Articles | Volume 11, issue 17
Atmos. Chem. Phys., 11, 9237–9251, 2011
https://doi.org/10.5194/acp-11-9237-2011
Atmos. Chem. Phys., 11, 9237–9251, 2011
https://doi.org/10.5194/acp-11-9237-2011

Research article 08 Sep 2011

Research article | 08 Sep 2011

A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements

J. R. Ziemke et al.

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Is there a direct solar proton impact on lower-stratospheric ozone?
Jia Jia, Antti Kero, Niilo Kalakoski, Monika E. Szeląg, and Pekka T. Verronen
Atmos. Chem. Phys., 20, 14969–14982, https://doi.org/10.5194/acp-20-14969-2020,https://doi.org/10.5194/acp-20-14969-2020, 2020
Short summary
Small-scale variability of stratospheric ozone during the sudden stratospheric warming 2018/2019 observed at Ny-Ålesund, Svalbard
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020,https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Seasonal stratospheric ozone trends over 2000–2018 derived from several merged data sets
Monika E. Szeląg, Viktoria F. Sofieva, Doug Degenstein, Chris Roth, Sean Davis, and Lucien Froidevaux
Atmos. Chem. Phys., 20, 7035–7047, https://doi.org/10.5194/acp-20-7035-2020,https://doi.org/10.5194/acp-20-7035-2020, 2020
Short summary
Evidence for energetic particle precipitation and quasi-biennial oscillation modulations of the Antarctic NO2 springtime stratospheric column from OMI observations
Emily M. Gordon, Annika Seppälä, and Johanna Tamminen
Atmos. Chem. Phys., 20, 6259–6271, https://doi.org/10.5194/acp-20-6259-2020,https://doi.org/10.5194/acp-20-6259-2020, 2020
Short summary
Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability
William T. Ball, Justin Alsing, Johannes Staehelin, Sean M. Davis, Lucien Froidevaux, and Thomas Peter
Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019,https://doi.org/10.5194/acp-19-12731-2019, 2019
Short summary

Cited articles

Avery, M., Twohy, C., McCabe, D., Joiner, J., Severance, K., Atlas, E., Blake, D., Bui, T. P., Crounse, J., Dibb, J., Diskin, G., Lawson, P., McGill, M., Rogers, D., Sachse, G., Scheuer, E., Thompson, A. M., Trepte, C., Wennberg, P., and Ziemke, J.: Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4, J. Geophys. Res., 115, D00J21, https://doi.org/10.1029/2009JD013450, 2010.
Chandra, S., Ziemke, J. R. and Martin, R. V.: Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: Comparison with a global model, J. Geophys. Res., 108(D9), 4291, https://doi.org/10.1029/2002JD002912, 2003.
Chandra, S., Ziemke, J. R., Duncan, B. N., Diehl, T. L., Livesey, N. J., and Froidevaux, L.: Effects of the 2006 El Niño on tropospheric ozone and carbon monoxide: implications for dynamics and biomass burning, Atmos. Chem. Phys., 9, 4239–4249, https://doi.org/10.5194/acp-9-4239-2009, 2009.
Doughty, D. C., Thompson, A. M., Schoeberl, M. R., Stajner, I., Wargan, K., and Hui, W. C. J.: An intercomparison of tropospheric ozone retrievals derived from two Aura instruments and measurements in western North America in 2006, J. Geophys. Res., 116, D06303, https://doi.org/10.1029/2010JD014703, 2011.
Fioletov, V. E., Labow, G., Evans, R., Hare, E. W., Ko\"{ }hler, U., McElroy, C. T., Miyagawa, K., Redondas, A., Savastiouk, V., Shalamyansky, A. M., Staehelin, J., Vanicek, K., and Weber, M.: Performance of the ground-based total ozone network assessed using satellite data, J. Geophys. Res., 113, D14313, https://doi.org/10.1029/2008JD009809, 2008.
Download
Altmetrics
Final-revised paper
Preprint