Articles | Volume 13, issue 1
https://doi.org/10.5194/acp-13-1-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-1-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Implications of the O + OH reaction in hydroxyl nightglow modeling
P. J. S. B. Caridade
Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
J.-Z. J. Horta
Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
Universidad Camilo Cienfuegos, Matanzas, Cuba
A. J. C. Varandas
Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Global and regional chemical influence of sprites: reconciling modelling results and measurements
Technical Note: Nighttime OH and HO2 chemical equilibria in the mesosphere – lower thermosphere
Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Reaction dynamics of P(4S) + O2(X3Σ−g) → O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
The response of mesospheric H2O and CO to solar irradiance variability in models and observations
Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry
Photochemistry on the bottom side of the mesospheric Na layer
Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region
A new model of meteoric calcium in the mesosphere and lower thermosphere
Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach
NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010
HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009
Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)
A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation
Middle atmospheric changes caused by the January and March 2012 solar proton events
Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005
Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?
Implementation and testing of a simple data assimilation algorithm in the regional air pollution forecast model, DEOM
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024, https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Short summary
Sprites are electrical discharges that occur in the upper atmosphere. Recent modelling and observational data suggest that they may have a measurable impact on atmospheric chemistry. We incorporate both the occurrence rate of sprites and their production of chemical species into a chemistry–climate model. While our results indicate that sprites have a minimal global influence on atmospheric chemistry, they underscore their noteworthy importance at a regional scale.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Alexey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
EGUsphere, https://doi.org/10.5194/egusphere-2024-614, https://doi.org/10.5194/egusphere-2024-614, 2024
Short summary
Short summary
The assumptions of chemical equilibrium of trace gases are widely used for retrieval of poorly measured characteristics of the mesosphere – lower thermosphere from rocket and satellite data and for study the HOx – Ox chemistry and airglows. In this work, we analyze the fundamental aspects of chemical equilibrium of some trace gases and discuses their possible applications.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Guangan Chen, Zhi Qin, Ximing Li, and Linhua Liu
Atmos. Chem. Phys., 23, 10643–10659, https://doi.org/10.5194/acp-23-10643-2023, https://doi.org/10.5194/acp-23-10643-2023, 2023
Short summary
Short summary
We provided an accurate potential energy surface of PO2(X2A1), which can be used for the molecular simulations of the reactive or non-reactive collisions and photodissociation of PO2 in atmospheres. It can also be a reliable component for constructing other larger molecular systems containing PO2. The reaction probability, integral cross sections, and rate constants for P(4S) + O2(X3Σ−) → O(3P) + PO((X2Π) are calculated, which might be useful for modelling the P chemistry in atmospheres.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021, https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary
Short summary
Sprites are electrical discharges above thunderstorms. We performed model simulations of the chemical processes in sprites to compare them with measurements of chemical perturbations above sprite-producing thunderstorms.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020, https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Short summary
Effects of solar proton events (SPEs) on middle atmosphere chemistry were studied using the WACCM-D chemistry–climate model, including an improved representation of lower ionosphere ion chemistry. This study includes 66 events in the years 1989–2012 and uses a statistical approach to determine the impact of the improved chemistry scheme. The differences shown highlight the importance of ion chemistry in models used to study energetic particle precipitation.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the
best-fit modeland the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Mikhail Y. Kulikov, Anton A. Nechaev, Mikhail V. Belikovich, Tatiana S. Ermakova, and Alexander M. Feigin
Atmos. Chem. Phys., 18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018, https://doi.org/10.5194/acp-18-7453-2018, 2018
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary
Short summary
Results from global models are used to analyze the impact of energetic particle precipitation on the middle atmosphere (10–80 km). Model results agree well with observations, and show strong enhancements of NOy, long-lasting ozone loss, and a net heating in the uppermost stratosphere (~35–45 km) during polar winter which changes sign in spring. Energetic particle precipitation therefore has the potential to impact atmospheric dynamics, starting from a warmer winter-time upper stratosphere.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Anna Totterdill, Tamás Kovács, Wuhu Feng, Sandip Dhomse, Christopher J. Smith, Juan Carlos Gómez-Martín, Martyn P. Chipperfield, Piers M. Forster, and John M. C. Plane
Atmos. Chem. Phys., 16, 11451–11463, https://doi.org/10.5194/acp-16-11451-2016, https://doi.org/10.5194/acp-16-11451-2016, 2016
Short summary
Short summary
In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. We have also determined their atmospheric lifetimes using the Whole Atmosphere Community Climate Model.
