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Abstract. Black carbon (BC) is a light-absorbing particle
that warms the atmosphere–Earth system. The climate effects
of BC are amplified in the Arctic, where its deposition on
light surfaces decreases the albedo and causes earlier melt of
snow and ice. Despite its suggested significant role in Arctic
climate warming, there is little information on BC concen-
trations and deposition in the past. Here we present results
on BC (here operationally defined as elemental carbon (EC))
concentrations and deposition on a Svalbard glacier between
1700 and 2004. The inner part of a 125 m deep ice core from
Holtedahlfonna glacier (79◦8′ N, 13◦16′ E, 1150 m a.s.l.) was
melted, filtered through a quartz fibre filter and analysed for
EC using a thermal–optical method. The EC values started
to increase after 1850 and peaked around 1910, similar to
ice core records from Greenland. Strikingly, the EC values
again increase rapidly between 1970 and 2004 after a tempo-
rary low point around 1970, reaching unprecedented values
in the 1990s. This rise is not seen in Greenland ice cores,
and it seems to contradict atmospheric BC measurements
indicating generally decreasing atmospheric BC concentra-
tions since 1989 in the Arctic. For example, changes in scav-
enging efficiencies, post-depositional processes and differ-
ences in the vertical distribution of BC in the atmosphere
are discussed for the differences between the Svalbard and
Greenland ice core records, as well as the ice core and at-
mospheric measurements in Svalbard. In addition, the diver-
gent BC trends between Greenland and Svalbard ice cores
may be caused by differences in the analytical methods used,

including the operational definitions of quantified particles,
and detection efficiencies of different-sized BC particles. Re-
gardless of the cause of the increasing EC values between
1970 and 2004, the results have significant implications for
the past radiative energy balance at the coring site.

1 Introduction

During the last century the Arctic has warmed twice as fast
as the rest of the world, which is likely partly explained
by changes in albedo and related feedbacks in the Arctic, a
region covered with high reflectivity snow and ice (ACIA,
2005). Black carbon (BC) particles are produced by incom-
plete combustion of biomass as well as fossil and biofuels.
Due to its colour BC absorbs light and it is recognized as
a strong warming agent in the atmosphere (e.g. Bond and
Bergstrom, 2006; Ramanathan and Carmichael, 2008). The
climate effects of BC are intensified in snow and ice, where
it lowers their reflectivity, leading to earlier spring melt (e.g.
Warren and Wiscombe, 1980; Hansen and Nazarenko, 2004;
Flanner et al., 2007; Bond et al., 2013). BC has been es-
timated to be the second most important climate warming
agent globally after carbon dioxide, and in the Arctic it
is even more important than greenhouse gases (Jacobson,
2001; Hansen and Nazarenko, 2004; Bond et al., 2013). Fur-
thermore, the BC-albedo effect has been suggested to have
caused 20 % of the warming and snow- and ice-cover loss in
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the Arctic during the last century (Koch et al., 2011). How-
ever, the effects of BC remain one of the largest sources of
uncertainty in climate change analysis and models (e.g. Bond
et al., 2013).

Due to its importance in climate perturbation, BC dis-
tribution and concentrations have been increasingly studied
around the world. The first continuous measurements on at-
mospheric BC concentrations in the Arctic started in the late
1980s (e.g. Hirdman et al., 2010a). The number and spatial
coverage of BC measurements from Arctic snow are increas-
ing (e.g. Clarke and Noone, 1985; Forsström et al., 2009; Do-
herty et al., 2010; Aamaas et al., 2011; Doherty et al., 2013;
Forsström et al., 2013), but comparing the individual results
and establishing regional trends remain challenging because
most snow measurements only represent a snapshot of BC
concentrations in time and space. Despite the significance of
BC in Arctic climate warming and geophysical processes,
knowledge on its long-term concentrations and climate ef-
fects in the area beyond the observational data is very limited
at present.

McConnell et al. (2007) and McConnell and Edwards
(2008) were the first to report Arctic BC concentration and
deposition trends, based on three ice cores from the Green-
land Ice Sheet. McConnell et al. (2007) found a 7-fold in-
crease in BC concentrations from 1850, peaking around
1910, followed by a decline to almost pre-industrial levels
after 1950. This study was highly influential in introducing
a new high-resolution method to measure BC concentrations
with a single-particle soot photometer (SP2) in ice cores and
was soon followed by other long-term studies on BC trends
from Himalayan glaciers (e.g. Kaspari et al., 2011) and the
Antarctic Ice Sheet (Bisiaux et al., 2012a, b), while Euro-
pean Alps glaciers had already been studied with other meth-
ods (e.g. Lavanchy et al., 1999; Jenk et al., 2006; Legrand
et al., 2007; Thevenon et al., 2009). However, McConnell
et al. (2007) recognized that the BC deposition at the high-
elevation sites in Greenland could not be taken as represen-
tative of overall BC trends in lower-elevation regions of the
Arctic. The heterogeneity of the global distribution of BC is
seen, for instance, in the different concentrations and trends
between Himalayan, Arctic and European records, and even
between individual records from these areas (e.g. Ming et al.
2008; Xu et al., 2009; Kaspari et al., 2011). To get a better
overall view on its trends and effects, further investigations
on BC concentrations and deposition are required from other
locations in the Arctic.

Here we present results on BC (here operationally de-
fined as elemental carbon (EC) due to the thermal–optical
measurement technique used) concentrations and deposition
from a Svalbard glacier, Holtedahlfonna, from 1700 to 2004.
When discussing black carbon in general, we use the abbrevi-
ation BC, as is commonly used in the community. When dis-
cussing our specific measurements, or measurements made
by others with similar thermal–optical methods, we use the
abbreviation EC. For a recent review of BC terminology we

Figure 1. Map indicating the location of the Holtedahlfonna glacier
on Svalbard and the geographical location of Svalbard. The circled
area in the inset approximately indicates an area with substantial
flaring activity in northern Russia.

refer the reader to Petzold et al. (2013). We find an unex-
pected increase in EC values between 1970 and 2004. Fac-
tors such as atmospheric BC concentrations, changes in BC
scavenging efficiencies and post-depositional processes are
discussed in order to explain the observed trend. In addition
to BC records from Svalbard being of particular interest in
light of the limited data available from the Arctic, Svalbard
glaciers are valuable as they are expected to have different
BC sources than Greenland (Hirdman et al., 2010b). Glaciers
around the world are susceptible to melt and retreat caused
by climate warming and possibly also BC deposition. As
glaciers play an important part in climate feedbacks and the
hydrological cycle, and as high-elevation glaciers at lower
latitudes supply water to major human populations, it is cru-
cial to learn more about the BC–glacier interactions.

