Articles | Volume 14, issue 20
https://doi.org/10.5194/acp-14-11447-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-11447-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Increase in elemental carbon values between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna (Svalbard)
M. M. Ruppel
Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
E. Isaksson
Norwegian Polar Institute, Tromsø, Norway
J. Ström
Department of Applied Environmental Science ITM (Atmospheric Science Unit), Stockholm University, Stockholm, Sweden
E. Beaudon
Byrd Polar Research Center, Ohio State University, Columbus, USA
J. Svensson
Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
Finnish Meteorological Institute (FMI), Helsinki, Finland
C. A. Pedersen
Norwegian Polar Institute, Tromsø, Norway
A. Korhola
Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
Related authors
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Meri M. Ruppel, Joana Soares, Jean-Charles Gallet, Elisabeth Isaksson, Tõnu Martma, Jonas Svensson, Jack Kohler, Christina A. Pedersen, Sirkku Manninen, Atte Korhola, and Johan Ström
Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017, https://doi.org/10.5194/acp-17-12779-2017, 2017
Short summary
Short summary
Black carbon (BC) deposition enhances Arctic warming and melting. We present Svalbard ice core BC data from 2005 to 2015, comparing the results with chemical transport model data. The ice core and modelled BC deposition trends clearly deviate from measured and observed atmospheric concentration trends, and thus meteorological processes such as precipitation and scavenging efficiency seem to have a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends.
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
EGUsphere, https://doi.org/10.5194/egusphere-2024-2102, https://doi.org/10.5194/egusphere-2024-2102, 2024
Short summary
Short summary
The vegetation can be used to infer the potential climate feedback of peatlands. New studies have shown recent expansion of peatlands but their plant community succession of has not been studied. Although generally described as dry bog-types, our results show that peatland margins in a subarctic fen initiated as wet fen with high methane emissions and shifted to dryer peatland types only after dryer post Little Ice Age climate. Thus, they have acted as a carbon source for most of their history.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Joel D. Barker, Susan Kaspari, Paolo Gabrielli, Anna Wegner, Emilie Beaudon, M. Roxana Sierra-Hernández, and Lonnie Thompson
Atmos. Chem. Phys., 21, 5615–5633, https://doi.org/10.5194/acp-21-5615-2021, https://doi.org/10.5194/acp-21-5615-2021, 2021
Short summary
Short summary
Black carbon (BC), an aerosol that contributes to glacier melt, is important for central Himalayan hydrology because glaciers are a water source to rivers that affect 25 % of the global population in Southeast Asia. Using the Dasuopu ice core (1781–1992 CE), we find that drought-associated biomass burning is an important source of BC to the central Himalaya over a period of months to years and that hemispheric changes in atmospheric circulation influence BC deposition over longer periods.
Johan Ström, Jonas Svensson, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Outi Meinander, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-158, https://doi.org/10.5194/acp-2021-158, 2021
Revised manuscript not accepted
Short summary
Short summary
Snow darkening in the Himalaya results from the deposition of different particles. Here we assess the change in the seasonal snow cover duration due to the presence of mineral dust and black carbon particles in the snow of Sunderdhunga valley, Central Himalaya, India. With the use of in situ weather station data, the snow melt-out date is estimated to be shifted ~13 days earlier due to the presence of the particles in the snow.
Jonas Svensson, Johan Ström, Henri Honkanen, Eija Asmi, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Rakesh Hooda, Matti Leppäranta, Hans-Werner Jacobi, Heikki Lihavainen, and Antti Hyvärinen
Atmos. Chem. Phys., 21, 2931–2943, https://doi.org/10.5194/acp-21-2931-2021, https://doi.org/10.5194/acp-21-2931-2021, 2021
Short summary
Short summary
Light-absorbing particles specifically affect snowmelt in the Himalayas. Through measurements of the constituents in glacier snow pits from the Indian Himalayas our investigations show that different snow layers display striking similarities. These similarities can be characterized by a deposition constant. Our results further indicate that mineral dust can be responsible for the majority of light absorption in the snow in this part of the Himalayas.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
M. Roxana Sierra-Hernández, Emilie Beaudon, Paolo Gabrielli, and Lonnie Thompson
Atmos. Chem. Phys., 19, 15533–15544, https://doi.org/10.5194/acp-19-15533-2019, https://doi.org/10.5194/acp-19-15533-2019, 2019
Short summary
Short summary
Energy consumption in Asia has substantially risen since 1970, leading to increased levels of air pollution, which can have severe impacts on human health and the environment. We present the first continuous ice-core record of toxic trace metals that covers 1971–2015. This new record from the Guliya ice cap in northwestern Tibet shows that Pb, Cd, Zn, and Ni, emitted mostly from fossil fuel combustion and biomass burning in South Asia, have reached the remote, high-altitude glacier since 1990.
Jonas Svensson, Johan Ström, and Aki Virkkula
Atmos. Meas. Tech., 12, 5913–5925, https://doi.org/10.5194/amt-12-5913-2019, https://doi.org/10.5194/amt-12-5913-2019, 2019
Short summary
Short summary
Collection of particles onto filters can be a valuable tool in several research disciplines. Here we experiment with quartz filters and their response to soot particles in an airborne and liquid state in order to better understand the sampling procedure. Soot particles in a liquid phase showed absorption of light nearly double that of airborne sampled particles.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Dimitri Osmont, Isabel A. Wendl, Loïc Schmidely, Michael Sigl, Carmen P. Vega, Elisabeth Isaksson, and Margit Schwikowski
Atmos. Chem. Phys., 18, 12777–12795, https://doi.org/10.5194/acp-18-12777-2018, https://doi.org/10.5194/acp-18-12777-2018, 2018
Short summary
Short summary
This study presents the first long-term and high-resolution refractory black carbon (rBC) ice core record from Svalbard, spanning the last 800 years. Our results show that rBC has had a predominant anthropogenic origin since the beginning of the Industrial Revolution in Europe and that rBC concentrations have been declining in the last 40 years. We discuss the impact of 20th century snowmelt on our record. We reconstruct biomass burning trends prior to 1800 by using a multi-proxy approach.
