Articles | Volume 10, issue 23
https://doi.org/10.5194/acp-10-11881-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-10-11881-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Retrieval of atmospheric parameters from GOMOS data
E. Kyrölä
Finnish Meteorological Institute, Earth Observation, Helsinki, Finland
J. Tamminen
Finnish Meteorological Institute, Earth Observation, Helsinki, Finland
V. Sofieva
Finnish Meteorological Institute, Earth Observation, Helsinki, Finland
J. L. Bertaux
Laboratoire Atmosphères, Milieux, Observations Spatiales, Université Versailles St-Quentin, CNRS-INSU, Verrières-le-Buisson, France
A. Hauchecorne
Laboratoire Atmosphères, Milieux, Observations Spatiales, Université Versailles St-Quentin, CNRS-INSU, Verrières-le-Buisson, France
F. Dalaudier
Laboratoire Atmosphères, Milieux, Observations Spatiales, Université Versailles St-Quentin, CNRS-INSU, Verrières-le-Buisson, France
D. Fussen
Institut d'Aéronomie Spatiale de Belgique, Brussels, Belgium
F. Vanhellemont
Institut d'Aéronomie Spatiale de Belgique, Brussels, Belgium
O. Fanton d'Andon
ACRI-ST, Sophia Antipolis, France
G. Barrot
ACRI-ST, Sophia Antipolis, France
M. Guirlet
ACRI-ST, Sophia Antipolis, France
A. Mangin
ACRI-ST, Sophia Antipolis, France
L. Blanot
ACRI-ST, Sophia Antipolis, France
T. Fehr
European Space Research Institute (ESRIN), European Space Agency, Frascati, Italy
L. Saavedra de Miguel
European Space Research Institute (ESRIN), European Space Agency, Frascati, Italy
R. Fraisse
EADS-Astrium, Toulouse, France
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Total ozone trends at three northern high-latitude stations
Case study on the influence of synoptic-scale processes on the paired H2O–O3 distribution in the UTLS across a North Atlantic jet stream
Dynamical linear modeling estimates of long-term ozone trends from homogenized Dobson Umkehr profiles at Arosa/Davos, Switzerland
Zonally asymmetric influences of the quasi-biennial oscillation on stratospheric ozone
Stratospheric ozone trends for 1984–2021 in the SAGE II–OSIRIS–SAGE III/ISS composite dataset
Analyzing ozone variations and uncertainties at high latitudes during sudden stratospheric warming events using MERRA-2
Impacts of tropical cyclones on the thermodynamic conditions in the tropical tropopause layer observed by A-Train satellites
Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends
3-D tomographic observations of Rossby wave breaking over the North Atlantic during the WISE aircraft campaign in 2017
Is there a direct solar proton impact on lower-stratospheric ozone?
Small-scale variability of stratospheric ozone during the sudden stratospheric warming 2018/2019 observed at Ny-Ålesund, Svalbard
Seasonal stratospheric ozone trends over 2000–2018 derived from several merged data sets
Evidence for energetic particle precipitation and quasi-biennial oscillation modulations of the Antarctic NO2 springtime stratospheric column from OMI observations
Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability
Interannual variations of water vapor in the tropical upper troposphere and the lower and middle stratosphere and their connections to ENSO and QBO
Ground-based ozone profiles over central Europe: incorporating anomalous observations into the analysis of stratospheric ozone trends
Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016
Assessing stratospheric transport in the CMAM30 simulations using ACE-FTS measurements
Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements
Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery
MLS measurements of stratospheric hydrogen cyanide during the 2015–2016 El Niño event
What controls the seasonal cycle of columnar methane observed by GOSAT over different regions in India?
An “island” in the stratosphere – on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics
CCl4 distribution derived from MIPAS ESA v7 data: intercomparisons, trend, and lifetime estimation
Results from the validation campaign of the ozone radiometer GROMOS-C at the NDACC station of Réunion island
Trend analysis of the 20-year time series of stratospheric ozone profiles observed by the GROMOS microwave radiometer at Bern
Is there a solar signal in lower stratospheric water vapour?
Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments
Sunset–sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE–FTS) and its relationship to tidal vertical winds
Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a "big data" approach to multivariate regressions
Total ozone trends and variability during 1979–2012 from merged data sets of various satellites
Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations
Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms
Decadal-scale responses in middle and upper stratospheric ozone from SAGE II version 7 data
Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm
Stratospheric lifetimes of CFC-12, CCl4, CH4, CH3Cl and N2O from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)
Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS
Stratospheric ozone interannual variability (1995–2011) as observed by lidar and satellite at Mauna Loa Observatory, HI and Table Mountain Facility, CA
Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009
Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: evidence of an early recovery of global stratospheric ozone
A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008
Ozone zonal asymmetry and planetary wave characterization during Antarctic spring
A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements
Sulphur dioxide as a volcanic ash proxy during the April–May 2010 eruption of Eyjafjallajökull Volcano, Iceland
Analysis of HCl and ClO time series in the upper stratosphere using satellite data sets
Multi sensor reanalysis of total ozone
GOMOS data characterisation and error estimation
Technical Note: Time-dependent limb-darkening calibration for solar occultation instruments
Simultaneous measurements of OClO, NO2 and O3 in the Arctic polar vortex by the GOMOS instrument
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys., 23, 4165–4184, https://doi.org/10.5194/acp-23-4165-2023, https://doi.org/10.5194/acp-23-4165-2023, 2023
Short summary
Short summary
After the severe destruction of the ozone layer, the amount of ozone in the stratosphere is expected to increase again. At northern high latitudes, however, such a recovery has not been detected yet. To assess ozone changes in that region, we analyse the amount of ozone above specific locations (total ozone) measured at three stations in Norway. We found that total ozone increases significantly at two Arctic stations, which may be an indication of ozone recovery at northern high latitudes.