2 Material and methods

2.1 Ice core recovery and sampling

Svalbard is located in the Arctic Ocean (Fig. 1) at the south-
ern edge of the permanent sea ice. Despite its location at high
latitudes, the archipelago has a relatively mild climate due to
an intrusion of the North Atlantic Current bordering western
Svalbard and its location on the pathway of both Arctic and
North Atlantic cyclones. About 60 % of Svalbard is covered
by glaciers, of which the majority have had a negative to-
tal volume change during the last 15–40 years (Nuth et al.,
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2010). Even the highest elevation glaciers on Svalbard, such
as Lomonosovfonna (Fig. 1), can experience frequent surface
melt in the summer (e.g. Beaudon et al., 2013).

Holtedahlfonna is the largest ice field on the western is-
land of Spitsbergen in Svalbard, covering ca. 300 km2 and
situated 40 km northeast of the Ny-Ålesund research station
(Fig. 1). The Holtedahlfonna ice core was drilled in April
2005 at 79◦8′15′′ N, 13◦16′20′ ′ E, 1150 m elevation, at a sad-
dle point where the lateral ice flow velocity is expected to
be minimal (Lefauconnier et al., 2001; Sjögren et al., 2007).
The retrieved 125 m deep ice core did not reach the bedrock
and thus the precise ice depth at the coring site is unknown,
but radar measurements suggest it to be approximately 150 m
(Sjögren et al., 2007; Beaudon et al., 2013). The ice core was
retrieved in ca. 50–60 cm sections and immediately packed
into plastic bags, subsequently stored frozen and then trans-
ported to the cold-room facilities at the Norwegian Polar In-
stitute (NPI), Tromsø, Norway.

The ice core was cut and processed in a cold room
(−22◦C) using a cleaned thin-blade band saw. Each verti-
cal ice core section was split into subsamples assigned to
tritium (van der Wel et al. 2011), oxygen isotope (Divine
et al., 2011), organic contaminant (Ruggirello et al., 2010),
major ion (Beaudon et al., 2013) and EC measurements. EC
measurements were performed on subsamples cut from the
inner part of the core, i.e. the part best protected from con-
tamination during drilling and handling of the ice. The sam-
ples were continuous except that a section representing the
time period 1740–1755 was not available for EC analysis.
After preliminary cutting, each surface of the subsamples
was scraped with a clean stainless steel knife under a lam-
inar bench, after which the samples were placed in plastic
bags and stored frozen. After subsampling there were 739 ice
pieces of 5–20 cm vertical length and an average horizontal
cross section of 2.8 cm by 3.5 cm, equal to around 10 cm2

(± 2 cm2) surface area, available for EC analysis.
Dating of the ice core was performed using an age–depth

scale based on the ice-thinning model by Nye (1963) con-
strained by the depth of the 1963 radioactivity fallout layer
at 28.5 m depth (van der Wel et al., 2011), as well as count-
ing of annualδ18O layers (Divine et al., 2011). In addition,
a dating method based on statistical extraction of histori-
cally known volcanic eruptions (Moore et al., 2012) com-
plemented the other dating methods. Volcanic signatures of
five known eruptions, including the Laki eruption (1783) at
103.6 m depth, could be used as reference horizons in a re-
fined Nye thinning model, and suggest that the core cov-
ers a period of 305 years with a mean accumulation rate of
0.38 m w.e. yr−1 (Moore et al., 2012).

2.1.1 Filtering and EC analysis

The 739 ice samples were grouped for filtering so that ice
samples representing the 18th century were filtered in ca.
10-year resolution, of the period 1800–1850 with a 5-year

resolution, and samples from the industrial era with a reso-
lution of approximately 2 years. The ice was melted and im-
mediately filtered through pre-burned (at 800◦C for 4 hours)
quartz fibre filters (Munktel) following the procedures de-
scribed, for instance, in Forsström et al. (2009) and Svensson
et al. (2013). This resulted in 88 EC filter samples. In order
to check for possible contamination in the filtering system,
blanks (nine) were prepared by placing a filter in the filtering
system for a minute or by filtering distilled water through a
filter (three).

The filters were analysed for EC using a thermal–optical
method (TO, Sunset Laboratory Inc., Forest Grove, USA;
Birch and Cary, 1996) at Stockholm University. The ana-
lysis was performed with the latest recommended thermal
sequence EUSAAR_2 (Cavalli et al., 2010) in order to sep-
arate EC and other (carbonate and organic) carbon from the
filters. Carbonates were not eliminated from the filters with
acid treatment before the analysis, since this has been shown
to cause some errors in the analysis, e.g. induction of in-
tense charring phenomena (Jankowski et al., 2008), and a
decrease in BC particle size (Kaspari et al., 2011; Schwarz
et al., 2013). Moreover, natural calcite evolves in the he-
lium mode with the EUSAAR_2 protocol, and will be de-
tected as organic carbon (Cavalli et al., 2010). Therefore we
concluded that natural carbonates would not interfere with
the EC measurements. All blanks showed EC concentrations
from below detection limit to a magnitude lower than the de-
tection limit of the analysis method (0.2 EC µg cm−2).

2.2 Uncertainties

In the filter-based method used in this study, a 1.5 cm2 fil-
ter punch was analysed from the middle part of each filter
(total area 11.34 cm2). Additional punches from the same
filters showed non-significant variation in EC loadings be-
tween different parts of the filters (n = 8; average relative
standard deviation= 3 %; range of relative standard devia-
tion= 1.1–4.9 %). However, some of the filters had a visi-
ble gradient of deposited matter, with one edge being lighter
than the other, possibly due to problems keeping the filter-
ing system completely in level. In the cases where the EC
was not uniformly deposited, based on ocular inspection and
the deviation from the three punches, the EC concentration
in the middle of the filter was close to the average of the
whole filter, whereas the light side contained lower, and the
darker side higher, EC concentrations (n = 16, average rela-
tive standard deviation= 19.6 %; range of relative standard
deviation= 9.1–38.3 %). These deviation values are in ac-
cordance to previously reported average standard deviations
of 21 % in Svensson et al. (2013). As expected, the relative
standard deviations were highest for filters with low EC load-
ings. The analysed filter punch was taken from the middle of
the filter in all cases. For the samples from which several fil-
ter punches were analysed, the reported concentrations are
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Figure 2. EC concentrations in the Holtedahlfonna ice core during
the last 300 years. The black curve represents the concentrations at
sample resolution and the blue line the running 10-year averages of
samples made with approximately 2-year resolution. The red dots
and error bars indicate average EC concentration and the absolute
errors of samples from which multiple analyses were performed.

averages of the filter punches and the error bars are shown in
Fig. 2.