Mackenzie M. Grieman, Murat Aydin, Elisabeth Isaksson, Margit Schwikowski, and Eric S. Saltzman
Clim. Past, 14, 637–651, https://doi.org/10.5194/cp-14-637-2018, https://doi.org/10.5194/cp-14-637-2018, 2018
Short summary
Short summary
This study presents organic acid levels in an ice core from Svalbard over the past 800 years. These acids are produced from wildfire emissions and transported as aerosol. Organic acid levels are high early in the record and decline until the 20th century. Siberia and Europe are likely the primary source regions of the fire emissions. The data are similar to those from a Siberian ice core prior to 1400 CE. The timing of the divergence after 1400 CE is similar to a shift in North Atlantic climate.
Carmen Paulina Vega, Elisabeth Isaksson, Elisabeth Schlosser, Dmitry Divine, Tõnu Martma, Robert Mulvaney, Anja Eichler, and Margit Schwikowski-Gigar
The Cryosphere, 12, 1681–1697, https://doi.org/10.5194/tc-12-1681-2018, https://doi.org/10.5194/tc-12-1681-2018, 2018
Short summary
Short summary
Ions were measured in firn and ice cores from Fimbul Ice Shelf, Antarctica, to evaluate sea-salt loads. A significant sixfold increase in sea salts was found in the S100 core after 1950s which suggests that it contains a more local sea-salt signal, dominated by processes during sea-ice formation in the neighbouring waters. In contrast, firn cores from three ice rises register the larger-scale signal of atmospheric flow conditions and transport of sea-salt aerosols produced over open water.
Hans W. Linderholm, Marie Nicolle, Pierre Francus, Konrad Gajewski, Samuli Helama, Atte Korhola, Olga Solomina, Zicheng Yu, Peng Zhang, William J. D'Andrea, Maxime Debret, Dmitry V. Divine, Björn E. Gunnarson, Neil J. Loader, Nicolas Massei, Kristina Seftigen, Elizabeth K. Thomas, Johannes Werner, Sofia Andersson, Annika Berntsson, Tomi P. Luoto, Liisa Nevalainen, Saija Saarni, and Minna Väliranta
Clim. Past, 14, 473–514, https://doi.org/10.5194/cp-14-473-2018, https://doi.org/10.5194/cp-14-473-2018, 2018
Short summary
Short summary
This paper reviews the current knowledge of Arctic hydroclimate variability during the past 2000 years. We discuss the current state, look into the future, and describe various archives and proxies used to infer past hydroclimate variability. We also provide regional overviews and discuss the potential of furthering our understanding of Arctic hydroclimate in the past. This paper summarises the hydroclimate-related activities of the Arctic 2k group.
Jonas Svensson, Johan Ström, Niku Kivekäs, Nathaniel B. Dkhar, Shresth Tayal, Ved P. Sharma, Arttu Jutila, John Backman, Aki Virkkula, Meri Ruppel, Antti Hyvärinen, Anna Kontu, Henna-Reetta Hannula, Matti Leppäranta, Rakesh K. Hooda, Atte Korhola, Eija Asmi, and Heikki Lihavainen
Atmos. Meas. Tech., 11, 1403–1416, https://doi.org/10.5194/amt-11-1403-2018, https://doi.org/10.5194/amt-11-1403-2018, 2018
Short summary
Short summary
Receding glaciers in the Himalayas are of concern. Here we present measurements of light-absorbing impurities, known to contribute to the ongoing glacier decrease, in snow from Indian Himalayas and compare them to snow samples from the Finnish Arctic. The soot particles in the snow are shown to have lower light absorbing efficiency, possibly affecting their radiative forcing potential in the snow. Further, dust influences the snow in the Himalayas to a much greater extent than in Finland.
Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne deVernal, Dmitry Divine, Johannes P. Werner, Anne Hormes, Atte Korhola, and Hans W. Linderholm
Clim. Past, 14, 101–116, https://doi.org/10.5194/cp-14-101-2018, https://doi.org/10.5194/cp-14-101-2018, 2018
Short summary
Short summary
Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from North Atlantic, Siberia and Alaska regionally averaged records. A focus on the last 2 centuries shows a climate variability linked to anthropogenic forcing but also a multidecadal variability likely due to regional natural processes acting on the internal climate system. It is an important issue to understand multidecadal variabilities occurring in the instrumental data.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Meri M. Ruppel, Joana Soares, Jean-Charles Gallet, Elisabeth Isaksson, Tõnu Martma, Jonas Svensson, Jack Kohler, Christina A. Pedersen, Sirkku Manninen, Atte Korhola, and Johan Ström
Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017, https://doi.org/10.5194/acp-17-12779-2017, 2017
Short summary
Short summary
Black carbon (BC) deposition enhances Arctic warming and melting. We present Svalbard ice core BC data from 2005 to 2015, comparing the results with chemical transport model data. The ice core and modelled BC deposition trends clearly deviate from measured and observed atmospheric concentration trends, and thus meteorological processes such as precipitation and scavenging efficiency seem to have a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends.
John Faulkner Burkhart, Arve Kylling, Crystal B. Schaaf, Zhuosen Wang, Wiley Bogren, Rune Storvold, Stian Solbø, Christina A. Pedersen, and Sebastian Gerland
The Cryosphere, 11, 1575–1589, https://doi.org/10.5194/tc-11-1575-2017, https://doi.org/10.5194/tc-11-1575-2017, 2017
Short summary
Short summary
We present the first use of spectrometer measurements from a drone to assess reflectance and albedo over the Greenland Ice Sheet. In order to measure albedo – a critical parameter in the earth's energy balance – a drone was flown along 200 km transects coincident with Terra and Aqua satellites flying MODIS. We present a direct comparison of UAV-measured reflectance with satellite data over Greenland and provide a new method to study cryospheric surfaces using UAV with spectral instruments.
