Articles | Volume 10, issue 20
https://doi.org/10.5194/acp-10-9953-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-10-9953-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?
T. von Clarmann
Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
F. Hase
Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
B. Funke
Instituto de Astrof{í}sica de Andaluc{í}a, CSIC, Granada, Spain
M. López-Puertas
Instituto de Astrof{í}sica de Andaluc{í}a, CSIC, Granada, Spain
J. Orphal
Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
M. Sinnhuber
Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
Bremen University, Institute of Environmental Physics, Bremen, Germany
G. P. Stiller
Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
H. Winkler
Bremen University, Institute of Environmental Physics, Bremen, Germany
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Chemistry (chemical composition and reactions)
Global and regional chemical influence of sprites: reconciling modelling results and measurements
Technical Note: Nighttime OH and HO2 chemical equilibria in the mesosphere – lower thermosphere
Boundary of nighttime ozone chemical equilibrium in the mesopause region: long-term evolution determined using 20-year satellite observations
Reaction dynamics of P(4S) + O2(X3Σ−g) → O(3P) + PO(X2Π) on a global CHIPR potential energy surface of PO2(X2A1): implications for atmospheric modelling
Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
The response of mesospheric H2O and CO to solar irradiance variability in models and observations
Statistical response of middle atmosphere composition to solar proton events in WACCM-D simulations: the importance of lower ionospheric chemistry
Photochemistry on the bottom side of the mesospheric Na layer
Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region
A new model of meteoric calcium in the mesosphere and lower thermosphere
Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach
NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010
HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009
Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)
A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation
Middle atmospheric changes caused by the January and March 2012 solar proton events
Implications of the O + OH reaction in hydroxyl nightglow modeling
Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005
Implementation and testing of a simple data assimilation algorithm in the regional air pollution forecast model, DEOM
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024, https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Short summary
Sprites are electrical discharges that occur in the upper atmosphere. Recent modelling and observational data suggest that they may have a measurable impact on atmospheric chemistry. We incorporate both the occurrence rate of sprites and their production of chemical species into a chemistry–climate model. While our results indicate that sprites have a minimal global influence on atmospheric chemistry, they underscore their noteworthy importance at a regional scale.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Alexey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
EGUsphere, https://doi.org/10.5194/egusphere-2024-614, https://doi.org/10.5194/egusphere-2024-614, 2024
Short summary
Short summary
The assumptions of chemical equilibrium of trace gases are widely used for retrieval of poorly measured characteristics of the mesosphere – lower thermosphere from rocket and satellite data and for study the HOx – Ox chemistry and airglows. In this work, we analyze the fundamental aspects of chemical equilibrium of some trace gases and discuses their possible applications.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Guangan Chen, Zhi Qin, Ximing Li, and Linhua Liu
Atmos. Chem. Phys., 23, 10643–10659, https://doi.org/10.5194/acp-23-10643-2023, https://doi.org/10.5194/acp-23-10643-2023, 2023
Short summary
Short summary
We provided an accurate potential energy surface of PO2(X2A1), which can be used for the molecular simulations of the reactive or non-reactive collisions and photodissociation of PO2 in atmospheres. It can also be a reliable component for constructing other larger molecular systems containing PO2. The reaction probability, integral cross sections, and rate constants for P(4S) + O2(X3Σ−) → O(3P) + PO((X2Π) are calculated, which might be useful for modelling the P chemistry in atmospheres.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021, https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary
Short summary
Sprites are electrical discharges above thunderstorms. We performed model simulations of the chemical processes in sprites to compare them with measurements of chemical perturbations above sprite-producing thunderstorms.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020, https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Short summary
Effects of solar proton events (SPEs) on middle atmosphere chemistry were studied using the WACCM-D chemistry–climate model, including an improved representation of lower ionosphere ion chemistry. This study includes 66 events in the years 1989–2012 and uses a statistical approach to determine the impact of the improved chemistry scheme. The differences shown highlight the importance of ion chemistry in models used to study energetic particle precipitation.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary
Short summary
A model was developed to derive night-time atomic oxygen (O(3P)) and atomic hydrogen (H) from satellite observations in the altitude region between 75 km and 100 km. Comparisons between the
best-fit modeland the measurements suggest that chemical reactions involving O2 and O(3P) might occur differently than is usually assumed in literature. This considerably affects the derived abundances of O(3P) and H, which in turn might influence air temperature and winds of the whole atmosphere.
