Articles | Volume 11, issue 13
https://doi.org/10.5194/acp-11-6153-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-11-6153-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005
C. H. Jackman
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
D. R. Marsh
National Center for Atmospheric Research, Boulder, Colorado, USA
F. M. Vitt
National Center for Atmospheric Research, Boulder, Colorado, USA
R. G. Roble
National Center for Atmospheric Research, Boulder, Colorado, USA
C. E. Randall
University of Colorado, Boulder, Colorado, USA
P. F. Bernath
University of York, York, UK
B. Funke
Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain
M. López-Puertas
Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain
S. Versick
Karlsruhe Institute of Technology, Karlsruhe, Germany
G. P. Stiller
Karlsruhe Institute of Technology, Karlsruhe, Germany
A. J. Tylka
Naval Research Laboratory, Washington, DC, USA
E. L. Fleming
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Science Systems and Applications Inc., Lanham, Maryland, USA
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Global and regional chemical influence of sprites: reconciling modelling results and measurements
Technical Note: Nighttime OH and HO2 chemical equilibria in the mesosphere – lower thermosphere
Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Reaction dynamics of P(4S) + O2(X3Σ−g) → O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
The response of mesospheric H2O and CO to solar irradiance variability in models and observations
Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry
Photochemistry on the bottom side of the mesospheric Na layer
Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region
A new model of meteoric calcium in the mesosphere and lower thermosphere
Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach
NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010
HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009
Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)
A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation
Middle atmospheric changes caused by the January and March 2012 solar proton events
Implications of the O + OH reaction in hydroxyl nightglow modeling
Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?
Implementation and testing of a simple data assimilation algorithm in the regional air pollution forecast model, DEOM
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024, https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Short summary
Sprites are electrical discharges that occur in the upper atmosphere. Recent modelling and observational data suggest that they may have a measurable impact on atmospheric chemistry. We incorporate both the occurrence rate of sprites and their production of chemical species into a chemistry–climate model. While our results indicate that sprites have a minimal global influence on atmospheric chemistry, they underscore their noteworthy importance at a regional scale.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Alexey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
EGUsphere, https://doi.org/10.5194/egusphere-2024-614, https://doi.org/10.5194/egusphere-2024-614, 2024
Short summary
Short summary
The assumptions of chemical equilibrium of trace gases are widely used for retrieval of poorly measured characteristics of the mesosphere – lower thermosphere from rocket and satellite data and for study the HOx – Ox chemistry and airglows. In this work, we analyze the fundamental aspects of chemical equilibrium of some trace gases and discuses their possible applications.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Guangan Chen, Zhi Qin, Ximing Li, and Linhua Liu
Atmos. Chem. Phys., 23, 10643–10659, https://doi.org/10.5194/acp-23-10643-2023, https://doi.org/10.5194/acp-23-10643-2023, 2023
Short summary
Short summary
We provided an accurate potential energy surface of PO2(X2A1), which can be used for the molecular simulations of the reactive or non-reactive collisions and photodissociation of PO2 in atmospheres. It can also be a reliable component for constructing other larger molecular systems containing PO2. The reaction probability, integral cross sections, and rate constants for P(4S) + O2(X3Σ−) → O(3P) + PO((X2Π) are calculated, which might be useful for modelling the P chemistry in atmospheres.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021, https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary
Short summary
Sprites are electrical discharges above thunderstorms. We performed model simulations of the chemical processes in sprites to compare them with measurements of chemical perturbations above sprite-producing thunderstorms.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020, https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Short summary
Effects of solar proton events (SPEs) on middle atmosphere chemistry were studied using the WACCM-D chemistry–climate model, including an improved representation of lower ionosphere ion chemistry. This study includes 66 events in the years 1989–2012 and uses a statistical approach to determine the impact of the improved chemistry scheme. The differences shown highlight the importance of ion chemistry in models used to study energetic particle precipitation.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the
best-fit modeland the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Mikhail Y. Kulikov, Anton A. Nechaev, Mikhail V. Belikovich, Tatiana S. Ermakova, and Alexander M. Feigin
Atmos. Chem. Phys., 18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018, https://doi.org/10.5194/acp-18-7453-2018, 2018
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary
Short summary
Results from global models are used to analyze the impact of energetic particle precipitation on the middle atmosphere (10–80 km). Model results agree well with observations, and show strong enhancements of NOy, long-lasting ozone loss, and a net heating in the uppermost stratosphere (~35–45 km) during polar winter which changes sign in spring. Energetic particle precipitation therefore has the potential to impact atmospheric dynamics, starting from a warmer winter-time upper stratosphere.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Anna Totterdill, Tamás Kovács, Wuhu Feng, Sandip Dhomse, Christopher J. Smith, Juan Carlos Gómez-Martín, Martyn P. Chipperfield, Piers M. Forster, and John M. C. Plane
Atmos. Chem. Phys., 16, 11451–11463, https://doi.org/10.5194/acp-16-11451-2016, https://doi.org/10.5194/acp-16-11451-2016, 2016
Short summary
Short summary
In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. We have also determined their atmospheric lifetimes using the Whole Atmosphere Community Climate Model.