Bernd Funke, Manuel López-Puertas, Gabriele P. Stiller, Stefan Versick, and Thomas von Clarmann
Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, https://doi.org/10.5194/acp-16-8667-2016, 2016
Short summary
Short summary
We present a semi-empirical model for the reconstruction of polar winter descent of reactive nitrogen (NOy) produced by energetic particle precipitation (EPP) into the stratosphere. It can be used to prescribe NOy in chemistry climate models with an upper lid below the EPP source region. We also found a significant reduction of the EPP-generated NOy during the last 30 years, likely affecting the long-term NOy trend by counteracting the expected increase caused by growing N2O emission.
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
C. H. Jackman, D. R. Marsh, F. M. Vitt, R. G. Roble, C. E. Randall, P. F. Bernath, B. Funke, M. López-Puertas, S. Versick, G. P. Stiller, A. J. Tylka, and E. L. Fleming
Atmos. Chem. Phys., 11, 6153–6166, https://doi.org/10.5194/acp-11-6153-2011, https://doi.org/10.5194/acp-11-6153-2011, 2011
T. von Clarmann, F. Hase, B. Funke, M. López-Puertas, J. Orphal, M. Sinnhuber, G. P. Stiller, and H. Winkler
Atmos. Chem. Phys., 10, 9953–9964, https://doi.org/10.5194/acp-10-9953-2010, https://doi.org/10.5194/acp-10-9953-2010, 2010
J. Frydendall, J. Brandt, and J. H. Christensen
Atmos. Chem. Phys., 9, 5475–5488, https://doi.org/10.5194/acp-9-5475-2009, https://doi.org/10.5194/acp-9-5475-2009, 2009
Cited articles
Adle{r-G}olden, S.: Kinetic parameters for $\rm OH$ nightglow modeling consistent with recent laboratory experiments, J. Geophys. Res., 102, 19969–19976, https://doi.org/10.1029/97JA01622, 1997.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Bates, D. R. and Nicolet, M.: The Photochemistry of Atmospheric Water Vapor, J. Geophys. Res., 55, 301–327, https://doi.org/10.1029/JZ055i003p00301, 1950.
Bodenstein, M.: Eine Theorie der photochemishen reaktionsgeschwindigkeiten, Z. Physik. Chem., 85, 329–397, 1913.
Caridade, P. J. S. B., Sabin, J., Garrido, J. D., and Varandas, A. J. C.: Dynamics of the $\rm OH+O_2$ vibrational relaxation process, Phys. Chem. Chem. Phys, 4, 4959–4969, https://doi.org/10.1039/b203101a, 2002.
Chapman, D. L. and Hunderhill, L. K.: The interaction of chlorine and hydrogen. The influence of mass, J. Chem. Soc. Trans., 103, 496–508, https://doi.org/10.1039/CT9130300496, 1913.
Chapman, S.: A theory of upper-atmospheric ozone, Memoirs Roy. Metereol. Soc., III, 103–125, 1930.
Charters, P. E., Macdonald, R. G., and Polanyi, J. C.: Formation of vibrationally excited $\mathrm{OH}$ by reaction $\mathrm{H+O_3}$, Appl. Opt., 10, 1747–1754, https://doi.org/10.1364/AO.10.001747, 1971.
Clary, D. C. and Werner, H. J.: Quantum calculations on the rate constant for the $\mathrm{O+OH}$ reaction, Chem. Phys. Lett., 112, 346–350, https://doi.org/10.1016/0009-2614(84)85755-3, 1984.
Copeland, R. A., Smith, A. G., Mlynczak, M. M., and Kalogerakis, K. S.: Deactivation of highly vibrationally excited OH by O atoms, Eos Trans AGU, Fall Meet. Suppl., 87, Abstract SA21A-0255, 2006.
Cosby, P. C. and Slanger, T. G.: OH spectroscopy and chemistry investigated with astronomical sky spectra, Can. J. Phys., 85, 77–99, https://doi.org/10.1139/p06-088, 2007.