Carmen P. Vega, Elisabeth Schlosser, Dmitry V. Divine, Jack Kohler, Tõnu Martma, Anja Eichler, Margit Schwikowski, and Elisabeth Isaksson
The Cryosphere, 10, 2763–2777, https://doi.org/10.5194/tc-10-2763-2016, https://doi.org/10.5194/tc-10-2763-2016, 2016
Short summary
Short summary
Surface mass balance and water stable isotopes from firn cores on three ice rises at Fimbul Ice Shelf are reported. The results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores. The first deuterium excess data for the area suggests a possible role of seasonal moisture transport changes on the annual isotopic signal. Large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios at the sites.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
J. I. Peltoniemi, M. Gritsevich, T. Hakala, P. Dagsson-Waldhauserová, Ó. Arnalds, K. Anttila, H.-R. Hannula, N. Kivekäs, H. Lihavainen, O. Meinander, J. Svensson, A. Virkkula, and G. de Leeuw
The Cryosphere, 9, 2323–2337, https://doi.org/10.5194/tc-9-2323-2015, https://doi.org/10.5194/tc-9-2323-2015, 2015
Short summary
Short summary
Light-absorbing impurities change the reflectance of snow in different ways. Some particles are heated by the Sun and they sink out of sight. During the process, snow may look darker than pure snow when observed by nadir, but at larger view zenith angles the snow may look as white as clean snow. Thus an observer on the ground may overestimate the albedo, while a satellite underestimates the albedo. Climate studies need to examine how the contaminants behave in snow, not only their total amounts.
T. Raatikainen, D. Brus, A.-P. Hyvärinen, J. Svensson, E. Asmi, and H. Lihavainen
Atmos. Chem. Phys., 15, 10057–10070, https://doi.org/10.5194/acp-15-10057-2015, https://doi.org/10.5194/acp-15-10057-2015, 2015
Short summary
Short summary
We have measured atmospheric aerosol composition by using a Single Particle Soot Photometer (SP2) in the Finnish Arctic during winter 2011-2012. SP2 can give detailed information about mass distributions and mixing state of refractory black carbon (rBC). The measurements showed varying rBC mass concentrations, but relatively constant rBC core size distributions and mixing state parameters. On average, 24% of all particles contain rBC and the observed rBC cores are always thickly coated.
Y. Shinozuka, A. D. Clarke, A. Nenes, A. Jefferson, R. Wood, C. S. McNaughton, J. Ström, P. Tunved, J. Redemann, K. L. Thornhill, R. H. Moore, T. L. Lathem, J. J. Lin, and Y. J. Yoon
Atmos. Chem. Phys., 15, 7585–7604, https://doi.org/10.5194/acp-15-7585-2015, https://doi.org/10.5194/acp-15-7585-2015, 2015
I. A. Wendl, A. Eichler, E. Isaksson, T. Martma, and M. Schwikowski
Atmos. Chem. Phys., 15, 7287–7300, https://doi.org/10.5194/acp-15-7287-2015, https://doi.org/10.5194/acp-15-7287-2015, 2015
Short summary
Short summary
Nitrate and ammonium ice core records from Lomonosovfonna, Svalbard, indicated anthropogenic pollution from Eurasia as major source during the 20th century. In pre-industrial times nitrate is correlated with methane sulfonate, which we explain with a fertilising effect, presumably triggered by enhanced atmospheric nitrogen input to the ocean. Eurasia was likely the main source area also of pre-industrial nitrate, but for ammonium, biogenic emissions from Siberian boreal forests were dominant.
S. Altnau, E. Schlosser, E. Isaksson, and D. Divine
The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, https://doi.org/10.5194/tc-9-925-2015, 2015
Short summary
Short summary
The first comprehensive study of a set of 76 firn cores in Dronning Maud Land was carried out. The δ18O of both the plateau and the ice shelf cores exhibit a slight positive trend over the second half of the 20th century. The SMB has a negative trend in the ice shelf cores, but increases on the plateau. Comparison with meteorological data revealed that for the ice shelf regions, atmospheric dynamic effects are more important, while on the plateau, thermodynamic effects predominate.
J. Svensson, A. Virkkula, O. Meinander, N. Kivekäs, H.-R. Hannula, O. Järvinen, J. I. Peltoniemi, M. Gritsevich, A. Heikkilä, A. Kontu, A.-P. Hyvärinen, K. Neitola, D. Brus, P. Dagsson-Waldhauserova, K. Anttila, T. Hakala, H. Kaartinen, M. Vehkamäki, G. de Leeuw, and H. Lihavainen
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-1227-2015, https://doi.org/10.5194/tcd-9-1227-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Soot's (including black carbon and organics) negative effect on a natural snow pack is experimentally addressed in this paper through a series of experiments. Soot concentrations in the snow in the range of 200-200 000 ppb verify the negative effects on the albedo, the physical snow characteristics, as well as increasing the melt rate of the snow pack. Our experimental data generally agrees when compared with the Snow, Ice and Aerosol Radiation model.
D. V. Divine, M. A. Granskog, S. R. Hudson, C. A. Pedersen, T. I. Karlsen, S. A. Divina, A. H. H. Renner, and S. Gerland
The Cryosphere, 9, 255–268, https://doi.org/10.5194/tc-9-255-2015, https://doi.org/10.5194/tc-9-255-2015, 2015
Short summary
Short summary
Regional melt pond coverage and albedo of thin (70-90cm) first year Arctic sea ice in advanced stage of melt was estimated from a combination of low-altitude imagery and in situ measurements north of Svalbard in summer 2012. The study revealed a homogeneous melt across the study area with a typical pond fraction of 0.29 and sea-ice albedo of 0.44. A decrease in pond fraction was, however, observed in the 30km marginal ice zone, occurring in parallel with an increase in open-water coverage.
