Phys., 14, 12181–12194, https://doi.org/10.5194/acp-14-12181-2014, https://doi.org/10.5194/acp-14-12181-2014, 2014
Short summary
Short summary
Amiens play important roles in atmospheric secondary aerosol formation and human health, but the fast response measurements of amines are lacking. Here we show measurements in a southeastern US forest and a moderately polluted midwestern site. Our results show that gas to particle conversion is an important process that controls ambient amine concentrations and that biomass burning is an important source of amines.
S. H. Budisulistiorini, M. R. Canagaratna, P. L. Croteau, K. Baumann, E. S. Edgerton, M. S. Kollman, N. L. Ng, V. Verma, S. L. Shaw, E. M. Knipping, D. R. Worsnop, J. T. Jayne, R.J. Weber, and J. D. Surratt
Atmos. Meas. Tech., 7, 1929–1941, https://doi.org/10.5194/amt-7-1929-2014, https://doi.org/10.5194/amt-7-1929-2014, 2014
J. Liu, M. Bergin, H. Guo, L. King, N. Kotra, E. Edgerton, and R. J. Weber
Atmos. Chem. Phys., 13, 12389–12404, https://doi.org/10.5194/acp-13-12389-2013, https://doi.org/10.5194/acp-13-12389-2013, 2013
Y.-H. Lin, E. M. Knipping, E. S. Edgerton, S. L. Shaw, and J. D. Surratt
Atmos. Chem. Phys., 13, 8457–8470, https://doi.org/10.5194/acp-13-8457-2013, https://doi.org/10.5194/acp-13-8457-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Automated compound speciation, cluster analysis, and quantification of organic vapours and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Atmospheric evolution of environmentally persistent free radicals in rural North China Plain: insights into water solubility and effects on PM2.5 oxidative potential
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
A Multi-site Passive Approach for Studying the Emissions and Evolution of Smoke from Prescribed Fires
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Primary and secondary emissions from a modern fleet of city buses
Enhanced daytime secondary aerosol formation driven by gas-particle partitioning in downwind urban plumes
Dominant Influence of Biomass Combustion and Cross-Border Transport on Nitrogen-Containing Organic Compound Levels in the Southeastern Tibetan Plateau
Impact assessment of terrestrial and marine air-mass on the constituents and intermixing of bioaerosols over coastal atmosphere
Assessing the influence of long-range transport of aerosols on the PM2.5 chemical composition and concentration in the Aburrá Valley
Measurement report: Characteristics of nitrogen-containing organics in PM2.5 in Ürümqi, northwestern China – differential impacts of combustion of fresh and aged biomass materials
Measurement report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion, Indian Ocean): overview of results from the BIO-MAÏDO campaign
Impacts of elevated anthropogenic emissions on physicochemical characteristics of BC-containing particles over the Tibetan Plateau
Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign
Measurement report: Evaluation of the TOF-ACSM-CV for PM1.0 and PM2.5 measurements during the RITA-2021 field campaign
Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset
Measurement report: Atmospheric ice nuclei in the Changbai Mountains (2623 m a.s.l.) in northeastern Asia
Morphological and optical properties of carbonaceous aerosol particles from ship emissions and biomass burning during a summer cruise measurement in the South China Sea
Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes
Chemical composition, sources and formation mechanism of urban PM2.5 in Southwest China: a case study at the beginning of 2023
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1671, https://doi.org/10.5194/egusphere-2024-1671, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1622, https://doi.org/10.5194/egusphere-2024-1622, 2024
Short summary
Short summary
A study in rural North China Plain revealed Environmental persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs’ atmospheric evolution for climate and health impacts.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O’Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1485, https://doi.org/10.5194/egusphere-2024-1485, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires, however, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in two different years, we characterize the emissions and evolution up to 8 hours of PM2.5 mass, BC, and BrC in smoke from burning of forested lands in the southeastern US.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
EGUsphere, https://doi.org/10.5194/egusphere-2024-1262, https://doi.org/10.5194/egusphere-2024-1262, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterized: sulfate-rich plumes from use of heavy fuel oil with scrubbers and organic-rich plumes from use of low sulfur fuels. The latter were more frequent, emitting double the particle number, and having atypical V/Ni ratio for ship emission.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
EGUsphere, https://doi.org/10.5194/egusphere-2024-494, https://doi.org/10.5194/egusphere-2024-494, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baolin Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-887, https://doi.org/10.5194/egusphere-2024-887, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas-particle partitioning when the site was affected by urban plumes. Box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1130, https://doi.org/10.5194/egusphere-2024-1130, 2024
Short summary
Short summary
This study explores nitrogen-containing organic compounds (NOCs) in PM2.5 particles on the Southeastern Tibetan Plateau. We discovered that biomass burning and transboundary transport are the primary sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they contribute to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
EGUsphere, https://doi.org/10.5194/egusphere-2024-841, https://doi.org/10.5194/egusphere-2024-841, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing processes of terrestrial and marine aerosols. Terrestrial air mass constituted a larger proportion during severe air pollution, harboring more animal and human pathogens. A relative shift towards marine air-mass with respect to pollution elimination, where saprophytic bacteria and fungi were predominant. Mixed air-mass reveals the intermixing processes of terrestrial and marine sources.