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Mikhail Y. Kulikov, Anton A. Nechaev, Mikhail V. Belikovich, Tatiana S. Ermakova, and Alexander M. Feigin
Atmos. Chem. Phys., 18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018, https://doi.org/10.5194/acp-18-7453-2018, 2018
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary
Short summary
Results from global models are used to analyze the impact of energetic particle precipitation on the middle atmosphere (10–80 km). Model results agree well with observations, and show strong enhancements of NOy, long-lasting ozone loss, and a net heating in the uppermost stratosphere (~35–45 km) during polar winter which changes sign in spring. Energetic particle precipitation therefore has the potential to impact atmospheric dynamics, starting from a warmer winter-time upper stratosphere.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Anna Totterdill, Tamás Kovács, Wuhu Feng, Sandip Dhomse, Christopher J. Smith, Juan Carlos Gómez-Martín, Martyn P. Chipperfield, Piers M. Forster, and John M. C. Plane
Atmos. Chem. Phys., 16, 11451–11463, https://doi.org/10.5194/acp-16-11451-2016, https://doi.org/10.5194/acp-16-11451-2016, 2016
Short summary
Short summary
In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. We have also determined their atmospheric lifetimes using the Whole Atmosphere Community Climate Model.
Bernd Funke, Manuel López-Puertas, Gabriele P. Stiller, Stefan Versick, and Thomas von Clarmann
Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, https://doi.org/10.5194/acp-16-8667-2016, 2016
Short summary
Short summary
We present a semi-empirical model for the reconstruction of polar winter descent of reactive nitrogen (NOy) produced by energetic particle precipitation (EPP) into the stratosphere. It can be used to prescribe NOy in chemistry climate models with an upper lid below the EPP source region. We also found a significant reduction of the EPP-generated NOy during the last 30 years, likely affecting the long-term NOy trend by counteracting the expected increase caused by growing N2O emission.
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
P. J. S. B. Caridade, J.-Z. J. Horta, and A. J. C. Varandas
Atmos. Chem. Phys., 13, 1–13, https://doi.org/10.5194/acp-13-1-2013, https://doi.org/10.5194/acp-13-1-2013, 2013
C. H. Jackman, D. R. Marsh, F. M. Vitt, R. G. Roble, C. E. Randall, P. F. Bernath, B. Funke, M. López-Puertas, S. Versick, G. P. Stiller, A. J. Tylka, and E. L. Fleming
Atmos. Chem. Phys., 11, 6153–6166, https://doi.org/10.5194/acp-11-6153-2011, https://doi.org/10.5194/acp-11-6153-2011, 2011
J. Frydendall, J. Brandt, and J. H. Christensen
Atmos. Chem. Phys., 9, 5475–5488, https://doi.org/10.5194/acp-9-5475-2009, https://doi.org/10.5194/acp-9-5475-2009, 2009
Cited articles
Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements, J. Geophys. Res., 102, 19969–19976, 1997.
Brasseur, G. and Solomon, S.: Aeronomy of the {M}iddle {A}tmosphere–{C}hemistry and {P}hysics of the {S}tratosphere and {M}esosphere, Atmospheric and Oceanographic Sciences Library 32, Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, third edn., 2005.
Canty, T., Pickett, H. M., Salawitch, R. J., Jucks, K. W., Traub, W. A., and Waters, J. W.: Stratospheric and mesospheric HOx}: Results from {A}ura {MLS and {FIRS}-2, Geophys. Res. Lett., 33, L12802, https://doi.org/10.1029/2006GL025964, 2006.