A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, and C. Barbante
Atmos. Chem. Phys., 14, 9613–9622, https://doi.org/10.5194/acp-14-9613-2014, https://doi.org/10.5194/acp-14-9613-2014, 2014
A. M. K. Hansen, K. Kristensen, Q. T. Nguyen, A. Zare, F. Cozzi, J. K. Nøjgaard, H. Skov, J. Brandt, J. H. Christensen, J. Ström, P. Tunved, R. Krejci, and M. Glasius
Atmos. Chem. Phys., 14, 7807–7823, https://doi.org/10.5194/acp-14-7807-2014, https://doi.org/10.5194/acp-14-7807-2014, 2014
N. Rastak, S. Silvergren, P. Zieger, U. Wideqvist, J. Ström, B. Svenningsson, M. Maturilli, M. Tesche, A. M. L. Ekman, P. Tunved, and I. Riipinen
Atmos. Chem. Phys., 14, 7445–7460, https://doi.org/10.5194/acp-14-7445-2014, https://doi.org/10.5194/acp-14-7445-2014, 2014
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014, https://doi.org/10.5194/tc-8-991-2014, 2014
H. Grythe, J. Ström, R. Krejci, P. Quinn, and A. Stohl
Atmos. Chem. Phys., 14, 1277–1297, https://doi.org/10.5194/acp-14-1277-2014, https://doi.org/10.5194/acp-14-1277-2014, 2014
Z. W. Wang, J. C. Gallet, C. A. Pedersen, X. S. Zhang, J. Ström, and Z. J. Ci
Atmos. Chem. Phys., 14, 629–640, https://doi.org/10.5194/acp-14-629-2014, https://doi.org/10.5194/acp-14-629-2014, 2014
A. Spolaor, J. Gabrieli, T. Martma, J. Kohler, M. B. Björkman, E. Isaksson, C. Varin, P. Vallelonga, J. M. C. Plane, and C. Barbante
The Cryosphere, 7, 1645–1658, https://doi.org/10.5194/tc-7-1645-2013, https://doi.org/10.5194/tc-7-1645-2013, 2013
T. Hamburger, M. Matisāns, P. Tunved, J. Ström, S. Calderon, P. Hoffmann, G. Hochschild, J. Gross, T. Schmeissner, A. Wiedensohler, and R. Krejci
Atmos. Chem. Phys., 13, 9837–9853, https://doi.org/10.5194/acp-13-9837-2013, https://doi.org/10.5194/acp-13-9837-2013, 2013
W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine
The Cryosphere, 7, 987–1006, https://doi.org/10.5194/tc-7-987-2013, https://doi.org/10.5194/tc-7-987-2013, 2013
J. Zábori, R. Krejci, J. Ström, P. Vaattovaara, A. M. L. Ekman, M. E. Salter, E. M. Mårtensson, and E. D. Nilsson
Atmos. Chem. Phys., 13, 4783–4799, https://doi.org/10.5194/acp-13-4783-2013, https://doi.org/10.5194/acp-13-4783-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Ice-nucleating particles active below -24 °C in a Finnish boreal forest and their relationship to bioaerosols
Atmospheric Black Carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Aerosol Size Distribution Properties Associated with Cold-Air Outbreaks in the Norwegian Arctic
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Long range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
Measurement report: In-situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Emerging extreme Saharan-dust events expand northward over the Atlantic and Europe prompting record-breaking PM10 and PM2.5 episodes
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Sea spray emissions from the Baltic Sea: comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions
Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees
Variations of the atmospheric polycyclic aromatic hydrocarbon concentrations, sources, and health risk and the direct medical costs of lung cancer around the Bohai Sea against a background of pollution prevention and control in China
Characterization of aerosol over the Eastern Mediterranean by polarization sensitive Raman lidar measurements during A-LIFE – aerosol type classification and type separation
Changing optical properties of Black Carbon and Brown Carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Introducing the novel concept of cumulative concentration roses for studying the transport of ultrafine particles from an airport to adjacent residential areas
Significant spatial gradients in new particle formation frequency in Greece during summer
Impact of desert dust on new particle formation events and the cloud condensation nuclei budget in dust-influenced areas
Active thermokarst regions contain rich sources of ice-nucleating particles
Examining the vertical heterogeneity of aerosols over the Southern Great Plains
Drivers controlling black carbon temporal variability in the lower troposphere of the European Arctic
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
Measurement report: Size-resolved mass concentration of equivalent black carbon-containing particles larger than 700 nm and their role in radiation
Aerosol absorption using in situ filter-based photometers and ground-based sun photometry in the Po Valley urban atmosphere
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
EGUsphere, https://doi.org/10.5194/egusphere-2024-1254, https://doi.org/10.5194/egusphere-2024-1254, 2024
Short summary
Short summary
Sea spray aerosol whipped up from the sea surface, is an important compound of the atmospheric boundary layer. Our research provides new insights into the study of sea spray emission in the Baltic Sea and North Atlantic. We investigated the impact of environmental factors on sea spray fluxes. We observed that in case of increased marine biological activity in the Baltic Sea, sea spray flux is suppressed. We also observed evidence of sea surface temperature influence on sea spray emission.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-1502, https://doi.org/10.5194/egusphere-2024-1502, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than -35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic and it is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
EGUsphere, https://doi.org/10.5194/egusphere-2024-1272, https://doi.org/10.5194/egusphere-2024-1272, 2024
Short summary
Short summary
Ice nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known concerning the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer, and occasionally reach the free troposphere.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Rebecca Katharina Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Satoru Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
EGUsphere, https://doi.org/10.5194/egusphere-2024-1224, https://doi.org/10.5194/egusphere-2024-1224, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
EGUsphere, https://doi.org/10.5194/egusphere-2024-880, https://doi.org/10.5194/egusphere-2024-880, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) during the FIREX-AQ campaign. This study revealed the compositions, abundance, sizes, and mixing states of TBs and showed that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass burning and ages and enhances the knowledge of TB emissions and our understanding of their climate impact.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-853, https://doi.org/10.5194/egusphere-2024-853, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties, hence it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INP we observe are, at least some of the time, of biological origin.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Widensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