Bernd Funke, Manuel López-Puertas, Gabriele P. Stiller, Stefan Versick, and Thomas von Clarmann
Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, https://doi.org/10.5194/acp-16-8667-2016, 2016
Short summary
Short summary
We present a semi-empirical model for the reconstruction of polar winter descent of reactive nitrogen (NOy) produced by energetic particle precipitation (EPP) into the stratosphere. It can be used to prescribe NOy in chemistry climate models with an upper lid below the EPP source region. We also found a significant reduction of the EPP-generated NOy during the last 30 years, likely affecting the long-term NOy trend by counteracting the expected increase caused by growing N2O emission.
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
P. J. S. B. Caridade, J.-Z. J. Horta, and A. J. C. Varandas
Atmos. Chem. Phys., 13, 1–13, https://doi.org/10.5194/acp-13-1-2013, https://doi.org/10.5194/acp-13-1-2013, 2013
T. von Clarmann, F. Hase, B. Funke, M. López-Puertas, J. Orphal, M. Sinnhuber, G. P. Stiller, and H. Winkler
Atmos. Chem. Phys., 10, 9953–9964, https://doi.org/10.5194/acp-10-9953-2010, https://doi.org/10.5194/acp-10-9953-2010, 2010
J. Frydendall, J. Brandt, and J. H. Christensen
Atmos. Chem. Phys., 9, 5475–5488, https://doi.org/10.5194/acp-9-5475-2009, https://doi.org/10.5194/acp-9-5475-2009, 2009
Cited articles
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., DeMaziére, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005.
Canty, T., Pickett, H. M., Salawitch, R. J., Jucks, K. W., Traub, W. A., and Waters, J. W.: Stratospheric and mesospheric HOx: results from Aura MLS and FIRS-2, Geophys. Res. Lett., 33, L12802, https://doi.org/10.1029/2006GL025964, 2006.
Damiani, A., Storini, M., Laurenza, M., and Rafanelli, C.: Solar particle effects on minor components of the Polar atmosphere, Ann. Geophys., 26, 361–370, https://doi.org/10.5194/angeo-26-361-2008, 2008.
Damiani, A., Diego, P., Laurenza, M., Storini, M., and Rafanelli, C.: Ozone variability related to SEP events occurring during solar cycle no. 23, Adv. Space Res., 43, 28–40, 2009.
Damiani, A., Storini, M., Rafanelli, C., and Diego, P.: The hydroxyl radical as an indicator of SEP fluxes in the high-latitude terrestrial atmosphere, Adv. Space Res., 46, 1225–1235, 2010.
Forkman, P., Eriksson, P., Winnberg, A., Garcia, R. R., and Kinnison, D.: Longest continuous ground-based measurements of mesospheric CO, Geophys. Res. Lett., 30, 1532, https://doi.org/10.1029/2003GL016931, 2003.
Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F.: Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485, 2007.
Gopalswamy, N., Xie, H., Yashiro, S., and Usoskin, I.: Coronal mass ejections and ground level enhancements, 29th International Cosmic Ray Conference Pune, India, 1, 101–104, 3–10 August 2005.
Jackman, C. H. and McPeters, R. D.: The response of ozone to solar proton events during solar cycle 21: a theoretical interpretation, J. Geophys. Res., 90, 7955–7966, 1985.
Jackman, C. H., Frederick, J. E., and Stolarski, R. S.: Production of odd nitrogen in the stratosphere and mesosphere: an intercomparison of source strengths, J. Geophys. Res., 85, 7495–7505, 1980.
Jackman, C. H., Fleming, E. L., and Vitt, F. M.: Influence of extremely large solar proton events in a changing stratosphere, J. Geophys. Res., 105, 11659–11670, 2000.
Jackman, C. H., McPeters, R. D., Labow, G. J., Fleming, E. L., Praderas, C. J., and Russell, J. M.: Northern Hemisphere atmospheric effects due to the July 2000 solar proton event, Geophys. Res. Lett., 28, 2883–2886, 2001.