Chen, W.-C. and Marcus, R. A.: On the theory of the reaction rate of vibrationally excited CO molecules with OH radicals, J. Chem. Phys., 124, 024306, https://doi.org/10.1063/1.2148408, 2006.
Chipperfield, M.: Multiannual Simulations with a Three-Dimensional Chemical Transport Model, J. Geophys. Res., 104, 1781–1805, 1999.
Coltharp, R. N., Worley, S. D., and Potter, A. E.: Reaction Rate of Vibrationally Excited Hydroxyl with Ozone, Appl. Opt., 10, 1786–1789, 1971.
Conway, R. R., Summers, M. E., Stevens, M. H., Cardon, J. G., Preusse, P., and Offermann, D.: Satellite Observations of Upper Stratospheric and Mesospheric OH}: The {HOx Dilemma, Geophys. Res. Lett., 27, 2613–2616, 2000.
Crutzen, P. J.: Mesospheric Mysteries, Science, 277, 1951–1952, https://doi.org/10.1126/science.277.5334.1951, 1997.
Crutzen, P. J. and Solomon, S.: Response of mesospheric ozone to particle precipitation, Planet. Space Sci., 28, 1147–1153, 1980.
Delmdahl, R. F., Baumg{ä}rtel, S., and Gericke, K.-H.: State-to-state dissociation of OClO}({{\it{Ã}}}2{{\it A}}$_2 \nu_1$,0,0) $\longrightarrow$ {ClO}({{\it X}}2 ${\Pi}_{\Omega}$,{\it v,{{\it J}}) + {O}(3{{\it P}}), J. Chem. Phys., 104, 2883–2890, 1998.
Finlayson-Pitts, B. J., Toohey, D. W., and Ezell, M. J.: Relative rate constants for removal of vibrationally excited {OH}({X}$^2 \pi_i$)$_{v=9}$ by some small molecules at room temperature, Int. J. Chem. Kinet., 15, 151–165, 1983.
Funke, B., L{ó}pez-Puertas, M., Stiller, G. P., von Clarmann, T., and H{ö}pfner, M.: A new non–{LTE} Retrieval Method for Atmospheric Parameters From MIPAS–ENVISAT Emission Spectra, Adv. Space Res., 27, 1099–1104, 2001{a}.
Funke, B., Stiller, G. P., von Clarmann, T., H{ö}pfner, M., and L{ó}pez-Puertas, M.: A New non-{LTE} Retrieval Method for Atmospheric Parameters from MIPAS–ENVISAT Emission Spectra, in: IRS 2000: Current Problems in Atmospheric Radiation, edited by: Smith, W. L. and Timofeyev, Y. M., 761–764, A. Deepak Publishing, Hampton, Va, USA, 2001{b}.
Funke, B., Martin-Torres, F. J., L{ó}pez-Puertas, M., H{ö}pfner, M., Hase, F., L{ó}pez-Valverde, M. A., and Garcia-Comas, M.: A generic non-{LTE} population model for {MIPAS}-{E}nvisat data analysis, in: Geophys. Res., Abstracts 4. Abstracts of the Contributions of the European Geophysical Society, Nice, France, 21–26 April 2002, CD-ROM, ISSN:1029-7006, 2002, 2002.
Garcia, R. R. and Solomon, S.: A Numerical Model of the Zonally Averaged Dynamical and Chemical Structure of the Middle Atmosphere, J. Geophys. Res., 88, 1379–1400, 1983.
Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F.: Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485, 2007.
Gordon, R. J. and Lin, M. C.: The reaction of nitric oxide with vibrationally excited ozone. II, J. Chem. Phys., 64, 1058–1064, 1976.
Hedin, A. E.: Extension of the MSIS Thermosphere Model into the Middle and Lower Atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.