Crutzen, P.: Mesospheric mysteries, Science, 277, 1951–1952, https://doi.org/10.1126/science.277.5334.1951, 1997.
Curtis, A. R. and Goody, R. M.: Thermal variation in the upper atmosphere, Proc. Royal Soc., 193–206, https://doi.org/10.1098/rspa.1956.0128, 1956.
Finlayson-Pitts, B. J. and Kleindienst, T. E.: The reaction of hydrogen atoms with ozone as a source of vibrationally excited $\mathrm{OH}(X ^2\Pi_i)_{v=9}$, J. Chem. Phys., 74, 4533–4543, https://doi.org/10.1063/1.441642, 1981.
Funke, B., López-Puertas, M., Stiller, G. P., von Clarmann, T., and Höpfner, M.: A new non-LTE Retrieval Method for Atmospheric Parameters From MIPAS-ENVISAT Emission Spectra, Adv. Space Res., 27, 1099–1104, https://doi.org/10.1016/S0273-1177(01)00169-7, 2001.
Funke, B., Stiller, G. P., von Clarmann, T., Höpfner, M., and López-Puertas, M.: A New non-LTE Retrieval Method for Atmospheric Parameters from MIPAS-ENVISAT Emission Spectra, in: IRS 2000: Current Problems in Atmospheric Radiation, edited by: Smith, W. L. and Timofeyev, Y. M., 761–764, A. Deepak Publishing, Hampton, Va, USA, 2001.
Garrido, J. D., Caridade, P. J. S. B., and Varandas, A. J. C.: Dynamics study of the ${\rm OH + \rm O_2}$ branching atmospheric reaction. 4. {I}nfluence of vibrational relaxation in collisions involving highly excited species, J. Phys. Chem. A, 106, 5314–5322, https://doi.org/10.1021/jp0203245, 2002.
Greenblatt, G. D. and Wiesenfeld, J. R.: Time-resolved emmision studies of vibrationally excited hydroxyl radicals: $\mathrm{OH}(X ^2\Pi, v=9)$, J. Geophys. Res., 87, 1145–1152, https://doi.org/10.1029/JC087iC13p11145, 1982.
Hase, W. L., Duchovic, R. J., Hu, X., Komornicki, A., Lim, K. F., Lu, D., Peslherbe, G. H., Swamy, K. N., Linde, S. R. V., Varandas, A. J. C., Wang, H., and Wolf, R. J.: VENUS96: A General Chemical Dynamics Computer Program, QCPE Bull., 16, p. 43, 1996.
Hedin, A. E.: Extension of the MSIS thermophere model into the middle and lower thermophere, J. Geophys. Res., 96, 1159–1172, https://doi.org/10.1029/90JA02125, 1991.
Huber, K. P. and Herzberg, G.: Molecular Spectra and Molecular Structure. IV Constants of Diatomic Molecules, Van Nostrand, New York, 1979.
Kaye, J. A.: On the possibility of the reaction $\rm O+HO_2\rightarrow OH+O_2$ in $\rm OH$ airglow, J. Geophys. Res., 93, 285–288, https://doi.org/10.1029/JA093iA01p00285, 1988.
Kaufmann, M., Gusev, O. A., Grossmann, K. U., Martín-Torres, F. J., Marsh, D. R., and Kutepov, A. A.: Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 108, 4399, https://doi.org/10.1029/2002JD003186, 2003.
Khachatrian, A. and Dagdigian, P. J.: Vibrational relaxation of OH by oxygen atoms, Chem. Phys. Lett, 415, 1–5, https://doi.org/10.1016/j.cplett.2005.08.131, 2005.
Langhoff, S. R., Werner, H., and Rosmus, P.: Theoretical transition probabilities for the OH Meinel system, J. Mol. Spectrosc., 118, 507–529, https://doi.org/10.1016/0022-2852(86)90186-4, 1986.
Lin, S. Y., Rackham, E. J., and Guo, H.: Quantum mechanical rate constants for $\rm H+O_2 \rightleftharpoons O+OH$ and $\rm H+O_2\rightarrow HO_2$ reactions, J. Phys. Chem. A, 110, 1534–1540, https://doi.org/10.1021/jp053555v, 2006.