Andreas Schäfler, Michael Sprenger, Heini Wernli, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 23, 999–1018, https://doi.org/10.5194/acp-23-999-2023, https://doi.org/10.5194/acp-23-999-2023, 2023
Short summary
Short summary
In this study, airborne lidar profile measurements of H2O and O3 across a midlatitude jet stream are combined with analyses in tracer–trace space and backward trajectories. We highlight that transport and mixing processes in the history of the observed air masses are governed by interacting tropospheric weather systems on synoptic timescales. We show that these weather systems play a key role in the high variability of the paired H2O and O3 distributions near the tropopause.
Eliane Maillard Barras, Alexander Haefele, René Stübi, Achille Jouberton, Herbert Schill, Irina Petropavlovskikh, Koji Miyagawa, Martin Stanek, and Lucien Froidevaux
Atmos. Chem. Phys., 22, 14283–14302, https://doi.org/10.5194/acp-22-14283-2022, https://doi.org/10.5194/acp-22-14283-2022, 2022
Short summary
Short summary
Intercomparisons of three Dobson and three Brewer spectrophotometers at Arosa/Davos, Switzerland, are used for the homogenization of the longest Umkehr ozone profiles time series worldwide. Dynamic linear modeling (DLM) reveals a significant positive trend after 2004 in the upper stratosphere, a persistent negative trend between 25 and 30 km in the middle stratosphere, and a negative trend at 20 km in the lower stratosphere, with different levels of significance depending on the dataset.
Wuke Wang, Jin Hong, Ming Shangguan, Hongyue Wang, Wei Jiang, and Shuyun Zhao
Atmos. Chem. Phys., 22, 13695–13711, https://doi.org/10.5194/acp-22-13695-2022, https://doi.org/10.5194/acp-22-13695-2022, 2022
Short summary
Short summary
The ozone layer protects the life on the Earth by absorbing the ultraviolet (UV) radiation. Beside the long-term trend, there are strong interannual fluctuations in stratospheric ozone. The quasi-biennial oscillation (QBO) is an important interannual mode in the stratosphere. We show some new zonally asymmetric features of its impacts on stratospheric ozone using satellite data, ERA5 reanalysis, and model simulations, which is helpful for predicting the regional UV radiation at the surface.
Kristof Bognar, Susann Tegtmeier, Adam Bourassa, Chris Roth, Taran Warnock, Daniel Zawada, and Doug Degenstein
Atmos. Chem. Phys., 22, 9553–9569, https://doi.org/10.5194/acp-22-9553-2022, https://doi.org/10.5194/acp-22-9553-2022, 2022
Short summary
Short summary
We quantify recent changes in stratospheric ozone (outside the polar regions) using a combination of three satellite datasets. We find that upper stratospheric ozone have increased significantly since 2000, although the recovery shows an unexpected pause in the Northern Hemisphere. Combined with the likely decrease in ozone in the lower stratosphere, this presents an interesting challenge for predicting the future of the ozone layer.
Shima Bahramvash Shams, Von P. Walden, James W. Hannigan, William J. Randel, Irina V. Petropavlovskikh, Amy H. Butler, and Alvaro de la Cámara
Atmos. Chem. Phys., 22, 5435–5458, https://doi.org/10.5194/acp-22-5435-2022, https://doi.org/10.5194/acp-22-5435-2022, 2022
Short summary
Short summary
Large-scale atmospheric circulation has a strong influence on ozone in the Arctic, and certain anomalous dynamical events, such as sudden stratospheric warmings, cause dramatic alterations of the large-scale circulation. A reanalysis model is evaluated and then used to investigate the impact of sudden stratospheric warmings on mid-atmospheric ozone. Results show that the position of the cold jet stream over the Arctic before these events influences the variability of ozone.
Jing Feng and Yi Huang
Atmos. Chem. Phys., 21, 15493–15518, https://doi.org/10.5194/acp-21-15493-2021, https://doi.org/10.5194/acp-21-15493-2021, 2021
Short summary
Short summary
This study conducts a comprehensive analysis of thermodynamic fields above tropical cyclones. Using a synergistic retrieval method, we develop the first infrared hyperspectra-based dataset of collocated temperature and water vapor profiles above deep convective clouds. It discloses the unique impacts of convective overshoots on the tropical tropopause layer (TTL). Challenging conventional views, our study suggests that convective hydration may be limited by the radiative balance above cyclones.
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021, https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Short summary
The Microwave Limb Sounder (MLS), an instrument on NASA's Aura mission launched in 2004, measures vertical profiles of the temperature and composition of Earth's "middle atmosphere" (the region from ~12 to ~100 km altitude). We describe how, among the 16 trace gases measured by MLS, the measurements of water vapor (H2O) and nitrous oxide (N2O) have started to drift since ~2010. The paper also discusses the origins of this drift and work to ameliorate it in a new version of the MLS dataset.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Jia Jia, Antti Kero, Niilo Kalakoski, Monika E. Szeląg, and Pekka T. Verronen
Atmos. Chem. Phys., 20, 14969–14982, https://doi.org/10.5194/acp-20-14969-2020, https://doi.org/10.5194/acp-20-14969-2020, 2020
Short summary
Short summary
Recent studies have reported up to a 10 % average decrease of lower stratospheric ozone at 20 km altitude following solar proton events (SPEs). Our study uses 49 events that occurred after the launch of Aura MLS (July 2004–now) and 177 events that occurred in the WACCM-D simulation period (Jan 1989–Dec 2012) to evaluate ozone changes following SPEs. The statistical and case-by-case studies show no solid evidence of SPE's direct impact on the lower stratospheric ozone.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Monika E. Szeląg, Viktoria F. Sofieva, Doug Degenstein, Chris Roth, Sean Davis, and Lucien Froidevaux
Atmos. Chem. Phys., 20, 7035–7047, https://doi.org/10.5194/acp-20-7035-2020, https://doi.org/10.5194/acp-20-7035-2020, 2020
Short summary
Short summary
We analyze seasonal dependence of stratospheric ozone trends over 2000–2018. We demonstrate that the mid-latitude upper stratospheric ozone recovery maximizes during local winters and equinoxes. In the tropics, a very strong seasonal dependence of ozone trends is observed at all altitudes. We found hemispheric asymmetry of summertime ozone trend patterns below 35 km. The seasonal dependence of ozone trends and stratospheric temperature trends shows a clear inter-relation of the trend patterns.