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
EGUsphere, https://doi.org/10.5194/egusphere-2024-695, https://doi.org/10.5194/egusphere-2024-695, 2024
Short summary
Short summary
For the Aburrá Valley, Colombia, local emissions dominate aerosol concentrations, which degrade air quality (AQ) and impact human health. However, this can be exacerbated by the influx of external emissions from sources such as regional fires, Saharan dust, and volcanic degassing. While substantially increasing city-wide aerosols, these external sources can also degrade the aerosol chemical composition (i.e. their toxicity) and impact AQ, which we investigate in this study.
Yi-Jia Ma, Yu Xu, Ting Yang, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 24, 4331–4346, https://doi.org/10.5194/acp-24-4331-2024, https://doi.org/10.5194/acp-24-4331-2024, 2024
Short summary
Short summary
This study provides field-based evidence about the differential impacts of combustion of fresh and aged biomass materials on aerosol nitrogen-containing organic compounds (NOCs) in different seasons in Ürümqi, bridging the linkages between the observations and previous laboratory studies showing the formation mechanisms of NOCs.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-879, https://doi.org/10.5194/egusphere-2024-879, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black carbon -containing aerosol in TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024, https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer. Single-particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state. A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.
Xinya Liu, Bas Henzing, Arjan Hensen, Jan Mulder, Peng Yao, Danielle van Dinther, Jerry van Bronckhorst, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 3405–3420, https://doi.org/10.5194/acp-24-3405-2024, https://doi.org/10.5194/acp-24-3405-2024, 2024
Short summary
Short summary
We evaluated the time-of-flight aerosol chemical speciation monitor (TOF-ACSM) following the implementation of the PM2.5 aerodynamic lens and a capture vaporizer (CV). The results showed that it significantly improved the accuracy and precision of ACSM in the field observations. The paper elucidates the measurement outcomes of various instruments and provides an analysis of their biases. This comprehensive evaluation is expected to benefit the ACSM community and other aerosol field measurements.
Eva-Lou Edwards, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Claire E. Robinson, Michael A. Shook, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 3349–3378, https://doi.org/10.5194/acp-24-3349-2024, https://doi.org/10.5194/acp-24-3349-2024, 2024
Short summary
Short summary
We investigate Cl− depletion in sea salt particles over the northwest Atlantic from December 2021 to June 2022 using an airborne dataset. Losses of Cl− are greatest in May and least in December–February and March. Inorganic acidic species can account for all depletion observed for December–February, March, and June near Bermuda but none in May. Quantifying Cl− depletion as a percentage captures seasonal trends in depletion but fails to convey the effects it may have on atmospheric oxidation.
Yue Sun, Yujiao Zhu, Yanbin Qi, Lanxiadi Chen, Jiangshan Mu, Ye Shan, Yu Yang, Yanqiu Nie, Ping Liu, Can Cui, Ji Zhang, Mingxuan Liu, Lingli Zhang, Yufei Wang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 24, 3241–3256, https://doi.org/10.5194/acp-24-3241-2024, https://doi.org/10.5194/acp-24-3241-2024, 2024
Short summary
Short summary
Field observations were conducted at the summit of Changbai Mountain in northeast Asia. The cumulative number concentration of ice-nucleating particles (INPs) varied from 1.6 × 10−3 to 78.3 L−1 over the temperature range of −5.5 to −29.0 ℃. Biological INPs (bio-INPs) accounted for the majority of INPs, and the proportion exceeded 90% above −13.0 ℃. Planetary boundary layer height, valley breezes, and long-distance transport of air mass influence the abundance of bio-INPs.