López-Puertas, M. and Taylor, F. W.: Non-local Thermodynamic Equilibrium in the Atmosphere, vol. 3, World Scientific, 2001.
Kalogerakis, K. S., Smith, G. P., and Copeland, R. A.: Collisional removal of $\mathrm{OH}(X ^2\Pi v = 9)$ by $\rm O$, $\rm O_2$, $\rm O_3$, $\rm N_2$, and $\rm CO_2$, J. Geophys. Res., 116, D20307, https://doi.org/10.1029/2011JD015734, 2011.
Marshall, J., Kalogerakis, K. S., and Copeland, R. A.: Laboratory measurements of OH(v=2) collisional reactivation by oxygen atoms, American Geophysical Union Spring 2001 meeting, paper SA31A-21, 2002.
McDade, I. C.: The altitude dependence of the $\mathrm{OH}(X^2\Pi)$ vibrational distribution in the nightglow: Some model expectations, Planet. Space Sci., 39, 1049–1057, https://doi.org/10.1016/0032-0633(91)90112-N, 1991.
McDade, I. C. and Llewellyn, E. J.: Kinetic parameters related to sources and sinks of vibrationally excited OH in the nightglow, J. Geophys. Res., 92, 7643–7650, https://doi.org/10.1029/JA092iA07p07643, 1987.
McDade, I. C. and Llewellyn, E. J.: Mesospheric oxygen atom densities inferred from night-time OH Meinel band emission rates, Planet. Space Sci., 36, 897–905, https://doi.org/10.1016/0032-0633(88)90097-9, 1988.
McDade, I. C., Llewellyn, E. J., Mutagh, D. P., and Greer, R. G. H.: ETON 5: simultaneous rocket measurements of the OH Meinel $\Delta v=2$ sequence and (8,3) band emission profiles in the nightglow, Planet. Space Sci., 35, 1137–1147, https://doi.org/10.1016/0032-0633(87)90020-1, 1987.
Meinel, A. B.: $\mathrm{OH$} emission bands in the spectrum of the night sky. I., Astrophys. J., 111, 555, https://doi.org/10.1086/145296, 1950.
Melo, S. M. L., Takahashi, H., Clemesha, B. R., and Simonich, D. M.: An experimental study of the nightglow OH(8-3) band emission process in the equatorial mesosphere, J. Atmos. Sol.-Terr. Phy., 59, 479–486, https://doi.org/10.1016/S1364-6826(96)00053-3, 1997.
Mies, F. H.: Calculated vibrational transition probabilities of $\mathrm{OH}(X^2\Pi)$, J. Mol. Spectrosc., 53, 150–188, https://doi.org/10.1016/0022-2852(74)90125-8, 1974.
Miller, J. A., Kee, R. J., and Westbrook, C. W.: Chemical kinetics and combustion modelling, Annu. Rev. Phys. Chem., 41, 345–387, https://doi.org/10.1146/annurev.physchem.41.1.345, 1990.
Milne, E. A.: Thermodynamics of stars, Handbuch der Astrophysik, 1930.
Mlynczak, M. G.: Atomic oxygen atomic hydrogen, and chemical heating rates derived from SABER, paper presented at the 37th COSPAR Scientific Assembly, COSPAR, Montreal, Cananda, 2008.
Murphy, R. E.: Infrared emission of OH in the fundamental and first overtone bands, J. Chem. Phys., 54, 4852–4859, https://doi.org/10.1063/1.1674762, 1971.
Nelson, D. D., Schiffman, A., Nesbitt, D. J., Orlando, J. J., and Burkholder, J. B.: $\rm H+O_3$ Fourier-transform infrared-emisson and laser-absortion studies og ${\rm OH} (X ^2\Pi)$ radical: An experimental dipole-moment function and state-to-state Einstein A coefficients coefficients, Chem. Phys. Lett, 93, 7003–7019, https://doi.org/10.1063/1.459476, 1990.
Ohoyama, H., Kasai, T., Yoshimura, Y., and Kuwata, H.: Initial distribution of vibration of the $\mathrm{OH$} radicals produced in the $\mathrm{H+O_3 \rightarrow \mathrm{OH}(X ^2\Pi_{1/2,3/2})+\mathrm{O_2}$} reaction – Chemiluminescence by a crossed beam technique, Chem. Phys. Lett., 118, 263–266, https://doi.org/10.1016/0009-2614(85)85312-4, 1985.