Emily M. Gordon, Annika Seppälä, and Johanna Tamminen
Atmos. Chem. Phys., 20, 6259–6271, https://doi.org/10.5194/acp-20-6259-2020, https://doi.org/10.5194/acp-20-6259-2020, 2020
Short summary
Short summary
The Sun constantly emits high-energy charged particles that produce the ozone destroying chemical NOx in the polar atmosphere. NOx is transported to the stratosphere, where the ozone layer is. Satellite observations show that the NOx gases remain in the atmosphere longer than previously reported. This is influenced by the strength of atmospheric large-scale dynamics, suggesting that there are specific times when this type of solar influence on the Antarctic atmosphere becomes more pronounced.
William T. Ball, Justin Alsing, Johannes Staehelin, Sean M. Davis, Lucien Froidevaux, and Thomas Peter
Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, https://doi.org/10.5194/acp-19-12731-2019, 2019
Short summary
Short summary
We analyse long-term stratospheric ozone (60° S–60° N) trends over the 1985–2018 period. Previous work has suggested that lower stratosphere ozone declined over 1998–2016. We demonstrate that a large ozone upsurge in 2017 is likely related to QBO variability, but that lower stratospheric ozone trends likely remain lower in 2018 than in 1998. Tropical stratospheric ozone (30° S–30° N) shows highly probable decreases in both the lower stratosphere and in the integrated stratospheric ozone layer.
Edward W. Tian, Hui Su, Baijun Tian, and Jonathan H. Jiang
Atmos. Chem. Phys., 19, 9913–9926, https://doi.org/10.5194/acp-19-9913-2019, https://doi.org/10.5194/acp-19-9913-2019, 2019
Short summary
Short summary
We study the interannual (2–7-year) water vapor variations in the tropical upper troposphere and the lower and middle stratosphere and their connections to El Nino–Southern Oscillation (ENSO) and quasi-biennial oscillation (QBO) using the Aura Microwave Limb Sounder (MLS) data and time-lag regression analysis and composite analysis. We found that ENSO is more important in the upper troposphere and near the tropopause, while QBO is more important in the lower and middle stratosphere.
Leonie Bernet, Thomas von Clarmann, Sophie Godin-Beekmann, Gérard Ancellet, Eliane Maillard Barras, René Stübi, Wolfgang Steinbrecht, Niklaus Kämpfer, and Klemens Hocke
Atmos. Chem. Phys., 19, 4289–4309, https://doi.org/10.5194/acp-19-4289-2019, https://doi.org/10.5194/acp-19-4289-2019, 2019
Short summary
Short summary
After severe ozone depletion, upper stratospheric ozone has started to recover in recent years. However, stratospheric ozone trends from various data sets still show differences. To partly explain such differences, we investigate how the trends are affected by different factors, for example, anomalies in the data. We show how trend estimates can be improved by considering such anomalies and present updated stratospheric ozone trends from ground data measured in central Europe.
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Felicia Kolonjari, David A. Plummer, Kaley A. Walker, Chris D. Boone, James W. Elkins, Michaela I. Hegglin, Gloria L. Manney, Fred L. Moore, Diane Pendlebury, Eric A. Ray, Karen H. Rosenlof, and Gabriele P. Stiller
Atmos. Chem. Phys., 18, 6801–6828, https://doi.org/10.5194/acp-18-6801-2018, https://doi.org/10.5194/acp-18-6801-2018, 2018
Short summary
Short summary
We used satellite observations and model simulations of CFC-11, CFC-12, and N2O to investigate stratospheric transport, which is important for predicting the recovery of the ozone layer and future climate. We found that sampling can impact results and that the model consistently overestimates concentrations of these gases in the lower stratosphere, consistent with a too rapid Brewer–Dobson circulation. An issue with mixing in the tropical lower stratosphere in June–July–August was also found.
Stefan Noël, Katja Weigel, Klaus Bramstedt, Alexei Rozanov, Mark Weber, Heinrich Bovensmann, and John P. Burrows
Atmos. Chem. Phys., 18, 4463–4476, https://doi.org/10.5194/acp-18-4463-2018, https://doi.org/10.5194/acp-18-4463-2018, 2018
Short summary
Short summary
The combined analysis of stratospheric methane and water vapour data derived from SCIAMACHY solar occultation measurements shows the expected anti-correlation and a clear temporal variation related to waves in equatorial zonal winds. Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. The SCIAMACHY data confirm that at lower altitudes water vapour and methane are transported from the tropics to higher latitudes.
William T. Ball, Justin Alsing, Daniel J. Mortlock, Johannes Staehelin, Joanna D. Haigh, Thomas Peter, Fiona Tummon, Rene Stübi, Andrea Stenke, John Anderson, Adam Bourassa, Sean M. Davis, Doug Degenstein, Stacey Frith, Lucien Froidevaux, Chris Roth, Viktoria Sofieva, Ray Wang, Jeannette Wild, Pengfei Yu, Jerald R. Ziemke, and Eugene V. Rozanov
Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, https://doi.org/10.5194/acp-18-1379-2018, 2018
Short summary
Short summary
Using a robust analysis, with artefact-corrected ozone data, we confirm upper stratospheric ozone is recovering following the Montreal Protocol, but that lower stratospheric ozone (50° S–50° N) has continued to decrease since 1998, and the ozone layer as a whole (60° S–60° N) may be lower today than in 1998. No change in total column ozone may be due to increasing tropospheric ozone. State-of-the-art models do not reproduce lower stratospheric ozone decreases.