A known error source of the filter approach relates to the
efficiency of the used filter to capture EC particles in liq-
uid samples. Previous studies have shown that significant
amounts of EC particles in liquid samples may percolate
through the filter, resulting in undercatch (e.g. Forsström et
al., 2013; Doherty et al., 2013; Torres et al., 2014). These
penetrating particles are most likely small in size, as they
are not even captured by additional filters in series, as seen
in our measurements and reported by Torres et al. (2014).
This will result in the presented EC concentrations likely be-
ing an underestimate of real EC concentrations. Forsström
et al. (2013) reported this undercatch to be 22 % on average
by using the same filters as in this study and by analysing a
second filter (Nuclepore 0.4 µm) in line with the ISSW (inte-
grating sphere/integrating sandwich method) method used by
Doherty et al. (2010, 2013) at the University of Washington.
However, the amount of undercatch samples in Forsström
et al. (2013) was not enough (n = 6) to confidently de-
velop a quantitative correction of undercatch with the used
method. But as the undercatch values reported in Forsström
et al. (2013) are from snow samples partly collected from
Svalbard, we feel that they could provide an estimate for the
related error in our data. Possible additional losses of EC par-
ticles through the filter were avoided by refraining from the
nitric acid treatment to eliminate carbonates from the filters.
If the two separate error sources of the method used (first,
the general standard deviation due to heterogeneous loading
of EC on the filters, 20 %, and second, the undercatch, 22 %)
are added together in quadrature, as in Schwarz et al. (2012),
we end up with an estimate of maximum 35–40 % total un-
certainty related to our measurements.

However, Schwarz et al. (2013) suggested that atmo-
spheric processes during the formation of snow and repeated
thaw–freeze cycles in deposited snow may lead to agglomer-
ation of BC particles and a subsequent shift to larger par-
ticles in snow samples compared to atmospheric samples.

The Holtedahlfonna ice core samples have most likely expe-
rienced several thaw–freeze cycles as the glacier experiences
annual summer melt (Beaudon et al., 2013). Therefore, the
EC particles in the ice core samples may tend to be larger
and be filtered with higher efficiency than estimated based
on the results of Forsström et al. (2013). A possibility to in-
crease the filtering efficiency of quartz fibre filters in future
studies is the addition of salts and acids to the melted snow
and ice, as it causes coagulation of EC (Torres et al., 2014).
Unfortunately, we were unaware of this possibility during the
filtering in our study.

3 Results and discussion

3.1 Holtedahlfonna EC concentrations and comparison
to other European data

EC concentrations in the Holtedahlfonna ice core have varied
significantly between 1700 and 2004 (Fig. 2). Between 1700
and 1850, the concentrations are generally low, on average
23 µg L−1 (Table 1), showing no specific trend. In samples
corresponding to the period between about 1850 and 2004,
the concentrations are generally higher than for the oldest
part of the ice core, on average 39 µg L−1. Two local minima
in the 1920s and 1970 are shown clearly in the EC record.
Peaks in EC concentrations occur at about 1910, 1940 and
1998 at 80, 58 and 103 µg L−1, respectively.

A clear feature of the Holtedahlfonna EC record is the
steady increase in EC concentrations starting around 1970
after a temporary minimum in the record, reaching unprece-
dented values in the 1990s. This increasing trend since 1970
is unexpected as it contradicts previous data from the Arc-
tic. Atmospheric BC measurements from the Arctic only go
back to 1989, but the stations at Alert (Ellesmere Island,
Canada), Barrow (Alaska, USA) and Zeppelin (Ny-Ålesund,
Svalbard, Norway) record an overall 40 % decline in atmo-
spheric BC concentrations between 1990 and 2009 (Sharma
et al., 2013). The atmospheric trend is explained by a gen-
eral decrease in BC emissions in northern latitudes since the
1990s, in particular associated with the collapse of the Soviet
Union (Hirdman et al., 2010a; Sharma et al., 2013). The BC
ice core records from Greenland show decreasing BC values
to almost pre-industrial levels during the 20th century after a
clear peak around 1910 (McConnell et al., 2007, Fig. 3d; Mc-
Connell and Edwards, 2008; McConnell, 2010). Therefore,
either stable, and for this record comparably low, or moder-
ately declining EC concentrations could also have been ex-
pected in the Holtedahlfonna ice core during the last decades
of the record.

The magnitude of the Holtedahlfonna EC concentrations
seems to be in accordance with EC values measured with
other filter-based thermal, thermal–optical or other similar
methods in ice cores from the European Alps, presented in
Table 1. It may seem surprising that EC concentrations on
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Table 1. EC or BC concentrations measured with filter-based thermal, thermal–optical or similar methods from the European Alps and
Holtedahlfonna, Svalbard.

EC or BC concentrations
Reference Glacier and Ice core (mean [± SD] or range, in µg L−1 Range in Method used Method

location time range in given time period) record reference
Pre-industrial Industrial Post 1940 (in µg L−1)

Lavanchy Colle Gnifetti, 1755–1975 N/A 42± 22 72± 35 5–130 Thermal (2-step), Cachier et al. (1989)
et al. (1999) Switzerland (1890–1950) (1950–1975) including acid treatment

Jenk et al. Fiescherhorn, 1650–1940 15 27 N/A 8–60 Thermal (2-step) Szidat et al. (2004)
(2006) Switzerland (1650–1870) (1870–1940)

Legrand Col du Dôme, 1890–1990 N/A 1–5 7–16 1–16 Thermal–optical, Pio et al. (2007)
et al. (2007) France (1890–1930) (1940–1990) including acid treatment

Thevenon Colle Gnifetti, 1000–1980 7 13 20 2–30 Elemental analysis after Thevenon et al.
et al. (2009) Switzerland (1750–1850) (1850–1950) (1950–1980) chemothermal oxidation (2009)

of carbonates and organic
carbon

This paper Holtedahlfonna, 1700–2004 23± 9 36± 15 45± 19 9–103 Thermal–optical, Sunset Cavalli et al. (2010)
Svalbard (1700–1850) (1850–1950) (1950–2004) Laboratory, EUSAAR_2

protocol

Svalbard, which is more remote from emission sources, are
comparable or even higher than on the glaciers in the Euro-
pean Alps. However, this is likely partly explained by dif-
ferences in the specific methodologies used in the studies.
For instance, the EUSAAR_2 temperature protocol used in
this study typically gives an EC content a factor of 2 higher
than the previously commonly used NIOSH protocol, due to
improved separation between the different types of carbon
(Cavalli et al., 2010).