Pastrana, M. R., Quintales, L. A. M., Brand{ã}o, J., and Varandas, A. J. C.: Recalibration of a single-valued double many-body expansion potential-energy surface for ground-state $\rm HO_2$ and dynamics calculations for the $\rm O + OH \rightarrow O2 + H$ reaction, J. Phys. Chem., 94, 8073–8080 , https://doi.org/10.1021/j100384a019, 1990.
Pickett, H. M. and Peterson, D. B.: Comparison of measured stratospheric $\rm OH$ with prediction, J. Geophys. Res., 101, 16789–16796, https://doi.org/10.1029/96JD01168, 1996.
Pickett, H. M., Read, W. G., Lee, K. K., and Young, Y. L.: Observation of night OH in the mesosphere, Geophys. Res. Lett., 33, L19808, https://doi.org/10.1029/2006GL026910, 2006.
Picone, J. M., Hedin, A. E., and Drob, D. P.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, CA, 2011.
Silveira, D. M., Caridade, P. J. S. B., and Varandas, A. J. C.: Dynamics of the $\rm O+HO_2$ reaction using two DMBE potential energy surfaces: The role of vibrational excitation, J. Phys. Chem. A, 108, 8721–8730, https://doi.org/10.1021/jp049575z, 2004.
Slanger, T. G., Jusinski, L. E., Black, G., and Gadd, G. E.: A new laboratory source of ozone and its potential atmospheric implications, Science, 241, 945–950, https://doi.org/10.1126/science.241.4868.945, 1988.
Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast, J. C.: Temporal variations of atomic oxygen in the upper mesosphere from SABER, J. Geophys. Res., 115, D18309, https://doi.org/10.1029/2009JD013434, 2010.
Smith, I. W. M., Herbst, E., and Chang, Q.: Rapid neutral-neutral reactions at low temperatures: A new network and first results for TMC-1, Mon. Not. R. Astron. Soc., 350, 323–330, https://doi.org/10.1111/j.1365-2966.2004.07656.x, 2004.
Spencer, J. E. and Glass, G. P.: Some reactions of ${\rm OH}(v=1)$, Int. J. Chem. Kin., 9, 111–122, https://doi.org/10.1002/kin.550090110, 1977.
Spitzer Jr., L.: The terrestrial atmosphere above 300 km, in: The Atmospheres of the Earth and Planets, edited by: Kuiper, G. P., 213, Univ. Chicago Press, Chicago, USA, 1949.
Steinfeld, J. I., Adler-Golden, S. M., and Gallagher, J. W.: Critical survey of data on the spectroscopy and kinetics of ozone in the mesosphere and thermosphere, J. Phys. Chem. Ref. Data, 16, 911–951, https://doi.org/10.1063/1.1674762, 1987.
Toumi, R., Kerridge, B. J., and Pyle, J. A.: Highly vibrationally excited oxygen as a potential source of ozone in the upper-stratosphere and mesosphere, Nature, 351, 217–219, https://doi.org/10.1038/351217a0, 1991.
Toumi, R., Houston, P. L., and Wodtke, A. M.: Reactive ${\rm O_2}(v\ge 26)$ as a source of stratospheric ozone, J. Chem. Phys., 104, 775–776, https://doi.org/10.1063/1.471642, 1996.
Turnbull, D. N. and Lowe, R. P.: New hydroxyl transition probabilities and their importance in airglow studies, Planet Space Sci., 37, 723–738, https://doi.org/10.1016/0032-0633(89)90042-1, 1989.
van der Loo, M. P. J. and Groenenboom, G.: Theoretical transition probabilities for the OH Meinel system, J. Chem. Phys., 126, 114314, https://doi.org/10.1063/1.2646859, 2007.
van der Loo, M. P. J. and Groenenboom, G.: Theoretical transition probabilities for the OH Meinel system, J. Chem. Phys., 126, 159902, https://doi.org/10.1063/1.2899016, 2008.
Varandas, A. J. C.: Faraday Discuss. Chem. Soc., 84, 353–356, https://doi.org/10.1039/DC9878400351, 1987.