Hugh C. Pumphrey, Norbert Glatthor, Peter F. Bernath, Christopher D. Boone, James W. Hannigan, Ivan Ortega, Nathaniel J. Livesey, and William G. Read
Atmos. Chem. Phys., 18, 691–703, https://doi.org/10.5194/acp-18-691-2018, https://doi.org/10.5194/acp-18-691-2018, 2018
Short summary
Short summary
The Microwave Limb Sounder (MLS) is a satellite instrument that has been measuring the amount of various gases in the atmosphere since 2004. In late 2015 and 2016 it observed unusual amounts of hydrogen cyanide (HCN), a gas produced when vegetation is burned. We compare the MLS observations to similar observations from other instruments. The excess HCN is shown to come from fires in Indonesia. There are more fires than usual in 2015–16 due to a drought caused by an El Niño event.
Naveen Chandra, Sachiko Hayashida, Tazu Saeki, and Prabir K. Patra
Atmos. Chem. Phys., 17, 12633–12643, https://doi.org/10.5194/acp-17-12633-2017, https://doi.org/10.5194/acp-17-12633-2017, 2017
Short summary
Short summary
This study shows difficulties in interpreting columnar dry-air mole fractions of methane (XCH4) for surface emissions of CH4 over the South Asia region, without separating the role of chemistry and transport. Using a chemistry-transport model, we suggest that a link between surface emissions and higher levels of XCH4 is not always valid in this region of complex monsoonal meteorology, although there is often a fair correlation between the seasonal variations in surface emissions and XCH4.
Stefan Lossow, Hella Garny, and Patrick Jöckel
Atmos. Chem. Phys., 17, 11521–11539, https://doi.org/10.5194/acp-17-11521-2017, https://doi.org/10.5194/acp-17-11521-2017, 2017
Massimo Valeri, Flavio Barbara, Chris Boone, Simone Ceccherini, Marco Gai, Guido Maucher, Piera Raspollini, Marco Ridolfi, Luca Sgheri, Gerald Wetzel, and Nicola Zoppetti
Atmos. Chem. Phys., 17, 10143–10162, https://doi.org/10.5194/acp-17-10143-2017, https://doi.org/10.5194/acp-17-10143-2017, 2017
Short summary
Short summary
Atmospheric emissions of CCl4 are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule is the subject of recent increased interest as a consequence of the discrepancy between atmospheric observations and reported production and consumption. We use MIPAS/ENVISAT data (2002–2012) to estimate CCl4 trends and lifetime. At 50 hPa we find a decline of about 30–35 % per decade. In the lower stratosphere our lifetime estimate is 47 (39–61) years.
Susana Fernandez, Rolf Rüfenacht, Niklaus Kämpfer, Thierry Portafaix, Françoise Posny, and Guillaume Payen
Atmos. Chem. Phys., 16, 7531–7543, https://doi.org/10.5194/acp-16-7531-2016, https://doi.org/10.5194/acp-16-7531-2016, 2016
Short summary
Short summary
We present a new ground based microwave radiometer for campaigns, GROMOS-C. It measures the vertical distribution of ozone in the middle atmosphere by observing spectra at 110.836 GHz. The paper presents a validation campaign that took place on La Réunion Island. The ozone retrieved profiles are validated against ozone profiles from the Microwave Limb Sounder, the ozone lidar located in the observatory, ozone profiles from weekly radiosondes and with ECMWF model data.
L. Moreira, K. Hocke, E. Eckert, T. von Clarmann, and N. Kämpfer
Atmos. Chem. Phys., 15, 10999–11009, https://doi.org/10.5194/acp-15-10999-2015, https://doi.org/10.5194/acp-15-10999-2015, 2015
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the NDACC (Network for the Detection of Atmospheric Composition Change) at Bern since 1994. We performed a trend analysis of our 20-year time series of stratospheric ozone profiles with a multilinear parametric trend estimation method. With our estimated ozone trends we are able to support the stratospheric ozone turnaround, besides a statistically significant negative trend in the lower mesosphere.
T. Schieferdecker, S. Lossow, G. P. Stiller, and T. von Clarmann
Atmos. Chem. Phys., 15, 9851–9863, https://doi.org/10.5194/acp-15-9851-2015, https://doi.org/10.5194/acp-15-9851-2015, 2015
Short summary
Short summary
A merged data set of HALOE and MIPAS lower stratospheric water vapour has been constructed. Multivariate linear regression shows that the merged time series can best be explained if a proxy for the 11-year solar cycle is considered. The amplitude of the solar cycle signal in water vapour is slightly higher than that which can be explained by the known solar cycle variation of cold-point temperatures.
M. Lainer, N. Kämpfer, B. Tschanz, G. E. Nedoluha, S. Ka, and J. J. Oh
Atmos. Chem. Phys., 15, 9711–9730, https://doi.org/10.5194/acp-15-9711-2015, https://doi.org/10.5194/acp-15-9711-2015, 2015
Short summary
Short summary
We use water vapor profiles from ground-based microwave radiometers at five locations distributed over the Northern Hemisphere and operated in the frame of NDACC (Network for the Detection of Atmospheric Composition Change) to generate hemispheric water vapor maps based on the so-called trajectory mapping technique. The novelty is to show that a mini network of instruments is capable of providing information about the hemispheric distribution of water vapor under most conditions.