EGUsphere, https://doi.org/10.5194/egusphere-2024-770, https://doi.org/10.5194/egusphere-2024-770, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the southern hemisphere, especially in high-altitude conditions. This study provides insight on the concentration level, variability, and optical properties of BC in the cities of La Paz and El Alto, and at the station GAW Chacaltaya Mountain station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, additionally to biomass and open waste burning.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
EGUsphere, https://doi.org/10.5194/egusphere-2024-584, https://doi.org/10.5194/egusphere-2024-584, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentration, smaller Hoppel minima, lower effective supersaturations, and accumulation mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol-cloud interactions in order to improve their accurate representation in models.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Natalie Georgina Ratcliffe, Claire Louise Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Bernadett Weinzierl, Lisa-Maria Wieland, and Josef Gasteiger
EGUsphere, https://doi.org/10.5194/egusphere-2024-806, https://doi.org/10.5194/egusphere-2024-806, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
EGUsphere, https://doi.org/10.5194/egusphere-2024-733, https://doi.org/10.5194/egusphere-2024-733, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud-aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Sergio Rodríguez and Jessica López-Darias
EGUsphere, https://doi.org/10.5194/egusphere-2023-3083, https://doi.org/10.5194/egusphere-2023-3083, 2024
Short summary
Short summary
Extreme Saharan-dust events have expanded northward to the Atlantic and Europe, prompting the most intense PM10 and PM2.5 events ever recorded in the governmental air quality network of Spain. The events occurred during hemispheric anomalies characterised by subtropical anticyclones shifted to higher latitudes, anomalous low pressures expanding beyond the tropic and a mid-latitude amplified Rossby-waves undulation, resembling the circulation anomalies due to the anthropogenic global warming.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-140, https://doi.org/10.5194/egusphere-2024-140, 2024
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. Especially absorbing aerosols propose difficulties in our understanding. The eastern Mediterranean is a hot spot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during the A-LIFE field experiment to characterize aerosols and aerosol mixtures. We extend current classification and separation schemes and compare different classification schemes.
Krishnakant Budhavant, Mohanan Remani Manoj, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan K. Satheesh, and Orjan Gustafsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-104, https://doi.org/10.5194/egusphere-2024-104, 2024
Short summary
Short summary
The South Asian Pollution Experiment-2018 utilized access to 3 strategically located atmospheric receptor observatories. These observational constraints revealed opposite trends during long-range transport in BC-MAC and BrC-MAC. Models estimating the climate effects of particularly BC aerosols may have underestimated the ambient BC-MAC over distant and extensive receptor areas, which could contribute to the discrepancy between aerosol absorption predicted by models constrained by observations.
Julius Seidler, Markus N. Friedrich, Christoph K. Thomas, and Anke C. Nölscher
Atmos. Chem. Phys., 24, 137–153, https://doi.org/10.5194/acp-24-137-2024, https://doi.org/10.5194/acp-24-137-2024, 2024
Short summary
Short summary
Here, we study the transport of ultrafine particles (UFPs) from an airport to two new adjacent measuring sites for 1 year. The number of UFPs in the air and the diurnal variation are typical urban. Winds from the airport show increased number concentrations. Additionally, considering wind frequencies, we estimate that, from all UFPs measured at the two sites, 10 %–14 % originate from the airport and/or other UFP sources from between the airport and site.
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci
Atmos. Chem. Phys., 23, 15589–15607, https://doi.org/10.5194/acp-23-15589-2023, https://doi.org/10.5194/acp-23-15589-2023, 2023
Short summary
Short summary
Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
Alessandro Bigi, Giorgio Veratti, Elisabeth Andrews, Martine Collaud Coen, Lorenzo Guerrieri, Vera Bernardoni, Dario Massabò, Luca Ferrero, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 23, 14841–14869, https://doi.org/10.5194/acp-23-14841-2023, https://doi.org/10.5194/acp-23-14841-2023, 2023
Short summary
Short summary
Atmospheric particles include compounds that play a key role in the greenhouse effect and air toxicity. Concurrent observations of these compounds by multiple instruments are presented, following deployment within an urban environment in the Po Valley, one of Europe's pollution hotspots. The study compares these data, highlighting the impact of ground emissions, mainly vehicular traffic and biomass burning, on the absorption of sun radiation and, ultimately, on climate change and air quality.
Cited articles
Aamaas, B., Bøggild, C. E., Stordal, F., Berntsen, T., Holmén, K., and Ström, J.: Elemental carbon deposition to Svalbard snow from Norwegian settlements and long-range transport, Tellus, 63B, 340–351, https://doi.org/10.1111/j.1600-0889.2011.00531.x, 2011.
ACIA: Arctic Climate Impact Assessment, Cambridge University Press, Cambridge, 1035 pp., 2005.
Beaudon, E., Moore, J.C., Martma, T., Pohjola, V.A., van der Wal, R.S.W., Kohler, J., and Isaksson, E.: Lomonosovfonna and Holtedahlfonna ice cores reveal east-west disparities of Spitsbergen environment since 1700 AD, J. Glaciol., 59, 1069–1083, https://doi.org/10.3189/2013JoG12J203, 2013.
Birch, M. E., and Cary, R. A.: Elemental carbon-based method for monitoring occupational exposures, to particulate diesel exhaust, Aerosol. Sci. Tech., 25, 221–241, 1996.
Bisiaux, M. M., Edwards, R., McConnell, J. R., Albert, M. R., Anschütz, H., Neumann, T. A., Isaksson, E., and Penner, J. E.: Variability of black carbon deposition to the East Antarctic Plateau, 1800-2000 AD, Atmos. Chem. Phys. 12, 3799–3808, https://doi.org/10.5194/acp-12-3799-2012, 2012a.