Cuizhi Sun, Yongyun Zhang, Baoling Liang, Min Gao, Xi Sun, Fei Li, Xue Ni, Qibin Sun, Hengjia Ou, Dexian Chen, Shengzhen Zhou, and Jun Zhao
Atmos. Chem. Phys., 24, 3043–3063, https://doi.org/10.5194/acp-24-3043-2024, https://doi.org/10.5194/acp-24-3043-2024, 2024
Short summary
Short summary
In a May–June 2021 expedition in the South China Sea, we analyzed black and brown carbon in marine aerosols, key to light absorption and climate impact. Using advanced in situ and microscope techniques, we observed particle size, structure, and tar balls mixed with various elements. Results showed biomass burning and fossil fuels majorly influence light absorption, especially during significant burning events. This research aids the understanding of carbonaceous aerosols' role in marine climate.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Junke Zhang, Yunfei Su, Chunying Chen, Wenkai Guo, Qinwen Tan, Miao Feng, Danlin Song, Tao Jiang, Qiang Chen, Yuan Li, Wei Li, Yizhi Wang, Xiaojuan Huang, Lin Han, Wanqing Wu, and Gehui Wang
Atmos. Chem. Phys., 24, 2803–2820, https://doi.org/10.5194/acp-24-2803-2024, https://doi.org/10.5194/acp-24-2803-2024, 2024
Short summary
Short summary
Typical haze events in Chengdu at the beginning of 2023 were investigated with bulk-chemical and single-particle analyses along with numerical model simulations. By integrating the obtained chemical composition, source, mixing state and numerical simulation results, we infer that Haze-1 was mainly caused by pollutants related to fossil fuel combustion, especially local mobile sources, while Haze-2 was triggered by the secondary pollutants, which mainly came from regional transmission.
Cited articles
Atmospheric Research and Analysis (ARA): Home; Public Data Archive, available at: http://www.atmospheric-research.com/studies/SEARCH/index.html (last access: 5 March 2014), 2013.
Banta, R., Senff, C. Nielsen-Gammon, J., Darby, L., Ryerson, T., White, A., Trainer, M., McNider, R., Valente, J., Mayer, S., Alvarez, R., Hardesty, M., Parrish, D., and Fehsenfeld, F.: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode, J. Geophys. Res.-Atmos., 103, 22519–22544, 1998.
Baumann, K., Williams, E., Angevine, W., Roberts, J., Norton, R., Frost, G., Fehsenfeld, F., Spingston, S., Bertman, S., and Hartsell, B.: Ozone production and transport near Nashville, Tennessee: results from 1994 study at New Hendersonville, J. Geophys. Res.-Atmos., 105, 9137–9153, 2000.
Blanchard, C. L., Tanenbaum, S., and Hidy, G. M.: Effects of sulfur dioxide and oxides of nitrogen emission reductions on fine particulate matter mass concentrations: regional comparisons, JAPCA J. Air Waste Ma., 57, 1337–1350, 2007.
Blanchard, C. L., Hidy, G. M., Tanenbaum, S., Edgerton, E., Hartsell, B., and Jansen, J.: Carbon in Southeastern Aerosol Particles: empirical estimates of secondary organic aerosol formation, Atmos. Environ., 42, 6710–6720, 2008.
Blanchard, C. L., Tanenbaum, S., Hidy, G. M., Rasmussen, R., and Watkins, R.: NMOC, ozone and organic aerosol in the southeastern states, 1999–2007, 1. Spatial and temporal variations of NMOC concentrations and composition in Atlanta, Georgia, Atmos. Environ., 44, 4827–4839, 2010a.
Blanchard, C. L., Tanenbaum, S., and Hidy, G. M.: NMOC, ozone and organic aerosol in the southeastern states, 1999–2007, 2. Ozone trends and sensitivity to NMOC emissions in Atlanta, Georgia, Atmos. Environ., 44, 4840–4849, 2010b.
Blanchard, C. L., Tanenbaum, S., and Hidy, G. M.: NMOC, ozone and organic aerosol in the southeastern states, 1999–2007, 3. Origins of organic aerosol in Atlanta, Georgia and surrounding areas, Atmos. Environ., 45, 1291–1302, 2011.
Blanchard, C. L., Hidy, G. M., Tanenbaum, S., Edgerton, E., and Hartsell, B.: The southeastern aerosol research and characterization (SEARCH) study: Spatial variations and chemical climatology, 1999–2010, JAPCA J. Air Waste Ma., 63, 260–275, 2013a.
Blanchard, C. L., Hidy, G., Tanenbaum, S., Edgerton, E., and Hartsell, B.: The southeastern aerosol research and characterization (SEARCH) study: Temporal trends in the PM and gas concentrations and composition, 1999–2010, JAPCA J. Air Waste Ma., 63, 247–259, 2013b.
Blanchard, C. L., Tanenbaum, S., and Hidy, G. M.: Source attribution of trends in air pollutant concentrations in the Southeastern Aerosol Research and Characterization (SEARCH), Environ. Sci. Technol., 47, 13,536–13,545, https://doi.org/10.1021/es402876s, 2013c.
Blanchard, C. L.,Tanenbaum, S., Hidy, G. M.: Ozone in the southeastern United States: an observation-based model using measurements from the Southeastern Aerosol Research and Characterization (SEARCH) network, Atmos. Environ., 48, 192–200, https://doi.org/10.1016/j.atmosenv.2014.02.006, 2014a.
Blanchard, C. L., Chow, J., Edgerton, E., Watson, J. G., Hidy, G. M., and Shaw, S.: Organic aerosols in the southeastern United States: speciated particulate carbon measurements from the SEARCH network, 2006–2010, Atmos. Environ., 89, 382–391, https://doi.org/10.1016/j.atmosenv.2014.01.006, 2014b.