Hierl, P. M., Dotan, I., Seeley, J. V., Van Doren, J. M., Morris, R. A., and Viggiano, A. A.: Rate constants for the reactions of {O}+ with {N}2 and {O}2 as a function of temperature (300–1800 {K}), J. Chem. Phys., 106, 3540–3544, 1997.
Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie, X., Lamarque, J., Schultz, M. G., Tyndall, G. S., Orlando, J. F., and Brasseur, G. P.: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108, 4784, https://doi.org/10.1029/2002_JD002853, 2003.
Hui, K.-K. and Cool, T. A.: Experiments concerning the laser-enhanced reaction between vibrationally excited O}3 and {NO, J. Chem. Phys., 68, 1022–1037, 1978.
JÖckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth Submodel System (MESSy) – a new approach towards Earth System Modeling, Atmos. Chem. Phys., 5, 433–444, https://doi.org/10.5194/acp-5-433-2005, 2005.
Jucks, K. W., Johnson, D. G., Chance, K. V., Traub, W. A., Salawitch, R. J., and Stachnik, R. A.: Ozone production and loss rate measurements in the middle stratosphere, J. Geophys. Res., 101, 28785–28792, 1996.
Kaufmann, M., Gusev, O. A., Grossmann, K. U., Mart{í}n-Torres, F. J., Marsh, D. R., and Kutepov, A. A.: Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere, J. Geophys. Res., 108, 4399, https://doi.org/10.1029/2002JD003186, 2003.
Kaufmann, M., Lehmann, C., Hoffmann, L., Funke, B., L{ó}pez-Puertas, M., von Savigny, C., and Riese, M.: Chemical heating rates derived from SCIAMACHY vibrationally excited OH limb emission spectra, Adv. Space Res., 41, 1914–1920, https://doi.org/10.1016/j.asr.2007.07.045, 2008.
Kneba, M. and Wolfrum, J.: Bimolecular reactions of vibrationally excited molecules, Ann. Rev. Phys. Chem., 31, 47–79, 1980.
Kouker, W., Langbein, I., Reddmann, T., and Ruhnke, R.: The {K}arlsruhe {S}imulation {M}odel of the {M}iddle {A}tmosphere ({KASIMA}), {V}ersion 2, Wissenschaftliche Berichte FZKA 6278, Forschungszentrum Karlsruhe, 1999.
Lef{è}vre, F., Brasseur, G. P., Folkins, I., Smith, A. K., and Simon, P.: Chemistry of the 1991–1992 stratospheric winter: {T}hree-dimensional model simulations, J. Geophys. Res., 99, 8183–8195, 1994.
L{ó}pez-Puertas, M. and Taylor, F. W.: Non-{LTE} radiative transfer in the Atmosphere, World Scientific Pub., Singapore, 2001.
Lunt, S. T., Marston, G., and Wayne, R. P.: Formation of O}2($a^1 {\Delta}_g$) and vibrationally excited {OH in the reaction between O atoms and {HO}x species, J. Chem. Soc., Faraday Trans. 2, 84, 899–912, https://doi.org/10.1039/F29888400899, 1988.
Madronich, S. and Flocke, S.: The role of solar radiation in atmospheric chemistry, in: Handbook of Environmental Chemistry, edited by Boule, P., pp. 1–26, Springer-Verlag, Heidelberg, 1998.
Makhlouf, U. B., Picaad, R. H., and Winick, J. R.: Photo-chemical-dynamical modeling of the measured response of airglow to gravity waves. 1. B}asic model for {OH airglow, J. Geophys. Res., 100, 11289–11311, 1995.
McKenna, D. S., Groo{ß}, J.-U., G{ü}nther, G., Konopka, P., M{ü}ller, R., Carver, G., and Sasano, Y.: A new {C}hemical {L}agrangian {M}odel of the {S}tratosphere ({CLaMS}) 2. {F}ormulation of chemistry scheme and initialization, J. Geophys. Res., 107, 4256, https://doi.org/10.1029/2000JD000113, 2002.