T. Sakazaki, M. Shiotani, M. Suzuki, D. Kinnison, J. M. Zawodny, M. McHugh, and K. A. Walker
Atmos. Chem. Phys., 15, 829–843, https://doi.org/10.5194/acp-15-829-2015, https://doi.org/10.5194/acp-15-829-2015, 2015
Short summary
Short summary
The solar occultation measurements measure the atmosphere at sunrise (SR) and sunset (SS). It has been reported that there is a significant difference in the observed amount of stratospheric ozone between SR and SS. This study first revealed that this difference can be largely explained by diurnal variations in ozone, particularly those caused by vertical transport by the atmospheric tidal winds. Our results would be helpful for the construction of combined data sets from SR and SS profiles.
A. T. J. de Laat, R. J. van der A, and M. van Weele
Atmos. Chem. Phys., 15, 79–97, https://doi.org/10.5194/acp-15-79-2015, https://doi.org/10.5194/acp-15-79-2015, 2015
Short summary
Short summary
Recent research suggests the Antarctic ozone hole has started to shrink due to decreasing ozone-depleting substances. Because it could be questioned how robust these results are, we provide an assessment of uncertainties in both the underlying ozone observational records and the detection-attribution method. Although Antarctic ozone concentrations are definitely increasing slowly, the formal identification of recovery is not yet justified, although this will likely become possible this decade.
W. Chehade, M. Weber, and J. P. Burrows
Atmos. Chem. Phys., 14, 7059–7074, https://doi.org/10.5194/acp-14-7059-2014, https://doi.org/10.5194/acp-14-7059-2014, 2014
A. E. Bourassa, D. A. Degenstein, W. J. Randel, J. M. Zawodny, E. Kyrölä, C. A. McLinden, C. E. Sioris, and C. Z. Roth
Atmos. Chem. Phys., 14, 6983–6994, https://doi.org/10.5194/acp-14-6983-2014, https://doi.org/10.5194/acp-14-6983-2014, 2014
A. Redondas, R. Evans, R. Stuebi, U. Köhler, and M. Weber
Atmos. Chem. Phys., 14, 1635–1648, https://doi.org/10.5194/acp-14-1635-2014, https://doi.org/10.5194/acp-14-1635-2014, 2014
E. E. Remsberg
Atmos. Chem. Phys., 14, 1039–1053, https://doi.org/10.5194/acp-14-1039-2014, https://doi.org/10.5194/acp-14-1039-2014, 2014
N. A. Kramarova, S. M. Frith, P. K. Bhartia, R. D. McPeters, S. L. Taylor, B. L. Fisher, G. J. Labow, and M. T. DeLand
Atmos. Chem. Phys., 13, 6887–6905, https://doi.org/10.5194/acp-13-6887-2013, https://doi.org/10.5194/acp-13-6887-2013, 2013
A. T. Brown, C. M. Volk, M. R. Schoeberl, C. D. Boone, and P. F. Bernath
Atmos. Chem. Phys., 13, 6921–6950, https://doi.org/10.5194/acp-13-6921-2013, https://doi.org/10.5194/acp-13-6921-2013, 2013
N. Theys, R. Campion, L. Clarisse, H. Brenot, J. van Gent, B. Dils, S. Corradini, L. Merucci, P.-F. Coheur, M. Van Roozendael, D. Hurtmans, C. Clerbaux, S. Tait, and F. Ferrucci
Atmos. Chem. Phys., 13, 5945–5968, https://doi.org/10.5194/acp-13-5945-2013, https://doi.org/10.5194/acp-13-5945-2013, 2013
G. Kirgis, T. Leblanc, I. S. McDermid, and T. D. Walsh
Atmos. Chem. Phys., 13, 5033–5047, https://doi.org/10.5194/acp-13-5033-2013, https://doi.org/10.5194/acp-13-5033-2013, 2013
T. Sonkaew, C. von Savigny, K.-U. Eichmann, M. Weber, A. Rozanov, H. Bovensmann, J. P. Burrows, and J.-U. Grooß
Atmos. Chem. Phys., 13, 1809–1835, https://doi.org/10.5194/acp-13-1809-2013, https://doi.org/10.5194/acp-13-1809-2013, 2013
J. R. Ziemke and S. Chandra
Atmos. Chem. Phys., 12, 5737–5753, https://doi.org/10.5194/acp-12-5737-2012, https://doi.org/10.5194/acp-12-5737-2012, 2012
A. Lambert, M. L. Santee, D. L. Wu, and J. H. Chae
Atmos. Chem. Phys., 12, 2899–2931, https://doi.org/10.5194/acp-12-2899-2012, https://doi.org/10.5194/acp-12-2899-2012, 2012
I. Ialongo, V. Sofieva, N. Kalakoski, J. Tamminen, and E. Kyrölä
Atmos. Chem. Phys., 12, 2603–2614, https://doi.org/10.5194/acp-12-2603-2012, https://doi.org/10.5194/acp-12-2603-2012, 2012
J. R. Ziemke, S. Chandra, G. J. Labow, P. K. Bhartia, L. Froidevaux, and J. C. Witte
Atmos. Chem. Phys., 11, 9237–9251, https://doi.org/10.5194/acp-11-9237-2011, https://doi.org/10.5194/acp-11-9237-2011, 2011
H. E. Thomas and A. J. Prata
Atmos. Chem. Phys., 11, 6871–6880, https://doi.org/10.5194/acp-11-6871-2011, https://doi.org/10.5194/acp-11-6871-2011, 2011
A. Jones, J. Urban, D. P. Murtagh, C. Sanchez, K. A. Walker, N. J. Livesey, L. Froidevaux, and M. L. Santee