Bisiaux, M. M., Edwards, R., McConnell, J. R., Curran, M. A. J., Van Ommen, T. D., Smith, A. M., Neumann, T. A., Pasteris, D. R., Penner, J. E., and Taylor, K.: Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850–2000 AD, Atmos. Chem. Phys., 12, 4107–4115, https://doi.org/10.5194/acp-12-4107-2012, 2012b.
Bond, T. C., and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 39, 1–41, https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Bhardwaj, E., Dong, R., Joghani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black carbon and organic carbon aerosol from energy-related combustion, 1850-2000., Glob. Biogeochem. Cycles, 21, GB2018. https://doi.org/10.1029/2006GB002840, 2007.
Bond, T .C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G, Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. F., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment., J. Geophys. Res.-Atmos., 188, 5380–5552, https://doi.org/ 10.1002/jgrd.50171, 2013.
Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K., and Boucher, O.: The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol, Atmos. Chem. Phys., 12, 6775–6798, https://doi.org/10.5194/acpd-12-3409-2012, 2012.
Cachier, H., Bremond, M. P., and Buat-Ménard, P.: Determination of atmospheric soot carbon with a simple thermal method, Tellus, 41B, 379–390, https://doi.org/10.1111/j.1600-0889.1989.tb00316.x, 1989.
Cavalli, F., Viana, M., Yttri, K.E., Genberg, J., and Putaud, J-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech. 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Clarke, A. D., and Noone, K. J.: Soot in the Arctic snowpack: A cause for perturbations in radiative transfer, Atmos. Environ., 19, 2045–2053, 1985.
Conway, H., Gades, A., and Raymond, C. F.: Albedo of dirty snow during conditions of melt, Water Resour. Res., 32, 1713–1718, 1996.
Cozic, J., Verheggen, B., Mertes, S., Connolly, P., Bower, K., Petzold, A., Baltensperger, U., and Weingartner, E.: Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 7, 1797–1807, https://doi.org/10.5194/acp-7-1797-2007, 2007.
Divine, D., Isaksson, E., Martma, T., Meijer, H. A. J., Moore, J., Pohjola, V., van de Wal, R. S. W., and Godtliebsen, F.: Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice core data, Polar Res., 30, 7379, https://doi.org/10.3402/polar.v30i0.7379, 2011.
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010.
Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt, R. E., and Warren, S. G.: Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res. – Atmos., 118, 1–17, https://doi.org/10.1002/jgrd.50235, 2013.
Eckhardt S., Hermansen, O., Grythe, H., Fiebig, M., Stebel, K., Cassiani, M., Baecklund, A., and Stohl, A.: The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?, Atmos. Chem. Phys., 13, 8401–8409, https://doi.org/10.5194/acp-13-8401-2013, 2013.
Eleftheriadis, K., Vratolis, S., and Nyeki, S.: Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998–2007, Geophys. Res. Lett., 36, L02809, https://doi.org/10.1029/2008GL035741, 2009.
Elvidge, C. D., Ziskin, D., Baugh, K. E., Tuttle, B. T., Ghosh, T., Pack, D. W., Erwin, E. H., and Zhizhin, M.: A fifteen year record of global natural gas flaring derived from satellite data, Energies, 2, 595–622; https://doi.org/10.3390/en20300595, 2009.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Forsström, S., Ström, J., Pedersen, C. A., Isaksson, E., and Gerland, S.: Elemental carbon distribution in Svalbard snow, J. Geophys. Res., 114, D19112, https://doi.org/10.1029/2008JD011480, 2009.
Forsström, S., Isaksson, E., Skeie, R. B., Ström, J., Pedersen, C. A., Hudson, S. R., Berntsen, T. K., Lihavainen, H., Godtliebsen, F., and Gerland, S.: Elemental carbon measurements in European Arctic snow packs, J. Geophys. Res. -Atmos., 118, 13614–13627, https://doi.org/10.1002/2013JD019886, 2013.
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., and Engen-Skaugen, T.: Temperature and Precipitation Development at Svalbard 1900–2100, Advances in Meteorology, 2011, 893790, 14 pages, https://doi.org/10.1155/2011/893790, 2011.
Grinsted, A., Moore, J. C., Pohjola, V., Martma, T., and Isaksson. E.: Svalbard summer melting, continentality and sea ice extent from the Lomonosovfonna ice core, J. Geophys. Res., 111, D07110, https://doi.org/10.1029/2005JD006494, 2006.
Hansen, J., and Nazarenko, L.: Soot climate forcing via snow and ice albedos, Proc. Nat. Acad. Sci. USA, 101, 423–428, https://doi.org/ 10.1073/pnas.2237157100, 2004.
Hegg, D. A., Clarke, A. D., Doherty, S. J., and Ström, J.: Measurements of black carbon aerosol washout ratio on Svalbard, Tellus, 63B, 891–900, https://doi.org/10.1111/j.1600-0889.2011.00577.x, 2009.
Hirdman, D., Burkhart, J. F., Sodemann, H., Eckhardt, S., Jefferson, A., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Long-term trends of black carbon and sulphate aerosol in the Arctic: Changes in atmospheric transport and source region emissions, Atmos. Chem. Phys., 10, 9351–9368, https://doi.org/10.5194/acp-10-9351-2010, 2010a.
Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jefferson, A., Mefford, T., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10, 669–693, https://doi.org/10.5194/acp-10-669-2010, 2010b.
Iizuka, Y., Igarashi, M., Kamiyama, K., Motoyama, H., and Watanabe, O.: Ratios of Mg2+/Na+ in snowpack and an ice core at Austfonna ice cap, Svalbard, as an indicator of seasonal melting, J. Glaciol., 48, 452–460, 2002.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695–697, https://doi.org/10.1038/35055518, 2001.
Jankowski, N., Schmidl, C., Marr, I.L., Bauer, H., and Puxbaum, H.: Comparison of methods for the quantification of carbonate carbon in atmospheric PM10 aerosol samples, Atmos. Environ., 42, 8055–8064, 2008.