Jackman, C. H., DeLand, M. T., Labow, G. J., Fleming, E. L., Weisenstein, D. K., Ko, M. K. W., Sinnhuber, M., and Russell, J. M.: Neutral atmospheric influences of the solar proton events in October-November 2003, J. Geophys. Res., 110, A09S27, https://doi.org/10.1029/2004JA010888, 2005.
Jackman, C. H., Roble, R. G., and Fleming, E. L.: Mesospheric dynamical changes induced by the solar proton events in October-November 2003, Geophys. Res. Lett., 34, L04812, https://doi.org/10.1029/2006GL028328, 2007.
Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Fleming, E. L., Labow, G. J., Randall, C. E., López-Puertas, M., Funke, B., von Clarmann, T., and Stiller, G. P.: Short- and medium-term atmospheric constituent effects of very large solar proton events, Atmos. Chem. Phys., 8, 765–785, https://doi.org/10.5194/acp-8-765-2008, 2008.
Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Randall, C. E., Fleming, E. L., and Frith, S. M.: Long-term middle atmospheric influence of very large solar proton events, J. Geophys. Res., 114, D11304, https://doi.org/10.1029/2008JD011415, 2009.
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302, https://doi.org/10.1029/2006JD007879, 2007.
Klekociuk, A. R., Bombardieri, D. J., Duldig, M. L., and Michael, K. J.: Atmospheric chemistry effects of the 20 January 2005 solar proton event, Adv. Geosci.,14, Solar Terrestrial, 305–319, 2007.
López-Puertas, M., Funke, B., Gil-López, S., von Clarmann, T., Stiller, G. P., Höpfner, M., Kellmann, S., Fischer, H., and Jackman, C. H.: Observation of NOx enhancement and ozone depletion in the Northern and Southern Hemispheres after the October-November 2003 solar proton events, J. Geophys. Res., 110, A09S43, https://doi.org/10.1029/2005JA011050, 2005a.
López-Puertas, M., Funke, B., Gil-López, S., von Clarmann, T., Stiller, G. P., Höpfner, M., Kellmann, S., Mengistu Tsidu, G., Fischer, H., and Jackman, C. H.: HNO3, N2O5, and ClONO2 enhancements after the October-November 2003 solar proton events, J. Geophys. Res., 110, A09S44, https://doi.org/10.1029/2005JA011051, 2005b.
Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., and Matthes, K.: Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, https://doi.org/10.1029/2006JD008306, 2007.
McPeters, R. D., Jackman, C. H., and Stassinopoulos, E. G.: Observations of ozone depletion associated with solar proton events, J. Geophys. Res., 86, 12071–12081, 1981.
Orsolini, Y. J., Manney, G. L., Santee, M. L., and Randall, C. E.: An upper stratospheric layer of enhanced HNO3 following exceptional solar storms, Geophys. Res. Lett., 32, L12S01, https://doi.org/10.1029/2004GL021588, 2005.
Pickett, H. M., Drouin, B. J., Canty, T., Salawitch, R. J., Fuller, R. A., Perun, V. S., Livesey, N. J., Waters, J. W., Stachnik, R. A., Sander, S. P., Traub, W. A., Jucks, K. W., and Minschwaner, K.: Validation of Aura Microwave Limb Sounder OH and HO2 measurements, J. Geophys. Res. 113, D16S30, https://doi.org/10.1029/2007JD008775, 2008.
Porter, H. S., Jackman, C. H., and Green, A. E. S.: Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys., 65, 154–167, 1976.
Randall, C. E., Harvey, V. L., Manney, G. L., Orsolini, Y., Codrescu, M., Sioris, C., Brohede, S., Haley, C. S., Gordley, L. L., Zawodny, J. M., and Russell, J. M.: Stratospheric effects of energetic particle precipitation in 2003–2004, Geophys. Res. Lett., 32, L05802, https://doi.org/10.1029/2004GL022003, 2005.
Randall, C. E., Harvey, V. L., Singleton, C. S., Bernath, P. F., Boone, C. D., and Kozyra, J. U.: Enhanced NOx in 2006 linked to strong upper stratospheric Arctic vortex, Geophys. Res. Lett., 33, L18811, https://doi.org/10.1029/2006GL027160, 2006.
Richter, J. H. and Garcia, R. R.: On the forcing of the Mesospheric Semi-Annual Oscillation in the Whole Atmosphere Community Climate Model, Geophys. Res. Lett., 33, L01806, https://doi.org/10.1029/2005GL024378, 2006.