Brooks, S., deMott, P., and Kreidenweis, S.: Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate, Atmos. Environ., 38, 1859–1868, 2004.
Budisulistiorini, S., Canagarratna, M., Croteau, P., Marth, W., Baumann, K. Edgerton, E., Shaw, S., Knipping, E., Worsnop, D., Jayne, J., Gold, A., Turpin, B., Guenther, A., Cohen, R., Shepson, P., Shaw, S., Wiedimyer, G., Surratt, J., Wennberg, P., and Pierce, J.: Real-time continuous characterization of secondary organic aerosol deriving from isoprene epoxydiols in downtown Atlanta, Georgia, using the Aerodyne aerosol chemical speciation monitor, Environ. Sci. Technol., 47, 5686–5694, 2013.
Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology and their use in assessing ozone trends, Atmos. Environ., 41, 7127–7137, 2007.
Carlton, A. G. and Turpin, B. J.: Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water, Atmos. Chem. Phys., 13, 10203–10214, https://doi.org/10.5194/acp-13-10203-2013, 2013.
Carlton, A. G., Goldstein, A., Jiminez, J., Pinder, R., deGouw, J., Turpin, B., Guenther, A., Cohen, R., Shepson, P., Shaw, S., Wiedimyer, C., Surratt, J., Wennberg, P., and Pierce, J.: The Southern Oxidant and Aerosol Study (design rationale), available at: http://climate.envsci.rutgers.edu/SOAS/SOAS_White_Paper_final.pdf (last access: 15 January 2014), 2013.
Chameides, W. and Cowling, E.: The State of the Southern Oxidant Study: Policy Relevant Findings in O3 Pollution Research, 1988–1994, Rep. Southern Oxidant Study, North Carolina State University, Raleigh, NC, 1995.
Chameides, W., Lindsay, R., Richardson, J., and Kiang, C.: The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study, Science, 24, 1473–1475, 1988.
Ding, X., Zheng, N. M., Edgerton, E., Jansen, J., and Wang, X.: Contemporary or fossil origin: split of estimated secondary organic carbon in the southeastern United States, Environ. Sci. Technol., 42, 9122–9128, 2008.
Edgerton, E., Hartsell, B., Saylor, R., Jansen and, J., Hansen, D. A., and Hidy, G.: The Southeastern Aerosol Research and Characterization Study: Part 2 – Filter based measurements of PM2.5 and PMcoarse mass and composition, JAPCA J. Air Waste Ma., 55, 1427–1442, 2005.
Edgerton, E., Hartsell, B., Saylor, R., Jansen, J., Hansen, D. A., and Hidy, G.: The Southeastern Aerosol Research and Characterization Study: Part 3 – Continuous measurements of PM2.5 mass and composition, JAPCA J. Air Waste Ma., 56, 1325–1341, 2006.
Edgerton, E., Saylor, R., Hartsell, B., Jansen, J., and Hansen, D. A.: Ammonia and ammonium measurements from the Southeastern US 2007, Atmos. Environ., 41, 3339–3351, 2007.
Electric Power Research Institute (EPRI): The Southeastern Aerosol Research and Characterization (SEARCH) Network, Report 1023331, EPRI, Palo Alto, CA, 2013.
Environmental Protection Agency (EPA): Nonmethane Organic Compound (NMOC) and Speciated Non Methane Organic Compound (SNMOC) Monitoring Program, EPA-454/R-99-053, EPA, Research Triangle Park, NC, available at: www.epa.gov/ttnamti1/archive/files/ambient/criteria/reldocs/r-99-053.pdf (last access: 4 December 2013), 1999.
Environmental Protection Agency (EPA): Research Partnership "Southern Atmosphere Study (SAS)", available at: http://blog.epa.gov/science/tag/southern-atmosphere-study-sas, last access: 11 November 2014a.
Environmental Protection Agency (EPA): 2011 Based Emissions Modeling Platform, available at: http://www.epa.gov/ttn/chief/emch/index.html#2011, last access: 28 February 2014b.
Frost, G., Trainer, M., Allwine, G., Bhr, M., Calvert, J., Cantrell, C., Fehsenfeld, F., Goldan, P., Herwehe, J., Hubler, G., Kustler, W., Martin, R., McMillen, R., Montzka, S., Norton, R., Parrish, D., Ridley, B., Shetter, R., Walega, J., Watkins, B., Westberg, H., and Williams, E.: Photochemical ozone production in the rural southeastern United States during the 1990 Rural Oxidants in Southern Environments (ROSE) program, J. Geophys. Res.-Atmos., 103, 22491–22508, 1998.
Froyd, K., Murphy, S., Murphy, D., deGouw, J., Eddinger, M., and Wennburg, P.: Contribution of isosprene-derived organosulfates to free tropopsheric aerosol mass, P. Natl. Acad. Sci. USA, 107, 21,360–21,365, 2010.