Varandas, A. J. C.: On the ozone deficit problem: What are depletion cycles hiding?, Chem. Phys. Chem., 3, 433–441, https://doi.org/10.1002/1439-7641(20020517)3:5<433::AID-CPHC433>3.0.CO;2-O, 2002.
Varandas, A. J. C.: Steady-state distributions of $\rm O_2$ and $\rm OH$ in the high atmosphere, and implications in the ozone chemistry, J. Phys. Chem. A, 107, 3769–3777, https://doi.org/10.1021/jp022483u, 2003.
Varandas, A. J. C.: Reactive and non-reactive vibrational quenching in O+OH collisions, Chem. Phys. Lett., 396, 182–190, https://doi.org/10.1016/j.cplett.2004.08.023, 2004{a}.
Varandas, A. J. C.: Are vibrationally excited molecules a clue for the "$\rm O_3$ deficit problem" and "${\rm HO}_x$ dilemma" in the middle atmosphere?, J. Phys. Chem. A, 108, 758–769, https://doi.org/10.1021/jp036321p, 2004{b}.
Varandas, A. J. C.: Reply to the comment on "Are vibrationally excited molecules a clue for the $\rm O_3$ deficit problem and ${\rm HO}_x$ dilemma in the middle atmosphere?", J. Phys. Chem. A, 109, 2700–2702, https://doi.org/10.1021/jp040745h, 2005{a}.
Varandas, A. J. C.: What are the implications of non-equilibrium in the $\rm O+OH$ and $\rm O+HO_2$ reactions?, Chem. Phys. Chem., 6, 453–465, https://doi.org/10.1002/cphc.200400335, 2005{b}.
Varandas, A. J. C.: Trajectory binning scheme and non-active treatment of zero-point energy leakage in quasi-classical dynamics, Chem. Phys. Lett., 439, 386–392, https://doi.org/10.1016/j.cplett.2007.03.090, 2007.
Varandas, A. J. C. and Zhang, L.: ${\rm OH({\it v}) + {\rm O_3}$}: Does chemical reaction dominate over non-reactive quenching?, Chem. Phys. Lett., 340, 62–70 , https://doi.org/10.1016/S0009-2614(01)00364-5, 2001.
von Clarmann, T., Hase, F., Funke, B., López-Puertas, M., Orphal, J., Sinnhuber, M., Stller, G. P., and Winkler, H.: Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?, Atmos. Chem. Phys., 10, 9953–9964, https://doi.org/10.5194/acp-10-9953-2010, 2010.
Wallace, L.: The OH nightglow emission, J. Atmos. Sci., 19, 1–16, https://doi.org/10.1175/1520-0469(1962)019<0001:TONE>2.0.CO;2, 1962.
Xie, D., Xu, C., Ho, T., Rabitz, H., Lendvay, G., Lin, S. Y., and Guo, H.: Global analytical potential energy surfaces for $\mathrm{HO}_2(\tilde{X} ^2A")$ based on high-level ab initio calculations, J. Chem. Phys., 126, 074315, https://doi.org/10.1063/1.2446994, 2007.
Xu, J., Hao, H., Smith, A. K, and Zhu, Y.: Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region, J. Geophys. Res., 117, D02301, https://doi.org/10.1029/2011JD016342, 2012.
Yankovsky, V. A. and Manuilova, R. O.: Model of daytime emissions of electronically-vibrationally excited products of $\rm O_3$ and $\rm O_2$ photolysis: Application to ozone retrieval, Ann. Geophys., 24, 2823–2839, https://doi.org/10.5194/angeo-24-2823-2006, 2006.
Zhang, L. and Varandas, A. J. C.: Dynamics of the ${\rm OH}(v=1,2,4)+{\rm O_3}$ atmospheric reaction, Phys. Chem. Chem. Phys., 3, 1439–1445, https://doi.org/10.1039/b010149o, 2001.
Zhao, M., Truhlar, D. G., Blais, N. C., Schwenke, D. W., and Kouri, D. J.: Are classical molecular dynamics calculations accurate for state-to-state probabilities in $\rm H+D_2$ reaction?, J. Phys. Chem., 94, 6696–6706, https://doi.org/10.1021/j100380a033, 1990.