Rinsland, C. P., Boone, C., Nassar, R., Walker, K., Bernath, P., McConnell, J. C., and Chiou, L.: Atmospheric Chemistry Experiment (ACE) Arctic stratospheric measurements of NOx during February and March 2004: Impact of intense solar flares, Geophys. Res. Lett., 32, L16S05, https://doi.org/10.1029/2005GL022425, 2005.
Sassi, F., Garcia, R. R., Boville, B. A., and Liu, H.: On temperature inversions and the mesospheric surf zone, J. Geophys. Res., 107, 4380, https://doi.org/10.1029/2001JD001525, 2002.
Sassi, F., Kinnison, D., Boville, B. A., Garcia, R. R., and Roble, R.: Effect of El Nino-Southern oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere, J. Geophys. Res., 109, D17108, https://doi.org/10.1029/2003JD004434, 2004.
Seppälä, A., Verronen, P. T., Sofieva, V. F., Tamminen, J., Kyrölä, E., Rodger, C. J., and Clilverd, M. A.: Destruction of the tertiary ozone maximum during a solar proton event, Geophys. Res. Lett., 33, L07804, https://doi.org/10.1029/2005GL025571, 2006.
Seppälä, A., Verronen, P. T., Clilverd, M. A., Randall, C. E., Tamminen, J., Sofieva, V., Backman, L., and Kyrölä, E.: Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006, Geophys. Res. Lett., 34, L12810, https://doi.org/10.1029/2007GL029733, 2007.
Simnett, G. M., and Roelof, E., C.,: Timing of the relativistic proton acceleration responsible for the GLE on 20 January, 2005, 29th International Cosmic Ray Conference Pune, India, 1, 233–236, 3–10 August 2005.
Solomon, S., Rusch, D. W., Gerard, J.-C., Reid, G. C., and Crutzen, P. J.: The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. 2. Odd hydrogen, Planet. Space Sci., 29, 885–892, 1981.
Solomon, S., Reid, G. C., Rusch, D. W., and Thomas, R. J.: Mesospheric ozone depletion during the solar proton event of July 13, 1982, Part II. Comparison between theory and measurements, Geophys. Res. Lett., 10, 257–260, 1983.
Tylka, A. J. and Dietrich, W. F.: A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, in: Proceedings of the 31st ICRC, Lodz, 7–15 July 2009.
Usoskin, I. G., Tylka, A. J., and Kovaltsov, G. A.: Ionization effect of strong particle events: low-middle atmosphere, in: Proceedings of the 31st ICRC, Lodz, 7–15 July 2009.
Usoskin, I. G., Kovaltsov, G. A., Mironova, I. A., Tylka, A. J., and Dietrich, W. F.: Ionization effect of solar particle GLE events in low and middle atmosphere, Atmos. Chem. Phys., 11, 1979–1988, https://doi.org/10.5194/acp-11-1979-2011, 2011.
Verronen, P. T., Seppälä, A., Kyrola, E., Tamminen, J., Pickett, H. M., and Turunen, E.: Production of odd hydrogen in the mesosphere during the January 2005 solar proton event, Geophys Res. Lett., 33, L24811, https://doi.org/10.1029/2006GL028115, 2006.
Verronen, P. T., Rodger, C. J., Clilverd, M. A., Pickett, H. M., and Turunen, E.: Latitudinal extent of the January 2005 solar proton event in the Northern Hemisphere from satellite observations of hydroxyl, Ann. Geophys., 25, 2203–2215, https://doi.org/10.5194/angeo-25-2203-2007, 2007.
Verronen, P. T., Funke, B., López-Puertas, M., Stiller, G. P., von Clarmann, T., Glatthor, N., Enell, C.-F., Turunen, E., and Tamminen, J.: About the increase of HNO3 in the stratopause region during the Halloween 2003 solar proton event, Geophys. Res. Lett., 35, L20809, https://doi.org/10.1029/2008GL035312, 2008.
Versick, S.: Ableitung von \chem{H_{2}O_{2}} aus MIPAS/ENVISAT-Beobachtungen und Untersuchung der Wirkung von energetischen Teilchen auf den chemischen Zustand der mittleren Atmosphäre, Ph.D. Dissertation (in German), Karlsruher Institute für Technologie, Karlsruhe, Germany, 2010.
Versick, S., Stiller, G., Glatthor, N., Reddmann, T., Ruhnke, R., von Clarmann, T., Höpfner, M., Kiefer, M., Linden, A., Kellmann, S., and Grabowski, U.: MIPAS-observations and model results for \chem{H_{2}O_{2}} with focus on the SPEs 2003 and 2005, poster presented at the 2nd International High Energy Particle Precipitation in the Atmosphere (HEPPA) Workshop, Boulder, CO, 6–8 October, 2009.