Fuchs, H., Hofzumahaus, A., Rohrer, F., Bohn, B., Brauers, T., Dorn, H., Haseler, R., Holland, F., Kaminski, M., Li, X., Lu, K., Nehr, S. Tilmann, R., Wegener, R., and Wahner, A.: Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation, Nat. Geosci., 6, 1023–1025, 2013.
Gao, S., Surratt, J., Knipping, E., Edgerton, E., Shahgholi, and Seinfeld, J.: Characterization of polar organic components in fine aerosols in the Southeastern United States: identity, origin and evolution, J. Geophys. Res.-Atmos., 111, D14314, https://doi.org/10.1029/2005JD006601, 2006.
Goldan, P., Kuster, W., Fehsenfeld, F., and Montzka, S.: Hydrocarbon measurements in the southeastern United States: the rural oxidants in the southern environment (ROSE) program 1990, J. Geophys. Res.-Atmos., 100, 25945–25963, 1995.
Goldan, P., Parrish, D., Kustler, W., Trainer, M., McKeen, S., Holloway, J., Jobson, B., Sueper, F., and Fehsenfeld, F.: Airborne measurements of isoprene, CO and anthropogenic hydrocarbon and their implications, J. Geophys. Res.-Atmos., 105, 9091–9105, 2000.
Grosjean, D. and Friedlander, S.: Formation of organic aerosols from cyclic olefins and diolefins, in: The Character and Origins of Smog Aerosols, edited by: Hidy, G. M., Mueller, P. K., Grosjean, D., Appel, B., Wesolowski, J., Wiley Interscience, NY, 434–476, 1980.
Guenther, A., Zimmerman, P., Harley, P., Manson, R., and Fall, R.: Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses, J. Geophys. Res.-Atmos., 98, 12609–12617, 1993.
Hagerman, L., Aneja, V., and Lonneman, W.: Characterization of non-methane hydrocarbons in the rural southeast United States, Atmos. Environ., 31, 4017–4038, 1997.
Haines, T. K., Busby, R., and Cleaves, D.: Prescribed burning in the south: trends, purpose and barriers, South. J. Appl. For., 25, 149–153, 2007.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hansen, D. A., Edgerton, E., Hartsell, B., Jansen, J., Hidy, G., Kandaswamy, K., and Blanchard, C. L.: The Southeastern Aerosol Research and Characterization study (SEARCH): 1. Overview, JAPCA J. Air Waste Ma., 53, 1460–1471, 2003.
Hansen, D. A., Edgerton, E., Hartsell, B., Jansen, J., Burge, H., Koutrakis, P., Rogers, C., Suh, C., Chow, J., Zielinska, B., McMurry, P., Mulholland, J., Russell, A., and Rasmussen, R.: Air quality measurements for the aerosol research and inhalation epidemiology study, JAPCA J. Air Waste Ma., 56, 1445–1458, 2006.
Hatch, L., Creaman, J., Ault, A., Surratt, J., Chan, J., Seinfeld, J., Edgerton, E., Su, Y., and Prather, K.: Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time of flight mass spectrometery Part 1: Single particle atmospheric observaions in Atlanta, Environ. Sci. Technol., 45, 5105–5111, 2011.
Hidy, G. M.: Atmospheric Sulfur and Nitrogen Oxides: Eastern North American Source-Receptor Relationships, Academic Press, San Diego, CA, 1994.
Hidy, G. M.: Ozone process insights from field experiments, Part 1. Overview, Atmos. Environ., 34, 2001–2022, 2000.
Hidy, G. M.: Worldwide aerosol chemistry: from hemispheric distributions to megacity sources, JAPCA J. Air Waste Ma., 59, 770–789, 2009.
Hidy, G. M. and Blanchard, C. L.: The North American background aerosol and global aerosol variation, JAPCA J. Air Waste Ma., 55, 1585–1599, 2005.
Hoffman, M., Waldman, J., Munger, J., and Jacob, D.: 1986. The chemistry and physics of acid fog, clouds and haze aerosol, in: Aerosols: Research, Risk Assessment and Control Strategies, edited by: Lee, S., Schneider, T., Grant, L., and Verkerk, J., Lewis Publishers, Inc., Ann Arbor, MI, 121–150, 1986.
Hunt, S.: Southern Atmosphere Study (SAS): Research Partnership Advancing the Science of Organic Aerosols, Air, Climate and Energy Research Program, US Environmental Protection Agency, Research Triangle Park, NC, 2013.
Ingram, K., Dow, K., Carter, L. Anderson, J. (Eds.): Climate in the Southeastern United States: Variability, Change, Impacts and Vulnerability, Island Press, Washington DC, 2013.