A clear similarity between the present study and studies
from the European Alps, at Col du Dôme, France (Legrand
et al., 2007); Colle Gnifetti, Switzerland (Lavanchy et al.,
1999; Thevenon et al., 2009); and Fiescherhorn, Switzerland
(Jenk et al., 2006), is that the EC (or BC) trends indicate an
increase in concentrations from the end of the 19th century
to the present (Table 1), while the timing of peak values in
the 20th century varies between the studies. Unfortunately,
the record of Jenk et al. (2006) (Fiescherhorn) only extends
to the 1940s, making it impossible to compare to our results
regarding the most recent trends. The Legrand et al. (2007)
(Col du Dôme) results reach 1990 and show a decrease from
the 1960s until 1990. On the other hand, the Thevenon et
al. (2009) (Colle Gnifetti) results reach 1980 and show in-
creasing BC concentrations towards the end of the record.
Interestingly, Lavancy et al. (1999) present results from the
same glacier (Colle Gnifetti) and the same elevation until
1975, but as opposed to Thevenon et al. (2007) they indi-
cate a decrease at the end of the record. Generally, these two
studies show somewhat varying trends and non-synchronized
peaks in the records.

BC and EC studies on Himalayan ice cores, as in Europe,
have repeatedly shown different and contradicting trends
when measured with different analytical methods, even from
the same glaciers (e.g. Ming et al., 2008; Xu et al., 2009;
Kaspari et al., 2011). The SP2 method was originally de-

signed to quantify BC mass concentrations and size distri-
bution of atmospheric samples (e.g. Schwarz et al., 2006).
Thus, when applying the SP2 method to liquid samples, such
as melted snow or ice, the liquid and particulates need to be
nebulized into a dry aerosol phase. This added step of nebu-
lization has shown to cause additional uncertainties in the BC
concentration measurements, as larger sized BC particles are
not aerosolized as effectively as small ones (e.g. Schwarz et
al., 2012; Schwarz et al., 2013). Consequently, typically only
particles of smaller than∼ 500 nm core diameter have been
quantified with the method from ice core samples (e.g. Kas-
pari et al., 2011; Bisiaux et al., 2012a, b). However, Schwarz
et al. (2012, 2013) showed the presence of significantly larger
BC particles in snow than are typically observed in the at-
mosphere. Therefore, Schwarz et al. (2012) recommend ex-
tending the size range of particles quantified with the SP2
method to at least 1.5 µm. At the same time the filter-based
methods may underestimate the occurrence of BC particles
due to lowered filtering efficiency at smaller particle sizes
(e.g. Lim et al., 2014; Torres et al., 2014). Due to these dif-
ferences in the methods, they will most likely measure differ-
ent concentrations, but could also measure different temporal
trends if the size distribution of BC has varied through time,
for instance due to changes in BC source types. Therefore,
the European and Himalayan ice core results suggest that
variations in observed EC and BC ice core trends can be ex-
pected also in the Arctic, especially when using different an-
alytical methods. At dusty sites, such as the Himalayas, dust
may interfere with the thermal–optical method (e.g. Wang et
al., 2012) resulting in additional problems with comparing
records, but dust should not be a problem when comparing
records from the Arctic.
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Figure 3. EC concentration and deposition compared to the snow
accumulation rate in the Holtedahlfonna ice core, and BC con-
centrations in the Greenland D4 ice core (McConnell et al.,
2007). (a) EC concentration (µg L−1) and (b) EC deposition
(mg m−2 yr−1) with 10-year running averages (red).(c)Snow accu-
mulation rate (m w.e. yr−1) of Holtedahlfonna. Note that the snow
accumulation rate incorporates all processes increasing (precipita-
tion) and decreasing (ablation and runoff) it.(d) Annual BC con-
centration (ng g−1) data (black) from the Greenland D4 ice core
(McConnell et al., 2007) with 10-year running averages (red).

3.2 EC concentration vs. EC deposition

EC concentrations in snow are determined by numerous fac-
tors, such as BC concentration in the air; dry and wet deposi-
tion velocities; precipitation amounts; and post-depositional
processes of wind drift, sublimation and melt (Doherty et al.,
2010, 2013). Ice core EC concentration trends may be par-
ticularly sensitive to changes in the snow and ice accumu-
lation at the specific site through time. In addition, seasonal
melt can lead to enhanced EC concentration at the surface
of a glacier due to melt amplification (Doherty et al., 2013).
These factors may lead to apparent fluctuations in recorded
EC concentrations, although EC deposition may have been
constant over time.