Miller, R. L., Suits, A. G., Houston, P. L., Toumi, R., Mack, J. A., and Wodtke, A. M.: The "Ozone Deficit" Problem: O}2({X, $v\ge$26) + {O}(3{P}) from 226-nm Ozone Photodissociation, Science, 265, 1831–1838, 1994.
Mlynczak, M. G. and Solomon, S.: A detailed evaluation of the heating efficiency in the middle atmosphere, J. Geophys. Res., 98, 10517–10541, 1993.
Osterman, G. B., Salawitch, R. J., Sen, B., Toon, G. C., Stachnik, R. A., Pickett, H. M., Margitan, J. J., Blavier, J., and Peterson, D. B.: Balloon-borne measurements of stratospheric radicals and their precursors: Implications for the production and loss of ozone, Geophys. Res. Lett., 24, 1107–1110, 1997.
Patten Jr., K. O., Connell, P. S., Kinnison, D. E., Wuebbles, D. J., Slanger, T. G., and Froidevaux, L.: Effect of vibrationally excited oxygen on ozone production in the stratosphere, J. Geophys. Res., 99, 1211–1223, 1994.
Pickett, H. M., Read, W. G., Lee, K. K., and Yung, Y. L.: Observation of night OH in the mesosphere, Geophys. Res. Lett., 33, L19808, https://doi.org/10.1029/2006GL026910, 2006.
Picone, J., Hedin, A., Drob, D., and Aikin, A.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Prasad, S. S. and Zipf, E. C.: Atmospheric production of nitrous oxide from excited ozone and its potentially important implications for global change studies, J. Geophys. Res., 113, D15307, https://doi.org/10.1029/2007/JD009447, 2008.
Rothman, L. S., Jacquemart, D., Barbe, A., Benner, D. C., Birk, M., Brown, L. R., Carleer, M. R., Chackerian Jr., C., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Flaud, J.-M., Gamache, R. R., Goldman, A., Hartmann, J.-M., Jucks, K. W., Maki, A. G., Mandin, J.-Y., Massie, S. T., Orphal, J., Perrin, A., Rinsland, C. P., Smith, M. A. H., Tennyson, J., Tolchenov, R. N., Toth, R. A., Vander Auwera, J., Varanasi, P., and Wagner, G.: The {\it{HITRAN}} 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139–204, https://doi.org/10.1016/j.jqsrt.2004.10.008, 2005.
Sander, S. P., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., Orkin, V. L., Friedl, R. R., and Keller-Rudek, H.: Chemical kinetics and photochemical data for use in atmospheric studies: evaluation number 15, {JPL P}ublication 06-2, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2006.
Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., Fomichev, V. I., Kinnison, D., Marsch, D., and Walters, S.: The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-year solar cycle and {CO}2 doubling, J. Clim., 19, 3903–3931, https://doi.org/10.1175/JCLI3829.1, 2006.
Shi, J. and Barker, J. R.: Odd Oxygen Formation in the Laser Irradiation of {O}2 at 248 nm: {E}vidence for Reactions of {O}2 in the {H}erzberg States With Ground State {O}2, J. Geophys. Res., 97, 13039–13050, 1992.
Slanger, T. G.: Energetic Molecular Oxygen in the Atmosphere, Science, 265, 1817–1818, 1994.
Slanger, T. G., Jusinski, L. E., Black, G., and Gadd, G. E.: A New Laboratory Source of Ozone and Its Potential Atmospheric Implications, Science, 241, 945–950, 1988.
Smith, G. P. and Copeland, R. A.: Comment on "{A}re vibrationally excited molecules a clue for the "{O}3 deficit problem" and "{HO}x dilemma" in the middle atmosphere?, J. Phys. Chem. (A), 109, 2698–2699, https://doi.org/10.1021/jp0405613, 2004.