Irving, P. (Ed.): Acidic Deposition: State of Science and Technology .1 Emissions, Atmospheric Processes and Deposition, National Acid Precipitation Program, Washington DC, 1991.
Kleindienst, T., Lewandowski, M., Offenberg, J., Edney, E., Jaoui, M., Zheng, M., Ding, X., and Edgerton, E.: Contribution of primary and secondary sources to organic aerosols at SEARCH network sites, JAPCA J. Air Waste Ma., 60, 1388–1399, 2010.
Larkin, N., Raffuse, S., and Strand, T.: Wildfire emissions, carbon, and climate: US emissions inventories, Forest Ecol., and Manage., 317, 61–69, https://doi.org/10.1016/j.foreco.2013.09.012, 2013.
Lee, S., Baumann, K., Schauer, J., Sheesley, R., Naeher, L. Meinardi, S., Blake, D., Edgerton, E., Russell, A., and Clements, M.: Gaseous and particulate emissions from prescribed burning in Georgia, Environ. Sci. Technol., 39, 9049–9056, 2005.
Lee, S., Liu, Wand, Y., Russell, A., and Edgerton, E.: Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States, Atmos. Environ., 42, 4126–4137, 2010.
Lefohn, A., Emert, C., Shadwick, D., Wernli, H., Jung, J., and Oltmans, S.: Estimates of background surface ozone concentrations in the United States based on model-derived source apportionment, Atmos. Environ., 84, 275–288, https://doi.org/10.1016/jatmosenv.2013.11.033, 2014.
Lim, H. and Turpin, B.: Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment, Environ. Sci. Technol., 36, 4489–4496, 2002.
Lin, Y.-H., Knipping, E. M., Edgerton, E. S., Shaw, S. L., and Surratt, J. D.: Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches, Atmos. Chem. Phys., 13, 8457–8470, https://doi.org/10.5194/acp-13-8457-2013, 2013.
Lowenthal, D., Zielinska, B., Mason, B., Samy, S., Samburova, V., Collins, D., Spencer, C., Taylor, J., Allen, J., and Kumar, N.: Aerosol characterization studies at Great Smoky Mountains National Park, summer 2006, J. Geophys. Res.-Atmos., 114, D8206, https://doi.org/10.1029/2008JD011274, 2009.
Malm, W., Day, D., and Kreidenweis, S.: Light scattering characteristics of aerosols at ambient and as a function of relative humidity, Part II – A comparison of measured scattering and aerosol concentrations using statistical models, JAPCA J. Air Waste Ma., 50, 701–709, 2000.
Marmur, A., Park, S. K., Mulholland, J. A., Tolbert, P. E., and Russell, A. G.: Source apportionment of PM2.5 in the southeastern United States using receptor and emissions based models: conceptual differences and implications for time-series health studies, Atmos. Environ., 40, 2533–2551, 2006.
Marmur, A, Liu, W., Wang, Y., Russell, A. G., and Edgerton, E. S.: Evaluation of model simulated atmospheric constituents with observations in the factor projected space: CMAQ simulations of SEARCH measurements, Atmos. Environ., 43, 1839–1849, 2009.
Martinez, M., Harder, H., Kovacs, T., Simpas, J., Bassis, J., Lesher, R., Brune, W., Frost, G., Williams, E., Stroud, C., Jobson, B., Roberts, J., Hall, S., Shetter, R., Wert, B. Fried, A., Alicke, B., Stutz, J., Young, V., White, A., and Zamara, R.: OH and HO2 concentrations, sources and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, J. Geophys. Res-Atmos., 108, 4617, https://doi.org/10.1029/2003JD003551, 2003.
McMurry, P., Shepherd, M., and Vickery, J. (Eds.): Particulate Matter Science for Policy Makers, Cambridge University Press, Cambridge, UK, 283–319, 2004.
McNider, R., Norris, W., Song, A., Clymer, R., Gupta, S., Banta, R., Zamara, R., and White, A.: Meteorological conditions during the 1995 Southern Oxidants Study Nashville Middle Tennesssee Field Intensive, J. Geophys. Res.-Atmos., 103, 22225–22243, 1998.
Meagher, J., Cowling, E., Fehsenfeld, F., and Parkhurst, W.: Ozone formation and transport in southeasterm United States: overview of the SOS Nashville/Middle Tennessee Study, J. Geophys. Res.-Atmos., 103, 22213–22223, 1998.
Morris, R. E., McNally, D. E., Tesche, T. W., Tonnesen, G., Boylan, J. W., and Brewer, P.: Preliminary evaluation of the community multiscale air quality model for 2002 over the southeastern United States, JAPCA J. Air Waste Ma., 55, 1694–1708, 2005.
National Atmospheric and Oceanic Administration (NOAA).: Southeast Nexus (SENEX): Studying the Interactions between Natural and Anthropogenic Emissions at the Nexus of Air Quality and Climate Change, NOAA, Boulder, CO, available at: http://www.esrl.noaa.gov/csd/projects/senex/, last access: 20 November 2013.