Consequently, to further illuminate the processes leading
to the recorded EC concentrations in Holtedahlfonna, we
calculated EC deposition (Fig. 3b). Generally, flux and de-
position calculations will give the same results in the same
unit (EC µg m−2 yr−1) even though they are calculated dif-
ferently. Here EC deposition was calculated by dividing the
total amount of EC in a (filter) sample by the cross section
of the ice sample and the amount of years covered in one
filtered ice sample. Flux, on the other hand, would be calcu-
lated by multiplying the measured EC concentration by the
snow accumulation rate from the glacier. The yearly snow ac-
cumulation rate is the sum of all snow accumulating (precip-
itation) and reducing (ablation, runoff) processes. We chose
to calculate deposition, rather than flux, to avoid incorporat-
ing snow accumulation rates which are another source of un-
certainty. The available snow accumulation rate data from
Holtedahlfonna (Fig. 3c) are detrended average accumula-
tion rates between volcanic reference horizons (Beaudon et
al., 2013) and are therefore insufficient in detail for meaning-
ful flux calculations. Deposition calculations eliminate post-
depositional glaciological factors, such as snow accumula-
tion rate and redistribution of EC in the snowpack, affect-
ing the EC concentrations in the ice. The summer surface
melt and subsequent redistribution of EC in snowpacks will
not affect deposition values as long as the redistribution is
limited to the annual snowpack and no significant amounts
of melt water are lost from the glacier during melt. From
glaciers with summer melt, Doherty et al. (2013), Ming et
al. (2009) and Xu et al. (2012) have shown that BC is en-
riched at the top of the melt layer, and only about 10–20 %
of the total BC is elusive and can percolate into deeper layers
in the snowpack (Doherty et al., 2013). Percolation of BC is
prevented by ice layers formed in the snowpack by refreez-
ing of the previous year’s melt layer (Doherty et al., 2013).
Xu et al. (2012) showed that, on Tibetan glaciers experienc-
ing extensive summer melt, BC can also be significantly en-
riched above the previous year’s melt layer. As summer melt
is occurring at Holtedahlfonna, ice layers are likely formed
annually in the snowpack and firn (Beaudon et al., 2013),
which suggests that the deposition values that we find in the
ice core should not significantly be affected by EC redistribu-
tion. Despite summer melt, no significant melt water runoff
that would affect EC concentration and deposition values is
expected to occur at the ice coring site, as discussed in more
detail in Sect. 3.5.

The EC deposition trend is shown in Fig. 3b. Similar to
the EC concentration trend it indicates lower deposition be-
fore the industrial era and high deposition at the beginning of
the 20th century. The most evident difference is that the wide
pronounced peak in the EC concentrations between 1920 and
1970 is not clear in the deposition. If atmospheric and post-
depositional processes stay constant, concentrations and de-
position present similar trends in ice cores. If concentration
and deposition trends differ from each other, the most likely
explanation is in general a change in snow accumulation rate.
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Temporal changes in snow accumulation may, under stable
atmospheric processes, dilute or concentrate EC amounts in
snow or ice, whereas the deposition is not affected. Here, the
snow accumulation rate must be compared to accumulation
rates before and after the discrepancies between the concen-
tration and deposition trend, and not necessarily the whole
snow accumulation record. Consequently, it seems that the
peak and variation in EC concentrations occurring between
1920 and 1970 may be partly caused by changes in snow ac-
cumulation during this time period, rather than more EC be-
ing deposited on the glacier. Comparison of the EC concen-
trations with the measured snow accumulation of the ice core
(Fig. 3c) indicates that snow accumulation at the ice core site
was lowered during ca. 1930–1960 compared to the adjacent
time periods (1910–1930 and 1960–2000), which may have
concentrated EC in the ice core, while EC deposition seems
not to have increased in that period.

The EC deposition trend in Holtedahlfonna shows simi-
larities to the BC trend recorded in the Greenland ice cores,
indicating a peak in both BC concentrations and deposition in
the early 1900s and a decrease afterwards (McConnell et al.,
2007, (Fig. 3d); McConnell and Edwards, 2008; McConnell,
2010). This BC peak is simultaneous in the Greenland and
Svalbard ice cores, although more pronounced in Greenland.

The rapid increase in the post-1970 EC concentrations in
Holtedahlfonna after a temporary minimum is also apparent
in the deposition (Fig. 3a and b). This indicates that increas-
ing EC amounts have been deposited at the site from 1970
to 2004 despite the measured decrease in atmospheric con-
centrations since 1989 in the Arctic (Hirdman et al., 2010a;
Sharma et al., 2013). Consequently, the increase in EC con-
centrations cannot be simply explained by changes in the
snow accumulation rate at the glacier. This example from
Holtedahlfonna illustrates the importance of also studying
the absolute deposition rather than focusing on the concentra-
tions per se. The observed differences in the temporal evolu-
tion of EC deposition and concentration in the ice core show
that additional processes to changes in atmospheric BC con-
centration are important for the final EC concentration in the
ice core. Therefore, when comparing different ice cores to
each other, both deposition and concentration of BC or EC
are important to the analysis. In the following we will focus
on explanations, which we find most plausible, for the un-
expected increase in EC values in Holtedahlfonna between
1970 and 2004.

3.3 Black carbon emissions

The prevalent conception is that EC concentrations and depo-
sition in the Arctic have decreased during the recent decades.
This view is supported by atmospheric measurements (Hird-
man et al., 2010a; Sharma et al., 2013) and ice core BC
records from Greenland (McConnell et al. 2007; McConnell
and Edwards, 2008). Model results also suggest that BC de-
position in Svalbard was at a maximum around 1950 to 1960

Figure 4. Global, North American, OECD European and former
USSR annual anthropogenic fossil fuel BC emissions (emissions
from Bond et al., 2007) compared to measured EC deposition in the
Holtedahlfonna ice core (dashed line) between 1850 and 2000. The
EC deposition is shown in 10-year averages.

and has decreased since then (Koch et al., 2011; Ruppel et al.,
2013). Historical anthropogenic fossil fuel emission inven-
tories similarly indicate decreasing BC emissions in North
America and Europe in the latter half of the 20th century and
since 1990 in the former Soviet Union (e.g. Novakov et al.,
2003; Bond et al., 2007; Fig. 4). However, these BC emis-
sion inventories (e.g. Nonakov et al., 2003; Bond et al., 2007)
may insufficiently portray some significant fossil fuel emis-
sion sources (such as flaring in northern Russia, discussed
below) and do not include natural emissions, such as forest
and wild fires, that are major sources of BC in the Arctic
(e.g. Stohl et al., 2007; Bond et al., 2013). At the same time,
the recorded EC deposition at Holtedahlfonna shows evident
similarities with the historical global annual anthropogenic
BC emission trend, peaking in the early 20th century and fol-
lowed by a drastic rise since the 1970s (Fig. 4; Lamarque et
al., 2010; Smith and Bond, 2014). The early 20th century
global emission peak was mainly caused by European and
American emissions, whereas the increase since the 1970s
is dominated by Asian emissions (Bond et al., 2007). How-
ever, northern Eurasia surface emissions have shown to be
the dominant sources for atmospheric BC in the Arctic (e.g.
Hirdman et al., 2010a, b, and references therein), and there-
fore regional, as opposed to global, sources are expected to
be mostly responsible for the recorded EC deposition trend
in Holtedahlfonna.