Summers, M. E., Conway, R. R., Siskind, D. E., Stevens, M. H., Offermann, D., Riese, M., Preusse, P., Strobel, D. F., and Russell III, J. M.: Implications of Satellite OH Observations for Middle Atmospheric H2O and Ozone, Science, 277, 1967–1970, 1997.
Toumi, R.: An Evaluation of Autocatalytic Ozone Production from Vibrationally Excited Oxygen in the Middle Atmosphere, J. Atmos. Chem., 15, 69–77, 2008.
Toumi, R., Kerridge, B. J., and Pyle, J. A.: Highly vibrationally excited oxygen as a potential source of ozone in the upper stratosphere and mesosphere, Nature, 351, 217–219, 1991.
Toumi, R., Houston, P. L., and Wodtke, A. M.: Reactive {O}2($\nu \ge$ 26) as a source of stratospheric {O}3, J. Chem. Phys., 104, 775–776, 1996.
Vadas, S. L. and Fritts, D. C.: Thermospheric responses to gravity waves: {I}nfluences of increasing viscosity and thermal diffusivity, Int. J. Photoenergy, 2008, 138091, https://doi.org/10.1155/2008/138091, 2008.
Varandas, A. J. C.: On the "Ozone Deficit Problem": {W}hat Are {O}x and {HO}x Catalytic Cycles for Ozone Depletion Hiding?, Chem. Phys. Chem., 3, 433–441, 2002.
Varandas, A. J. C.: Reactive and non-reactive vibrational quenching in O}+{OH collisions, Chem. Phys. Lett., 396, 182–190, https://doi.org/10.1016/j.cplett.2004.08.023, 2004{a}.
Varandas, A. J. C.: Are vibrationally excited molecules a clue for the "{O}3 deficit problem" and "{HO}x dilemma" in the middle atmosphere?, J. Phys. Chem. (A), 108, 758–769, 2004{b}.
Varandas, A. J. C.: Reply to the Comment on "{A}re vibrationally excited molecules a clue for the "{O}3 deficit problem" and "{HO}x dilemma" in the middle atmosphere?", J. Phys. Chem. (A), 109, 2700–2702, 2005.
Varandas, A. J. C. and Zhang, L.: {OH}(υ)+{O}3: {D}oes chemical reaction dominate over non-reactive quenching?, Chem. Phys. Lett., 340, 62–70, 2001.
Wieder, G. M. and Marcus, R. A.: Dissociation and Isomerization of Vibrationally Excited Species. II. Unimolecular Reaction Rate Theory and Its Application, J. Chem. Phys., 37, 1835–1852, 1962.
Winkler, H., Kazeminejad, S., Sinnhuber, M., Kallenrode, M., and Notholt, J.: Conversion of mesospheric HCl into active chlorine during the solar proton event in July 2000 in the northern polar region, J. Geophys. Res., 114, D00I03, https://doi.org/10.1029/2008JD011587, 2009.
Wissing, J., Kallenrode, M., Wieters, N., Winkler, H., and Sinnhuber, M.: Atmospheric Ionisation Module OSnabr{ü}ck ({AIMOS}) 2: T}otal Particle Inventory in the {O}ctober/{N}ovember 2003 event and Ozone, {J. {G}eophys. {R}es., 115, A02308, https://doi.org/10.1029/2009JA014419, 2010.
Worley, S. D., Coltharp, R. N., and Potter, Jr., A. E.: Rates of Interaction of Vibrationally Excited Hydroxyl (υ=9) with Diatomic and Small Polyatomic Molecules, J. Phys. Chem., 76, 1511–1514, 1972.
Yankovsky, V. A. and Manuilova, R. O.: Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval, Ann. Geophys., 24, 2823–2839, https://doi.org/10.5194/angeo-24-2823-2006, 2006.
Zipf, E. C. and Prasad, S. S.: Experimental evidence that excited ozone is a source of nitrous oxide, Geophys. Res. Lett., 25, 4333–4336, 1998.