Nguyen, T. B., Coggon, M. M., Bates, K. H., Zhang, X., Schwantes, R. H., Schilling, K. A., Loza, C. L., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds, Atmos. Chem. Phys., 14, 3497–3510, https://doi.org/10.5194/acp-14-3497-2014, 2014.
Novakov, T., Mueller, P., Alcocer, A., and Otvos, J.: 1972. Chemical composition of Pasadena aerosol by particle size and time of day: III. Chemical states of nitrogen and sulfur by photoelectron spectroscopy, in: Aerosols and Atmospheric Chemistry, edited by: Hidy. G., Academic Press, New York, 285–294, 1972.
O'Brien, R., Crabtree, J., Holmes, J., Hoggan, M., and Bockian, A.: Formation of photochemical aerosol from hydrocarbons: atmospheric analysis, Environ. Sci. Technol., 9, 577–582, 1975.
Pachon, J. E., Balachandran, S., Hu, Y., Weber, R. J., Mulholland, J. A., and Russell, A. G.: Comparison of SOC estimates and uncertainties from aerosol chemical composition and gas phase data in Atlanta, Atmos. Environ., 44, 3907–3914, 2010.
Peterson, T., Karl., T., Kossin, J., Kunkel, K., Lawrimore, J., McMahon, J., Vose, R., and Yin, X.: Changes in weather and climate extremes: state of knowledge relevant to air and water quality in the United States, JAPCA J. Air Waste Ma., 64, 184–197, 2014.
Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowewnthal, D., and Hand, J.: Revised algorithm for estimating light extinction from IMPROVE particle speciation data, JAPCA J. Air Waste Ma., 57, 1326–1336, 2007.
Pun, B., Seigneur, C., Bailey, E., Gautney, L., Douglas, S., Haney, J., and Kumar, N.: Response of atmospheric particulate matter to changes in precursor emissions: a comparison of three air quality models, Environ. Sci. Technol., 42, 831–837, 2008.
Pun, B. K. and Seigneur, C.: Organic aerosol spatial/temporal patterns: perspectives of measurements and model, Environ. Sci. Technol., 42, 7287–7293, 2008.
Rao, S. T., Zurbenko, I., Neagu, R., Porter, P., Ku, J., and Hentry, R.: Space and time scales in ambient ozone data, B. Am. Meteorol. Soc., 78, 2153–2166, 1997.
Ren, X., Harde, H., Martinez, M., Lesher, R., Oliger, A., Simpas, J., Brune, W., Schwab, J., Demerjian, K., He, Y., Zhou, X., and Gao, H.: OH and HO2 chemistry in the urban atmosphre of New York City, Atmos. Environ., 37, 3639–3651, 2003.
Riemer, D., Pos, W., Milne, P., Farmer, C., Zika, R., Apel, E., Olszyna, K., Kleindienst, T., Lonneman, W., Bertman, S., Shepson, P., and Starn, T.: Observations of nonmethane hydrocarbons and oxygenated volatile organic compounds at a rural site in the southeastern United States, J. Geophys. Res.-Atmos., 103, 28111–28128, 1998.
Saylor, R., Edgerton, E., and Hartsell, B.: Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation, Atmos. Environ., 40, 7546–7556, 2006.
Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, Wiley Interscience, New York, 1998.
Sharkey, T., Wiberley, A., and Donohue, A.: Isoprene emissions from plants: why and how? Ann. Bot., 10, 5–18, 2008.
Shen, X., Zhao, Y., Chen, Z., and Huang, D.: Heterogeneous reactions of volatile organic compounds in the atmosphere, Atmos. Environ., 68, 297–314, 2013.
Solomon, P., Cowling, E., Hidy, G. M., and Furness, C.: Comparison of scientific findings from major ozone field studies in North America and Europe, Atmos. Environ., 34, 1885–1920, 2000.
Solomon, P., Chameides, W., Weber, R., Middlebrook, A., Kiang, C., Russell, A., Butler, A., Turpin, B., Mikel, D., Scheffe, R., Cowling, E., Edgerton, E., St. John, J., Jansen, J., McMurry, P., Hering, S., and Bahadori, T.: Overview of the 1999 Atlanta supersite project, J. Geophys. Res.-Atmos., 108, 8413, https://doi.org/10.1029/2001JD001458, 2003.
Southern Appalachian Mountain Intitiatve (SAMI): Final Report and Summary, avaliable at: http://www.nature.nps.gov/air/pubs/pdf/SAMI_Final_Report_0802.pdf (last access: 10 January 2014), 2012.
Southern Oxidants Study (SOS) 1988–2003: Climatology of Ozone and Ozone Precursors, available at: www.ncsu.edu/sos/ii.html, last access: 15 January, 2014.