Atmos. Chem. Phys., 11, 5321–5333, https://doi.org/10.5194/acp-11-5321-2011, https://doi.org/10.5194/acp-11-5321-2011, 2011
R. J. van der A, M. A. F. Allaart, and H. J. Eskes
Atmos. Chem. Phys., 10, 11277–11294, https://doi.org/10.5194/acp-10-11277-2010, https://doi.org/10.5194/acp-10-11277-2010, 2010
J. Tamminen, E. Kyrölä, V. F. Sofieva, M. Laine, J.-L. Bertaux, A. Hauchecorne, F. Dalaudier, D. Fussen, F. Vanhellemont, O. Fanton-d'Andon, G. Barrot, A. Mangin, M. Guirlet, L. Blanot, T. Fehr, L. Saavedra de Miguel, and R. Fraisse
Atmos. Chem. Phys., 10, 9505–9519, https://doi.org/10.5194/acp-10-9505-2010, https://doi.org/10.5194/acp-10-9505-2010, 2010
S. P. Burton, L. W. Thomason, and J. M. Zawodny
Atmos. Chem. Phys., 10, 1–8, https://doi.org/10.5194/acp-10-1-2010, https://doi.org/10.5194/acp-10-1-2010, 2010
C. Tétard, D. Fussen, C. Bingen, N. Capouillez, E. Dekemper, N. Loodts, N. Mateshvili, F. Vanhellemont, E. Kyrölä, J. Tamminen, V. Sofieva, A. Hauchecorne, F. Dalaudier, J.-L. Bertaux, O. Fanton d'Andon, G. Barrot, M. Guirlet, T. Fehr, and L. Saavedra
Atmos. Chem. Phys., 9, 7857–7866, https://doi.org/10.5194/acp-9-7857-2009, https://doi.org/10.5194/acp-9-7857-2009, 2009
Cited articles
Bertaux, J. L., Megie, G., Widemann, T., Chassefiere, E., Pellinen, R., Kyrölä, E., Korpela, S., and Simon, P.: Monitoring of Ozone Trend by Stellar Occultations: The GOMOS Instrument, Adv. Space Res., 11, 237–242, 1991.
Bertaux, J. L., Kyrölä, E., and Wehr, T.: Stellar Occultation Technique for Atmospheric Ozone Monitoring: GOMOS on Envisat, Earth Observation Quarterly, 67, 17–20, 2000.
Bertaux, J. L., Hauchecorne, A., Dalaudier, F., Cot, C., Kyrölä, E., Fussen, D., Tamminen, J., Leppelmeier, G. W., Sofieva, V., Hassinen, S., d'Andon, O. F., Barrot, G., Mangin, A., Th{\' e}odore, B., Guirlet, M., Korablev, O., Snoeij, P., Koopman, R., and Fraisse, R.: First results on GOMOS/Envisat, Adv. Space Res., 33, 1029–1035, 2004.
Bertaux, J. L., Kyrölä, E., Fussen, D., Hauchecorne, A., Dalaudier, F., Sofieva, V., Tamminen, J., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Mangin, A., Blanot, L., Lebrun, J. C., Pérot, K., Fehr, T., Saavedra, L., and Fraisse, R.: Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT, Atmos. Chem. Phys. Discuss., 10, 9917–10076, https://doi.org/10.5194/acpd-10-9917-2010, 2010.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., No{ë}l, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Chu, W. P., McCormick, M. P., Lenoble, J., Brogniez, C., and Pruvost, P.: SAGE II inversion algorithm, J. Geophys. Res., 94, 8339–8351, 1989.
Dalaudier, F., Kan, V., and Gurvich, A. S.: Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction, Appl. Optics, 40, 866–877, 2001.
Elliot, J. L.: Stellar occultation studies of the solar system, Ann. Rev. Astron. Astrophys., 17, 445–475, 1979.
ESA: Envisat-GOMOS, An instrument for global atmospheric ozone monitoring, vol. SP-1244, European Space Agency, 2001.
Fussen, D., Vanhellemont, F., Bingen, C., Kyr{ö}l{ä}, B., Tamminen, J., Sofieva, V., Hassinen, S., Sepp{ä}l{ä}, A., Verronen, P. T., Bertaux, J. L., Hauchecorne, A., Dalaudier, F., D'Andon, O. F., Barrot, G., Mangin, A., Theodore, B., Guirlet, M., Renard, J. B., Fraisse, R., Snoeij, P., Koopman, R., and Saavedra, L.: Autoregressive smoothing of GOMOS transmittances, Adv. Space Res., 36, 899–905, https://doi.org/10.1016/j.asr.2005.04.007, 2005.
Fussen, D., Vanhellemont, F., Dodion, J., Bingen, C., Mateshvili, N., Daerden, F., Fonteyn, D., Errera, Q., Chabrillat, S., Kyrölä, E., Tamminen, J., Sofieva, V., Hauchecorne, A., Dalaudier, F., Bertaux, J., Renard, J.-B., Fraisse, R., Fanton {d'Andon}, O., Barrot, G., Guirlet, M., Mangin, A., Th{\' e}odore, B., , Snoeij, P., and Saavedra, L.: A global OClO stratospheric layer discovered in GOMOS stellar occultation measurements, Geophys. Res. Lett., 33, L13815, https://doi.org/10.1029/2006GL026406, 2006.
Fussen, D., Vanhellemont, F., Tétard, C., Mateshvili, N., Dekemper, E., Loodts, N., Bingen, C., Kyrölä, E., Tamminen, J., Sofieva, V., Hauchecorne, A., Dalaudier, F., Bertaux, J.-L., Barrot, G., Blanot, L., Fanton d'Andon, O., Fehr, T., Saavedra, L., Yuan, T., and She, C.-Y.: A global climatology of the mesospheric sodium layer from GOMOS data during the 2002–2008 period, Atmos. Chem. Phys., 10, 9225–9236, https://doi.org/10.5194/acp-10-9225-2010, 2010.
