Articles | Volume 13, issue 19
https://doi.org/10.5194/acp-13-10125-2013
https://doi.org/10.5194/acp-13-10125-2013
Research article
 | 
15 Oct 2013
Research article |  | 15 Oct 2013

Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study

R. Holzinger, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, and J. Timkovsky

Related authors

What chemical species are responsible for new particle formation and growth in the Netherlands? A hybrid positive matrix factorization (PMF) analysis using aerosol composition (ACSM) and size (SMPS)
Farhan R. Nursanto, Roy Meinen, Rupert Holzinger, Maarten C. Krol, Xinya Liu, Ulrike Dusek, Bas Henzing, and Juliane L. Fry
Atmos. Chem. Phys., 23, 10015–10034, https://doi.org/10.5194/acp-23-10015-2023,https://doi.org/10.5194/acp-23-10015-2023, 2023
Short summary
Development of an International System of Units (SI)-traceable transmission curve reference material to improve the quantitation and comparability of proton-transfer-reaction mass-spectrometry measurements
David R. Worton, Sergi Moreno, Kieran O'Daly, and Rupert Holzinger
Atmos. Meas. Tech., 16, 1061–1072, https://doi.org/10.5194/amt-16-1061-2023,https://doi.org/10.5194/amt-16-1061-2023, 2023
Short summary
Possible controls on Arctic clouds by natural aerosols from long-range transport of biogenic emissions and ozone depletion events
Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, and Atsushi Yoshida
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-95,https://doi.org/10.5194/acp-2022-95, 2022
Revised manuscript not accepted
Short summary
Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment
Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov
Atmos. Chem. Phys., 21, 2895–2916, https://doi.org/10.5194/acp-21-2895-2021,https://doi.org/10.5194/acp-21-2895-2021, 2021
Short summary
Evolution of NO3 reactivity during the oxidation of isoprene
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020,https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Fractional solubility of iron in mineral dust aerosols over coastal Namibia: a link to marine biogenic emissions?
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024,https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
Real-world observations of reduced nitrogen and ultrafine particles in commercial cooking organic aerosol emissions
Sunhye Kim, Jo Machesky, Drew R. Gentner, and Albert A. Presto
Atmos. Chem. Phys., 24, 1281–1298, https://doi.org/10.5194/acp-24-1281-2024,https://doi.org/10.5194/acp-24-1281-2024, 2024
Short summary
Source apportionment of PM2.5 in Montréal, Canada, and health risk assessment for potentially toxic elements
Nansi Fakhri, Robin Stevens, Arnold Downey, Konstantina Oikonomou, Jean Sciare, Charbel Afif, and Patrick L. Hayes
Atmos. Chem. Phys., 24, 1193–1212, https://doi.org/10.5194/acp-24-1193-2024,https://doi.org/10.5194/acp-24-1193-2024, 2024
Short summary
Physicochemical and temporal characteristics of individual atmospheric aerosol particles in urban Seoul during KORUS-AQ campaign: insights from single-particle analysis
Hanjin Yoo, Li Wu, Hong Geng, and Chul-Un Ro
Atmos. Chem. Phys., 24, 853–867, https://doi.org/10.5194/acp-24-853-2024,https://doi.org/10.5194/acp-24-853-2024, 2024
Short summary
Mass spectrometric analysis of unprecedented high levels of carbonaceous aerosol particles long-range transported from wildfires in the Siberian Arctic
Eric Schneider, Hendryk Czech, Olga Popovicheva, Marina Chichaeva, Vasily Kobelev, Nikolay Kasimov, Tatiana Minkina, Christopher Paul Rüger, and Ralf Zimmermann
Atmos. Chem. Phys., 24, 553–576, https://doi.org/10.5194/acp-24-553-2024,https://doi.org/10.5194/acp-24-553-2024, 2024
Short summary

Cited articles

Andreae, M. O., Jones, C. D., and Cox, P. M.: Strong present-day aerosol cooling implies a hot future, Nature, 435, 1187–1190, 2005.
Aoki, N., Inomata, S., and Tanimoto, H.: Detection of C-1-C-5 alkyl nitrates by proton transfer reaction time-of-flight mass spectrometry, Int. J. Mass Spectrom., 263, 12–21, 2007.
Atkinson, R.: Rate constants for the atmospheric reactions of alkoxy radicals: an updated estimation method. Atmos. Environ. 41, 8468–8485, 2007.
Download
Altmetrics
Final-revised paper
Preprint