Jenk, T. M., Szidat, S., Schwikowski, M., Gäggeler, H. W., Brütsch S., Wacker, L., Synal, H-A., and Saurer, M.: Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650-1940), Atmos. Chem. Phys. 6, 5381–5390, https://doi.org/10.5194/acp-6-5381-2006, 2006.
Kaspari, S. D., Schwikowski, M., Gysel, M., Flanner, M. G., Kang, S., Hou, S., Mayewski, P. A.: Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000 AD, Geophys. Res. Lett., 38, L04703, https://doi.org/10.1029/2010GL046096, 2011.
Keegan, K. M., Albert, M. R., McConnell, J. R., Baker, I.: Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proc. Natl. Acad. Sci. USA, 111, 7964-7967, https://doi.org/10.1073/pnas.1405397111, 2014.
Koch, D., Bauer, S., Del Genio, A., Faluvegi, G., McConnell, J. R., Menon, S., Miller, R. L., Rind, D., Ruedy, R., Schmidt, G. A., Shindel, D.: Coupled aerosol-chemistry-climate twentieth century transient model investigation: Trends in short-lived species and climate responses, J. Climate, 24, 2693–2714, https://doi.org/10.1175/2011JCLI3582.1, 2011.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lavanchy, V. M. H., Gäggler, H. W., Schotterer, U., Schwikowski, M., and Baltensperger, U.: Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland), J. Geophys. Res., 104, 21227–21236, https://doi.org/10.1029/1999JD900408, 1999.
Lefauconnier, B., Hagen, J.-O., and Rudant, J.-P.: Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images, Polar Res., 13, 59–65, 2001.
Legrand, M., Preunkert, S., Schock, M., Cerqueira, M., Kasper-Giebl, A., Afonso, J., Pio, C., Gelencsér, A., and Dombrowski-Etchevers, I.: Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores, J. Geophys. Res., 112, D23S11, https://doi.org/10.1029/2006JD008080, 2007.
Lim, S., Faïn, X., Zanatta, M., Cozic, J., Jaffrezo, J.-L., Ginot, P., and Laj, P.: Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement, Atmos. Meas. Tech. Discuss., 7, 3549–3589, https://doi.org/10.5194/amtd-7-3549-2014, 2014.
McConnell, J. R.: New Directions: Historical black carbon and other ice core aerosol records in the Arctic for GCM evaluation, Atmos. Environ., 44, 2665–2666, 2010.
McConnell, J. R. and Edwards, R.: Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl. Acad. Sci. USA, 105, 12140–12144, https://doi.org/10.1073/pnas.0803564105, 2008.
McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th century industrial black carbon emissions altered arctic climate forcing, Science, 317, 1381–1384, https://doi.org/10.1126/science.1144856, 2007.
Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., and Xu, J.: Black carbon record based on a shallow Himalayan ice core and its climatic implications, Atmos. Chem. Phys., 8, 1343–1352, https://doi.org/10.5194/acp-8-1343-2008, 2008.
Ming, J., Xiao, C., Cachier, H., Qin, D., Qin, X., Li, Z., Pu, J.: Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos, Atmos. Res., 92, 114–123, 2009.
Moore, J. C., Grinsted, A., Kekonen, T., and Pohjola, V.: Separation of melting and environmental signals in an ice core with seasonal melt, Geophys. Res. Lett., 32, L10501, https://doi.org/10.1029/2005GL023039, 2005.
Moore, J.C., Beaudon, E., Kang, S., Divine, D., Isaksson, E., Pohjola, V. A., and van der Wal, R. S. W.: Statistical extraction of volcanic sulphate from nonpolar ice cores. J. Geophys. Res., 117, D03306, https://doi.org/10.1029/2011JD016592, 2012.
Novakov, T., Ramanathan, V., Hansen, J. E., Kirchstetter, T. W., Sato, M., Sinton, J. E., and Sathaye, J. A.: Large historical changes of fossil-fuel black carbon aerosols, Geophys. Res. Lett., 30, 1324, https://doi.org/10.1029/2002GL016345, 2003.
Nuth, C., Moholdt, G., Kohler, J., Hagen, J., and Kääb, A.: Svalbard glacier elevation changes and contribution to sea level rise, J. Geophys. Res., 115, F01008, https://doi.org/10.1029/2008JF001223, 2010.
Nye, J. F.: Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet, J. Glaciol., 4, 785–788, 1963.
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013.
Pfeffer, W. T., and Humphrey, N. F.: Determination of timing and location of water movement and ice-layer formation by temperature measurements in sub-freezing snow, J. Glaciol., 42, 292–204, 1996.
Pio, C., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Sanchez-Ochoa,A., Kasper-Giebl, A., Gelencsér, A., Preunkert, S., and Schock, S.: Climatology of aerosol composition (organic versus inorganic) at non-urban areas on a west-east transect across Europe, J. Geophys. Res., 112, D23S02, https://doi.org/10.1029/2006JD008038, 2007.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Raynor, G. S. and Hayes, J. V.: Differential rain and snow scavenging efficiency implied by ionic concentration differences in winter precipitation, in: Precipitation Scavenging, Dry Deposition, and Resuspension, edited by: Pruppacher, H. R., Semonin, R. G., and Slinn W. G. N., Elsevier, New York, 249–264, 1983.
Rotschky, G., Schuler Vikhamar , T., Haarpainter, J., Kohler, J., and Isaksson, E.: Spatio-temporal variability of snow melt on Svalbard during the period 2000–2008 derived from Quickscat/Seawinds scatterometry, Polar Res., 30, 5963, https://doi.org/10.3402/polar.v30i0.5963, 2011.
Ruggirello, R. M., Hermanson, M. H., Isaksson, E., Teixeira, C., Forsström, S., Muir, D. C. G., Pohjola, V., van de Wal, R., and Meijer, H. A. J.: Current-use and legacy pesticide deposition to ice caps on Svalbard, Norway, J. Geophys. Res., 115, D18308, https://doi.org/10.1029/2010JD014005, 2010.