Potential local emission sources on Svalbard are, among
others, the coal mines in Longyearbyen, Barentsburg and
Pyramiden, but these are not expected to have caused the
observed trend in the Holtedahlfonna ice core. The near-
est mine, located in Ny-Ålesund, closed down in 1963 and
therefore cannot account for the recent trend. In addition,
Forsström et al. (2013) showed that local EC pollution on
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Svalbard snow is focused around the sources, and, more
specifically, snow around Ny-Ålesund presents EC concen-
trations similar to Arctic background levels (Aamaas et al.,
2011). Apart from local terrestrial emissions, increased ship-
ping in the Arctic has been proposed as a potential significant
local BC source in the area (e.g. Eckhardt et al., 2013, and
references therein). However, Eckhardt et al. (2013) showed
that while cruise ships visiting Ny-Ålesund in the summer
months cause equivalent BC concentration peaks at the atmo-
spheric Zeppelin measurement station (474 m a.s.l.) located
less than 1 km away from the village, their influence on the
annual mean concentration is minimal.

As mentioned, air mass transport to Greenland and Sval-
bard are rather different. The greater part of atmospheric
transport to Svalbard comes from Europe and northern
Siberia (Stohl et al., 2006; Hirdman et al., 2010b), as opposed
to North American emissions dominating Greenland ice core
records (McConnell et al., 2007). In addition, the Greenland
Ice Sheet and Svalbard glaciers receive divergent pollution
deposition due to their different elevation. For instance, ac-
cording to Hirdman et al. (2010b), the BC source regions for
Summit on the Greenland Ice Sheet (3208 m a.s.l.) were spe-
cific for this high-elevation site and did not reflect the low-
level atmospheric transport of pollution from high-latitude
Eurasia that influences much of the rest of the Arctic which
lies at lower elevations.

Of the Arctic monitoring stations recording atmospheric
BC concentrations, the Zeppelin station in Ny-Ålesund has
been shown to be particularly susceptible to BC emissions
from northern Russia, especially western Siberia (Eleftheri-
adis et al., 2009; Hirdman et al., 2010b; Stohl et al., 2013;
Tunved et al., 2013). Stohl et al. (2013) pointed out that this
is an intensive gas flaring region (circled in Fig. 1) and a pre-
viously underestimated major Arctic BC emission source. In
fact, based on simulations run for 3 years with a Lagrangian
particle dispersion model, Stohl et al. (2013) suggested that
flaring in northern Russia may contribute to 42 % of the an-
nual mean atmospheric BC concentrations near the surface
in the Arctic.

Since flaring emissions from northern Russia originate at
high latitudes, their isentropic lifting in the polar dome is lim-
ited (Stohl, 2006; Stohl et al., 2013). The BC concentrations
resulting from flaring are highest closer to the surface and
decrease rapidly vertically in the atmosphere (Stohl et al.,
2013). Furthermore, model results by Sand et al. (2013) sug-
gest that a large fraction of BC emitted in the Arctic stays
in the lowermost layers in the atmosphere and gets deposited
at the surface. Therefore, despite their globally comparably
small emission quantities, Arctic emissions may have a pre-
dominant impact on BC deposition at lower elevations of the
Arctic (Sand et al., 2013). According to Stohl et al. (2013,
Fig. 6 therein), emissions from flaring may contribute to 30–
40 % of the simulated annual surface concentration of BC
(ng m−3) on Svalbard in comparison to 5–10 % on Green-
land. It seems that the Greenland ice cores (e.g. at 2713 and

2410 m a.s.l.) are likely missing most of the flaring emissions
both because of their different source areas and their eleva-
tion, whereas the Holtedahlfonna ice core is likely to cap-
ture more of these emissions. Interestingly, the large gas and
oil fields in northern Russia, especially around the Gulf of
Ob and west of it (circled area in Fig. 1), were discovered
and established at the end of the 1960s to the 1970s, and it
can be expected that flaring commenced and increased soon
after the extraction of oil and natural gas started there. To-
day, Russia is still the leading contributor to flaring glob-
ally, which is mostly a consequence of lacking infrastruc-
ture in the region to transport and utilize all extracted nat-
ural gas (Elvidge et al., 2009). According to satellite imag-
inary, flaring emissions from Russia continued to increase
from 1994 to 2005 (Elvidge et al., 2009). Therefore, it seems
that the concurrent peak in the Greenland and Svalbard BC
ice core records around 1910 could have been caused by the
sites receiving the same emissions from distant sources, most
likely North America, since the BC peak in the Greenland ice
cores was more pronounced than in Svalbard. The discrepan-
cies between the sites since 1970 could partly be caused by
Greenland not receiving major lower troposphere emissions
that are recorded in Svalbard. However, it is unlikely that the
post-1970 EC trend suggested by this Svalbard ice core was
caused by Russian flaring emissions alone, as, for instance,
it does not seem to indicate clear or even short-term signs of
lowered emissions associated with the collapse of the Soviet
Union.

3.4 Changes in scavenging efficiency?

While the increasing post-1970 EC trend in the Holtedahl-
fonna ice core may partly be explained by rising BC emis-
sions from flaring (and possibly global BC emissions), these
emission increases have not been captured by the atmo-
spheric measurements at the Zeppelin station since 1998
(Eleftheriadis et al., 2009; Hirdman et al., 2010a) or any
other atmospheric measurement station in the Arctic since
1989 (Hirdman et al., 2010a; Sharma et al., 2013). Although
the overlapping time period of the ice core and atmospheric
measurements is very short (three ice core data points),
and the resolution of the ice core measurements too low
for detailed temporal comparison with hourly atmospheric
measurements, the recorded differences indicate further pro-
cesses affecting the EC trends in the Holtedahlfonna ice core.