Surratt, J., Kroll, J., Kleindienst, T., Edney, E., Claeys, M., Sorooshian, A., Ng, N., Offenberg, J., Lewandowski, M., Jaoui, M., Flagan, R., and Seinfeld, J.: Evidence of organosulfates in secondary organic aerosol, Environ. Sci. Technol., 41, 517–527, 2007.
Takahama, S., C. Davidson, and Pandis, S.: Semicontinuous measurements of organic carbon and acidity during the Pittsburgh Air Quality Study: implications for acid-catalyzed organic aerosol formation, Environ. Sci. Technol., 40, 2191–2199, 2006.
Tanner, R., Olszyna, K., Edgerton, E., Knipping, E., and Shaw, S.: Searching for evidence of acid-catalyzed enhancement of secondary organic aerosol formation using ambient aerosol data, Atmos. Environ., 43, 3440–3444, 2009.
Tesche, T. W., Morris, R., Tonnesen, G., McNally, D., Boylan, J., and Brewer, P.: CMAQ/CAMx annual 2002 performance evaluation over the eastern US, Atmos. Environ., 40, 4906–4919, 2006.
University Corporation for Atmospheric Research (UCAR): Southern Atmosphere Study, available at: https://www.eol.ucar.edu/field_projects/sas, last access: 29 April 2014.
Vukovich, F.: Boundary layer ozone variations in the eastern United States and their association with meteorological variations: long-term variations, J. Geophys. Res.-Atmos., 99, 16839–16850, 1994.
Vukovich, F.: Aspects of subregional variations in the SOS region, Atmos. Environ., 32, 3881–3889, 1998.
Wade, D. D., Brock, C., Brose, P., Grace, J., Hoch, G. and Patterson, G.: Fire in eastern ecosystems, in: Wildland Fire in Ecosystems: Effects of Fire on Flora, edited by: Brown, J. and Smith, J.-K., Rep. RMRS-42, US Forest Service, Rocky Mountain Research Station, Ogden, UT, 2000.
Went, F.: Organic matter in the atmosphere and its possible relation to petroleum formation, P. Natl. Acad. Sci. USA, 46, 212–221, 1960.
White, A., Templeman, B., Angevine, W., Zamora, R., King, W., Russell, C., Banta, R., Brewer, W., and Olszayna, K: Regional contrast in morning transitions observed during the 1999 Southern Oxidants Study Nashville/Middle Tennessee Intensive, J. Geophys. Res.-Atmos., 107, ACL21-1–ACL21-12, https://doi.org/10.1029/2001JD002036, 2002.
Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C.-M., and Wei, C.: Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010, Atmos. Chem. Phys., 13, 7531–7549, https://doi.org/10.5194/acp-13-7531-2013, 2013.
Yu, S., Bhave, P. V., Dennis, R. L., and Mathur, R.: Seasonal and regional variations of primary and secondary organic aerosols over the continental United States: semi-empirical estimates and model evaluation, Environ. Sci. Technol., 41, 4690–4697, 2007.
Zhang, J. and Rao, S.: The role of vertical mixing in the temporal evolution of ground-level ozone concentrations, J. Appl. Meteorol., 38, 1674–1691, 1999.
Zhang, X., Hecobian, A., Zheng, M., Frank, N. H., and Weber, R. J.: Biomass burning impact on PM2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis, Atmos. Chem. Phys., 10, 6839–6853, https://doi.org/10.5194/acp-10-6839-2010, 2010.
Zhang, Y., Pun, B., Wu, S. Y., Vijayaraghavan, K., and Seigneur, C.: Application and evaluation of two air quality models for particulate matter for a southeastern US episode, JAPCA J. Air Waste Ma., 54, 1478–1493, 2004.
Zheng, M., Cass, G., J. Schauer, and Edgerton, E.: Source apportionment of PM2.5 in the southeastern United States using solvent extractable organic compounds, Environ. Sci. Technol., 36, 2361–2371, 2002.
Zheng, M., Ke, L., Edgerton, E. S., Schauer, J. J., Dong, M. Y., and Russell, A. G.: Spatial distribution of carbonaceous aerosol in the southeastern United States using molecular markers and carbon isotope data, J. Geophys. Res.-Atmos., 111, D10S06, https://doi.org/10.1029/2005JD006777, 2006.
Short summary
This paper reviews aerometric measurements from Centreville, Alabama. The measurements show annual trends with air pollution emissions from 1999 to 2013. They provide a context for observations from 1 June to 15 July 2013 supporting the Southern Oxidant and Aerosol Study. An important goal of this experiment was to advance knowledge of aerosols produced in the atmosphere from precursors. The observations were in moist and warm conditions with the lowest gas and particle concentrations recorded.
This paper reviews aerometric measurements from Centreville, Alabama. The measurements show...
Altmetrics
Final-revised paper
Preprint