Articles | Volume 13, issue 1
https://doi.org/10.5194/acp-13-1-2013
https://doi.org/10.5194/acp-13-1-2013
Research article
 | 
02 Jan 2013
Research article |  | 02 Jan 2013

Implications of the O + OH reaction in hydroxyl nightglow modeling

P. J. S. B. Caridade, J.-Z. J. Horta, and A. J. C. Varandas

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Global and regional chemical influence of sprites: reconciling modelling results and measurements
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024,https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Technical Note: Nighttime OH and HO2 chemical equilibria in the mesosphere – lower thermosphere
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Alexey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
EGUsphere, https://doi.org/10.5194/egusphere-2024-614,https://doi.org/10.5194/egusphere-2024-614, 2024
Short summary
Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023,https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Reaction dynamics of P(4S) + O2(X3Σg)  →  O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling
Guangan Chen, Zhi Qin, Ximing Li, and Linhua Liu
Atmos. Chem. Phys., 23, 10643–10659, https://doi.org/10.5194/acp-23-10643-2023,https://doi.org/10.5194/acp-23-10643-2023, 2023
Short summary
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022,https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary

Cited articles

Adle{r-G}olden, S.: Kinetic parameters for $\rm OH$ nightglow modeling consistent with recent laboratory experiments, J. Geophys. Res., 102, 19969–19976, https://doi.org/10.1029/97JA01622, 1997.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Bates, D. R. and Nicolet, M.: The Photochemistry of Atmospheric Water Vapor, J. Geophys. Res., 55, 301–327, https://doi.org/10.1029/JZ055i003p00301, 1950.
Bodenstein, M.: Eine Theorie der photochemishen reaktionsgeschwindigkeiten, Z. Physik. Chem., 85, 329–397, 1913.
Caridade, P. J. S. B., Sabin, J., Garrido, J. D., and Varandas, A. J. C.: Dynamics of the $\rm OH+O_2$ vibrational relaxation process, Phys. Chem. Chem. Phys, 4, 4959–4969, https://doi.org/10.1039/b203101a, 2002.
Download
Altmetrics
Final-revised paper
Preprint