Variations in EC deposition that are not caused by changes
in atmospheric concentrations may be caused by changes
in the scavenging efficiency of BC. With constant or de-
clining atmospheric EC concentrations, EC deposition may
increase if BC scavenging efficiency increases. One possi-
ble pathway to influence the scavenging efficiency could be
by changes in the temperature at which precipitation forms.
In general, in-cloud scavenging of aerosols is less effec-
tive in ice clouds compared to liquid-phase clouds. This is
because, at cold temperatures, precipitation is formed via
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activation of especially efficient, but relatively few, ice nu-
clei that then grow by vapour deposition. At warmer temper-
atures, liquid precipitation is formed via collision and coales-
cence, which is a more efficient way to remove aerosols from
clouds. Observations by Cozic et al. (2007) illustrate this ef-
fect clearly for BC particles. Below about−20◦C the scav-
enged fraction of BC is about 10 %. The fraction increases
with temperature to about 60 % at temperatures just below
the freezing point (Cozic et al., 2007). In the case of mixed-
phase clouds, precipitation can form through the Wegener–
Bergeron–Findeisen process or through riming. In the former
process, ice crystals grow by vapour deposition at the ex-
pense of the water droplets, which will have the same effect
on the scavenging efficiency as cold cloud precipitation, i.e.
low efficiency. Riming, on the other hand, yields much higher
efficiency because ice crystals that are formed in the cloud
will collide with the super-cooled droplets and the cloud con-
densation nuclei that formed the droplet will be scavenged
in the process. As suggested by Cozic et al. (2007), the ob-
served increase in scavenging efficiency with increasing tem-
perature is consistent with a shift from non-rimed to rimed
hydrometeors in mixed-phase clouds. If there has been a shift
over time in the temperature at which precipitation is formed
above Holtedahlfonna, this could have resulted in a corre-
sponding shift in the scavenging efficiency of BC.

Riming causes a preferential separation in snow chemistry
as snowflakes scavenge nitrate (NO−

3 ) more efficiently than
sulfate (SO2−

4 ) (Raynor and Hayes, 1983). Consequently, the
nitrate to sulfate ratio is different in rimed as opposed to non-
rimed snow (Takahashi et al., 1996). This chemical signature
was used by Hegg et al. (2011) to explain variation in BC
concentration observed in fresh snow. The nitrate and sulfate
records have been reported from Holtedahlfonna in Beaudon
et al. (2013), but the hypothesis of riming-controlled varia-
tion in BC scavenging efficiencies causing discrepancies be-
tween atmospheric and ice core EC trends cannot be veri-
fied with the available ion data from Holtedahlfonna, due to
relocation of the nitrate and sulfate from the original snow
layer during summer surface melt (e.g. Moore et al., 2005;
Beaudon et al., 2013).

Whereas warmer temperatures could lead to an increased
scavenging efficiency of BC in the Arctic, Browse et
al. (2012) came to the conclusion that global warming may
actually reduce the aerosol concentration and deposition
rates in the Arctic. This is because enhanced BC scavenging
efficiency en route from the source regions to the Arctic will
reduce the amount of BC reaching the Arctic. While precip-
itation and temperature measurements are missing from the
ice core drilling site, observed annual precipitation and tem-
peratures have, in general, increased in Svalbard in recent
decades (Førland et al., 2011). Indirect observations of sum-
mer melt (see 3.5 below) are an indicator of strong changes
at the Holtedahlfonna glacier between the 1970s and 2004.

Figure 5. Holtedahlfonna melt index (log ([Na+]/[Mg2+])
(Beaudon et al., 2013) compared to the measured June–August
air temperatures at the Svalbard airport between 1911 and 2000
(source:http://climexp.knmi.nl/), and the EC concentration. The
melt index(a) and EC concentration(c) are shown in 10-year run-
ning averages using linear interpolations in the resolution achieved
by the ice samples. The temperatures(b) are shown in yearly sum-
mer resolution as well as 10-year running averages (thick red line).

3.5 The linkage between summer melt and the EC
concentration and deposition in Holtedahlfonna

In addition to the evident trend in EC values from 1970 to
2004, the ice core record suggests simultaneous changes in
the summer melt of the glacier. Results from Beaudon et
al. (2013) indicate that the Holtedahlfonna ice core has ex-
perienced summer melt throughout the last 300 years, but in-
creasingly since the 1970s and in unprecedented values since
1980 (Fig. 5a). The indicator of summer melt in ice cores is
called melt index, and in the ice core from Holtedahlfonna
it is referred from log ([Na+]/[Mg2+]). The index is based
on the fact that sodium (Na+) and magnesium (Mg2+) ions
originate from same sources (sea salt) but percolate with dif-
ferent efficiencies in melting snowpacks (Iizuka et al., 2002).
The index has been defined as a good indicator of post-
depositional processes of melt and percolation in Svalbard
ice cores (Iizuka et al., 2002, Grinsted et al., 2006), with
higher values reflecting more melt.

Beaudon et al. (2013) suggested the melt index to corre-
spond to observed June–August air temperatures measured
at the Svalbard airport in Longyearbyen (29 m a.s.l.) since
1911 (Fig. 5b). Summer temperatures at Svalbard airport
and summer melt on Holtedahlfonna were comparably high
around 1920–1930 and reached temporary minima in the late
1960s. The summer temperatures started to increase in the
late 1960s after the initial cool phase, which was accompa-
nied by a distinct and steady increase in the ice core melt in-
dex, reaching unprecedented values during the 1980s. How-
ever, the increase in the melt index in 1970–1990 seems dis-
proportionably strong when visually compared to the more
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variable and less pronounced temperature increase that does
not exceed values of the early 1900s even by 2000 (Fig. 5b).

Hence, when including the EC concentration trend in the
assessment (Fig. 5c), it seems that there is some evident cor-
respondence in the intensifying summer melt and the EC
concentration in the ice core. The records are not completely
synchronous, as the melt index seems to lead the EC concen-
tration by several years, but over a decadal perspective the
records present similar trends. We compare the melt index to
EC concentrations since EC concentrations in snow are more
relevant for the melt process than EC deposition. The change
in the melt index to a decrease in 1990 is not caused by a
decrease in melting but rather the melt index failing in the
most recent part of the ice core, where the summer melt was
much more extensive, and thus the ions have been washed out
from the annual snowpack (Beaudon et al., 2013). The ions
have most likely been washed out of the ice core by slow
lateral melt water flow at the bottom of the current years’
snowpack, above the previous years’ melt layer (cf. Pfeffer
and Humphrey, 1996). The importance of BC in accelerated
glacier melt has been previously discussed, for instance, by
Xu et al. (2009) for the Himalayas, where glaciers are re-
treating faster than what could be expected due to tempera-
ture increases alone. The current data supports the suggested
process of increased BC (or EC) concentrations accelerat-
ing melt in glaciers. Recently Keegan et al. (2014) suggested
that particularly warm summers were not invariably suffi-
cient to cause widespread melt in Greenland ice cores during
the last two centuries. However, exceptionally warm temper-
atures combined with BC deposition from Northern Hemi-
sphere forest fires reduced the coring site’s albedo below a
critical threshold, causing widespread summer melt in re-
gions that do not normally experience summer melt (Kee-
gan et al., 2014). Consequently, it seems that the recorded
melt index trend in Holtedahlfonna can be better explained
by the increasing measured summer temperatures and the in-
creasing EC concentration trend together than by increasing
temperatures alone.