Glaccum, W., Lucke, R. L., Bevilacqua, R. M., Shettle, E. P., Hornstein, J. S., Chen, D. T., Lumpe, J. D., Krigman, S. S., Debrestian, D. J., Fromm, M. D., Dalaudier, F., Chassefi{\` e}re, E., Deniel, C., Randall, C. E., Rusch, D. W., Olivero, J. J., Brogniez, C., Lenoble, J., and Kremer, R.: The Polar Ozone and Aerosol Measurement instrument, J. Geophys. Res., 101, 14479–14488, 1996.
GOMOS ESL: GOMOS Detailed Processing Model (DPM), ESA, 1998.
Hauchecorne, A., Bertaux, J.-L., Dalaudier, F., Cot, C., Lebrun, J.-C., Bekki, S., Marchand, M., Kyr{ö}l{ä}, E., Tamminen, J., Sofieva, V., Fussen, D., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Mangin, A., Th{é}odore, B., Guirlet, M., Snoeij, P., Koopman, R., Saavedra de Miguel, L., Fraisse, R., and Renard, J.-B.: First simultaneous global measurements of nighttime stratospheric NO2 and NO3 observed by Global Ozone Monitoring by Occultation of Stars (GOMOS)/Envisat in 2003, J. Geophys. Res., 110, D18301, https://doi.org/10.1029/2004JD005711, 2005.
Hays, R. G. and Roble, P. B.: Stellar spectra and atmospheric composition, J. Atmos. Sci., 25, 1141–1153, 1968.
Karttunen, H., Kr{ö}ger, P., Oja, H., Poutanen, M., and Donner, K. J. (eds.): Fundamental Astronomy, 4th edition, Springer-Verlag, Berlin, Germany, 2003.
Kyrölä, E., Sihvola, E., Kotivuori, Y., Tikka, M., Tuomi, T., and Haario, H.: Inverse Theory for Occultation Measurements, 1, Spectral Inversion, J. Geophys. Res., 98, 7367–7381, 1993.
Kyrölä, E., Tamminen, J., Leppelmeier, G. W., Sofieva, V., Hassinen, S., Bertaux, J.-L., Hauchecorne, A., Dalaudier, F., Cot, C., Korablev, O., d'Andon, O. F., Barrot, G., Mangin, A., Theodore, B., Guirlet, M., Etanchaud, F., Snoeij, P., Koopman, R., Saavedra, L., Fraisse, R., Fussen, D., and Vanhellemont, F.: GOMOS on Envisat: An overview, Adv. Space Res., 33, 1020–1028, 2004.
Kyrölä, E., Tamminen, J., Leppelmeier, G. W., Sofieva, V., Hassinen, S., Seppälä, A., Verronen, P. T., Bertaux, J.-L., Hauchecorne, A., Dalaudier, F., Fussen, D., Vanhellemont, F., d'Andon, O. F., Barrot, G., Mangin, A., Theodore, B., Guirlet, M., Koopman, R., Saavedra, L., Snoeij, P., and Fehr, T.: Nighttime ozone profiles in the stratosphere and mesosphere by the Global Ozone Monitoring by Occultation of Stars on Envisat, J. Geophys. Res., 111, D24306, https://doi.org/10.1029/2006JD007193, 2006.
Kyrölä, E., Tamminen, J., Sofieva, V., Bertaux, J. L., Hauchecorne, A., Dalaudier, F., Fussen, D., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Guirlet, M., Fehr, T., and Saavedra de Miguel, L.: GOMOS O3, NO2, and NO3 observations in 2002–2008, Atmos. Chem. Phys., 10, 7723–7738, https://doi.org/10.5194/acp-10-7723-2010, 2010.
Llewellyn, E., Lloyd, N. D., Degenstein, D. A., Gattinger, R. L., Petelina, S. V., Bourassa, A. E., Wiensz, J. T., Ivanov, E. V., McDade, I. C., Solheim, B. H., McConnell, J. C., Haley, C. S., von Savigny, C., Sioris, C. E., McLinden, C. A., Griffioen, E., Kaminski, J., Evans, W. F. J., Puckrin, E., Strong, K., Wehrle, V., Hum, R. H., Kendall, D. J. W., Matsushita, J., Murtagh, D. P., Brohede, S., Stegman, J., Witt, G., Barnes, G., Payne, W. F., Piche, L., Smith, K., Warshaw, G., Deslauniers, D. L., Marchand, P., Richardson, E. H., King, R. A., Wevers, I., McCreath, W., Kyrola, E., Oikarinen, L., Leppelmeier, G. W., Auvinen, H., Megie, G., Hauchecorne, A., Lefevre, F., de La Noe, J., Ricaud, P., Frisk, U., Sjoberg, F., von Scheele, F., and Nordh, L.: The OSIRIS instrument on the Odin spacecraft, Can. J. Phys., 82, 411–422, https://doi.org/10.1139/p04-005, 2004.
Meijer, Y. J., Swart, D. P. J., Allaart, M., Andersen, S. B., Bodeker, G., Boyd, Braathena, G., Calisesia, Y., Claude, H., Dorokhov, V., von der Gathen, P., Gil, M., Godin-Beekmann, S., Goutail, F., Hansen, G., Karpetchko, A., Keckhut, P., Kelder, H. M., Koelemeijer, R., Kois, B., Koopman, R. M., Lambert, J.-C., Leblanc, T., McDermid, I. S., Pal, S., Kopp, G., Schets, H., Stubi, R., Suortti, T., Visconti, G., and Yela, M.: Pole-to-pole validation of ENVISAT}/{GOMOS ozone profiles using data from ground-based and balloon-sonde measurements, J. Geophys. Res., 109, D23305, https://doi.org/10.1029/2004JD004834, 2004.
Pérot, K., Hauchecorne, A., Montmessin, F., Bertaux, J.-L., Blanot, L., Dalaudier, F., Fussen, D., and Kyrölä, E.: First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument, Atmos. Chem. Phys., 10, 2723–2735, https://doi.org/10.5194/acp-10-2723-2010, 2010.