Ruppel, M., Lund, M. T., Grythe, H., Rose, N. L., Weckström, J., and Korhola, A.: Comparison of spheroidal carbonaceous particle (SCP) data with modelled atmospheric black carbon concentration and deposition, and air mass sources in northern Europe, 1850–2010, Adv. Meteorol., 2013, 393926, 15 pages, https://doi.org/10.1155/2013/393926, 2013.
Sand, M., Berntsen, T. K., Seland, Ø., Kristjánsson, J. E.: Arctic surface temperature change to emissions of black carbon within Arctic or midlatitudes, J. Geophys. Res.-Atmos., 118, 1–11, https://doi.org/10.1002/jgrd.50613, 2013.
Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., Baumgardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Kärcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res. -Atmos., 111, 1–15, https://doi.org/10.1029/2006jd007076, 2006.
Schwarz, J. P., Doherty, S. J., Li, F., Ruggiero, S. T., Tanner, C. E., Perring, A. E., Gao, R. S., and Fahey, D. W.: Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow, Atmos. Meas. Tech., 5, 2581–2592, https://doi.org/10.5194/amt-5-2581-2012, 2012.
Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., and Fahey, D. W.: Black carbon aerosol size in snow, Sci. Rep., 3, 1356, https://doi.org/10.1038/srep01356, 2013.
Sharma, S., Ishizawa, M., Chan, D., Lavoué, D., Andrews, E., Eleftheriadis, K., and Maksyutov, S.: 16-year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition, J. Geophys. Res. Atmos., 118, 943–964, https://doi.org/10.1029/2012JD017774, 2013.
Smith, S. J. and Bond, T. C.: Two hundred fifty years of aerosols and climate: the end of the age of aerosols, Atmos. Chem. Phys., 14, 537–549, https://doi.org/10.5194/acp-14-537-2014, 2014.
Sjögren, B., Brandt, O., Nuth, C., Isaksson, E., Pohjola, V., Kohler, J., van de Wal, R. S. W.: Determination of firn density in ice cores using image analysis, J. Glaciol., 53, 413–419, 2007.
Sterle, K. M., McConnell, J. R., Dozier, J., Edwards, R., and Flanner, M. G.: Retention and radiative forcing of black carbon in eastern Sierra Nevada snow, Cryosphere, 7, 365–374, https://doi.org/10.5194/tc-7-365-2013, 2013.
Stohl, A.: Characteristics of atmospheric transport into the arctic troposphere, J. Geophys. Res., 111, D11306, https://doi.org/10.1029/2005JD006888, 2006.
Stohl, A., Berg, T., Burkhart, J. F., Fj?raa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., and Yttri, K. E.: Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7, 511–534, https://doi.org/10.5194/acp-7-511-2007, 2007.
Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., and Novigatsky, A. N.: Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions, Atmos. Chem. Phys., 13, 8833–8855, https://doi.org/10.5194/acp-13-8833-2013, 2013.
Svensson, J. Ström, J., Hansson, M., Lihavainen, H., and Kerminen, V.-M.: Observed metre scale horizontal variability of elemental carbon in surface snow, Environ. Res. Lett., 8, 034012, https://doi.org/10.1088/1748-9326/8/3/034012, 2013.
Szidat, S., Jenk, T. M., Gäggeler, H. W., Synal, H.-A., Hajdas, I., Bonani, G., and Saurer, M.: THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment, Nucl. Instr. Meth. Phys. Res. B, 223–224, 829–836, 2004.
Takahashi, T., Endoh, T., Muramoto, K., Nakagawa, C., and Noguchi, I.: Influence of the growth mechanism of snow particles on their chemical composition, Atmos. Environ., 30, 1683–1692, 1996.
Thevenon, F., Anselmetti, F. S., Bernasconi, S. M., and Schwikowski, M.: Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium, J. Geophys. Res., 114, 102, https://doi.org/10.1029/2008JD011490, 2009.
Torres, A., Bond, T. C., Lehmann, C. M. B., Subramanian, R., and Hadley, O. L.: Measuring Organic Carbon and Black Carbon in Rainwater: Evaluation of Methods, Aerosol Sci. Technol., 48, 239–250, https://doi.org/10.1080/02786826.2013.868596, 2014.
Tunved, P., Ström, J., and Krejci, R.: Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard, Atmos. Chem. Phys., 13, 3643–3660, https://doi.org/10.5194/acp-13-3643-2013, 2013.
van der Wel, L. G., Streurman, H. J., Isaksson, E., Helsen, M. M., Van De Wal, R. S. W., Martma, T., Pohjola, V. A., Moore, J. C., and Meijer, H. A. J.: Using high resolution tritium profiles to quantify the effects of melt on two Spitsbergen ice cores, J. Glaciol., 57, 1087–1096, 2011.
Wang, M., Xu, B., Zhao, H., Cao, J., Joswiak, D., Wu, G., Lin, S.: The influence of dust on quantitative measurements of black carbon in ice and snow when using a thermal optical method, Aerosol Sci. Tech., 46, 60–69, https://doi.org/10.1080/02786826.2011.605815, 2012.
Warren, S. G., and Wiscombe, W. J.: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols, J. Atmos. Sci., 37, 2734–2745, 1980.
Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D.R., Wang, N., Wu, G., Wang, M., Zhao, H., Yang, W., Liu, X., and He, J.: Black soot and the survival of Tibetan glaciers. Proc. Nat. Acad. Sci. USA, 106, 22114–22118, https://doi.org/10.1073/pnas.0910444106, 2009.
Xu, B., Cao, J., Joswiak, D. R., Liu, X., Zhao, H., and He, J.: Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers, Environ. Res. Lett., 7, 014022, https://doi.org/10.1088/1748-9326/7/1/014022, 2012.
Altmetrics
Final-revised paper
Preprint