At the same time, the increased melt itself might actu-
ally cause the EC concentrations in the ice core to increase,
as melt is accompanied by water loss from the glacier sur-
face to the atmosphere and possible runoff. During summer
melt, water can be lost from the annual snowpack by evapo-
ration or sublimation; lateral water flow within the snowpack
above the previous years’ impermeable ice layer (Pfeffer and
Humphrey, 1996) after vertical percolation; or, in extreme
melt cases, as surface runoff. As EC tends to be hydrophobic,
it is left behind within the snowpack during melt, which leads
to significantly higher EC concentrations at the snow surface
(Conway et al., 1996; Doherty et al., 2010, 2013; Sterle et
al., 2013), and in strong melt cases it may move downwards
through the snowpack but be concentrated above the previous
year’s melt layer as observed by Xu et al. (2012). This melt
amplification may have increased between 1970 and 2004 in
the ice core, causing the increased EC concentrations. How-

ever, even in the most recent layers of the ice core and its
firn there are annual melt layers present which prevent EC
penetrating into the snow/firn of the previous year (Beaudon
et al., 2013, especially the density data in Figure 4 therein).
After 1990 the increased summer melt caused most elusive
ions to wash out laterally from the ice core above the pre-
vious years’ melt layer at the same time as the less elusive
EC was left behind. If runoff were to cause significant wa-
ter losses from the coring site leaving EC behind, this in it-
self would cause the EC values to increase. However, while
exact meteorological measurements from the coring site are
missing, these summertime water losses are expected to have
a rather small effect on the whole years’ snow accumulation
(Pfeffer and Humphrey, 1996), especially as the mean annual
melt season on Holtedahlfonna is of the order of ca. 80 days
per year (Rotschky et al., 2011) and most of the melt water
refreezes within the annual snow layer. Thus, increased melt
is likely to have only a minor impact on the EC concentration
trend. The fact that EC deposition, which is not affected by
post-depositional processes unless significant water loss oc-
curs, rises in tandem with the concentrations supports the in-
ference that EC concentrations in the ice core are dominated
by atmospheric processes, rather than post-depositional pro-
cesses.

Although post-depositional processes do not seem to be
overly significant for the ice core EC trends they may have
a significant effect when comparing the results to snow mea-
surements. For instance, at the Holtedahlfonna site, EC con-
centrations of 1.4, 9.4 and 11.6 µ g L−1 were measured in
2007, 2008 and 2009, respectively (Forsström et al., 2013),
which are roughly a magnitude lower than the ice core con-
centrations. These EC measurements have been made in
springtime on surface snow which had most likely not signifi-
cantly aged, i.e. experienced sublimation and/or melt, and not
received summertime dry deposition. The ice core results, on
the other hand, are the annual sum of all annual deposition
as well as EC enrichment due to water losses and other aging
processes throughout the year, and may therefore reach far
higher concentrations than springtime snow measurements.

4 Summary and conclusions

Unexpected increasing EC concentrations and deposition be-
tween 1970 and 2004 after a temporary minimum have been
recorded from a Svalbard ice core. This trend differs from
previous ice core records from Greenland and atmospheric
measurements since 1989, which indicate decreasing BC
concentrations in the Arctic during the last decades. How-
ever, the recorded trend agrees with estimated past global an-
nual anthropogenic BC emissions and increased 20th century
BC concentrations recorded in the European Alps glaciers.

The post-1970 EC trend in Holtedahlfonna is most
likely explained by atmospheric processes. Of these pro-
cesses, increased BC scavenging efficiency induced by rising
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temperatures is the most probable, as it is the only process
that can simultaneously increase EC concentrations and de-
position. This process may be responsible for the increasing
EC deposition trend in the ice core record despite observed
decreasing atmospheric concentrations in the Arctic.

Possible explanations for the differences in the recorded
ice core BC trends from Greenland and Svalbard are partly
different source areas, their different distances to sources,
and the different elevations of the sites. Specifically, the post-
1970 increase in Svalbard ice core EC values may be affected
by northern Russian flaring emissions which do not reach the
Greenland ice core sites as effectively. The observed differ-
ences between the Greenland and Svalbard ice core records
may also be caused by differences between the two analyt-
ical methods used. These differences may result from both
the operational definition of which BC particle type is quan-
tified by each method and the size-dependent efficiency in the
detection of particles. The SP2 method may not incorporate
the largest BC particles and the filter-based method may not
include the smallest ones. This can result in different con-
centrations, and, if the size distribution of the particles has
varied temporally, in different trends being measured from
the Arctic with different methods.

The results indicate that BC trends recorded in different
ice cores may be quite different for various reasons. Results
from a single spot glacier observation may not be easily ex-
trapolated to a larger area. Therefore, more ice core and other
sediment records from the Arctic are needed to better map
the BC deposition in the region. Furthermore, comparison
with atmospheric measurements and model estimations from
the same area indicates that ice core measurements cannot a
priori be converted to atmospheric concentrations, as several
factors independent of atmospheric concentrations can affect
the concentrations and the deposition of BC to an ice core. In
general, this may complicate model validation in conjunction
with ice core data.

The increasing EC values in Holtedahlfonna between 1970
and 2004 have major implications for the radiative transfer
and forcing at the coring site. According to a calculated melt
index from Holtedahlfonna, the glacier experienced increas-
ing summer melt from 1970 to 2004. This trend is better
explained by the increasing measured summer temperatures
and the increasing EC concentration trend together, rather
than by increasing temperatures alone. Whether our observed
EC concentration and associated glacier summer melt trend
is representative beyond the local scale remains to be deter-
mined. Consequently, further investigations of past BC val-
ues and BC’s environmental impacts in the Arctic are neces-
sary.
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