Popescu, A. and Paulsen, T.: GOMOS instrument on Envisat, in: ESAMS99, European Symposium on Atmospheric Measurements from Space, vol. WPP-161, 89–99, ESA, 1999.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes in FORTRAN, The Art of Scientific Computing, Clarendon Press, Oxford, 1992.
Renard, J., Berthet, G., Brogniez, C., Catoire, V., Fussen, D., Goutail, F., Oelhaf, H., Pommereau, J., Roscoe, H. K., Wetzel, G., Chartier, M., Robert, C., Balois, J., Verwaerde, C., Auriol, F., Fran{\c c}ois, P., Gaubicher, B., and Wursteisen, P.: Validation of GOMOS-Envisat vertical profiles of O3, NO2, NO3, and aerosol extinction using balloon-borne instruments and analysis of the retrievals, J. Geophys. Res. (Space Physics), 113, A02302, https://doi.org/10.1029/2007JA012345, 2008.
Roble, P. B. and Hays, R.: A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data, Planet. Space Sci., 94, 1727–1744, 1972.
Rodgers, C. D.: Inverse Methods for Atmospheric sounding: Theory and Practice, World Scientific, Singapore, 2000.
Sihvola, E.: Coupling of spectral and vertical inversion in the analysis of stellar occultation data, Geophysical publications, no. 38, Finnish Meteorological Institute, Helsinki, licentiate thesis at the University of Helsinki, Department of Theoretical Physics, 1994.
Smith, G. E. and Hunten, D. M.: Study of planetary atmospheres by absorptive occultations, Rev. Geophys., 28, 117–143, 1990.
Sofieva, V. F., Tamminen, J., Haario, H., Kyrölä, E., and Lehtinen, M.: Ozone profile smoothness as a priori information in the inversion of limb measurements, Ann. Geophys., 22, 3411–3420, https://doi.org/10.5194/angeo-22-3411-2004, 2004.
Sofieva, V. F., Kan, V., Dalaudier, F., Kyrölä, E., Tamminen, J., Bertaux, J.-L., Hauchecorne, A., Fussen, D., and Vanhellemont, F.: Influence of scintillation on quality of ozone monitoring by GOMOS, Atmos. Chem. Phys., 9, 9197–9207, https://doi.org/10.5194/acp-9-9197-2009, 2009.
Sofieva, V. F., Vira, J., Kyrölä, E., Tamminen, J., Kan, V., Dalaudier, F., Hauchecorne, A., Bertaux, J.-L., Fussen, D., Vanhellemont, F., Barrot, G., and Fanton d'Andon, O.: Retrievals from GOMOS stellar occultation measurements using characterization of modeling errors, Atmos. Meas. Tech., 3, 1019–1027, https://doi.org/10.5194/amt-3-1019-2010, 2010.
Taha, G., Jaross, G., Fussen, D., Vanhellemont, F., Kyr{ö}l{ä}, E., and McPeters, R. D.: Ozone profile retrieval from GOMOS limb scattering measurements, J. Geophys. Res.-Atmos., 113, 23307 pp., https://doi.org/10.1029/2007JD009409, 2008.
Tamminen, J. and Kyrölä, E.: Bayesian solution for nonlinear and non-Gaussian inverse problems by Markov chain Monte Carlo method, J. Geophys. Res., 106, 14377–14390, 2001.
Tamminen, J., Kyrölä, E., Sofieva, V. F., Laine, M., Bertaux, J.-L., Hauchecorne, A., Dalaudier, F., Fussen, D., Vanhellemont, F., Fanton-d'Andon, O., Barrot, G., Mangin, A., Guirlet, M., Blanot, L., Fehr, T., Saavedra de Miguel, L., and Fraisse, R.: GOMOS data characterisation and error estimation, Atmos. Chem. Phys., 10, 9505–9519, https://doi.org/10.5194/acp-10-9505-2010, 2010.
Tétard, C., Fussen, D., Bingen, C., Capouillez, N., Dekemper, E., Loodts, N., Mateshvili, N., Vanhellemont, F., Kyrölä, E., Tamminen, J., Sofieva, V., Hauchecorne, A., Dalaudier, F., Bertaux, J.-L., Fanton d'Andon, O., Barrot, G., Guirlet, M., Fehr, T., and Saavedra, L.: Simultaneous measurements of OClO, NO2 and O3 in the Arctic polar vortex by the GOMOS instrument, Atmos. Chem. Phys., 9, 7857–7866, https://doi.org/10.5194/acp-9-7857-2009, 2009.
Tukiainen, S., Hassinen, S., Sepp{ä}l{ä}, A., Auvinen, H., Kyr{ö}l{ä}, E., Tamminen, J., Haley, C. S., Lloyd, N., and Verronen, P. T.: Description and validation of a limb scatter retrieval method for Odin/OSIRIS, J. Geophys. Res.-Atmos., 113, 4308 pp., https://doi.org/10.1029/2007JD008591, 2008.
van Gijsel, J. A. E., Swart, D. P. J., Baray, J.-L., Bencherif, H., Claude, H., Fehr, T., Godin-Beekmann, S., Hansen, G. H., Keckhut, P., Leblanc, T., McDermid, I. S., Meijer, Y. J., Nakane, H., Quel, E. J., Stebel, K., Steinbrecht, W., Strawbridge, K. B., Tatarov, B. I., and Wolfram, E. A.: GOMOS ozone profile validation using ground-based and balloon sonde measurements, Atmos. Chem. Phys., 10, 10473–10488, https://doi.org/10.5194/acp-10-10473-2010, 2010.
Vanhellemont, F., Fussen, D., and Bingen, C.: Global one-step inversion of satellite occultation measurements: A practical method, J. Geophys. Res.-Atmos., 109, 9306 pp., https://doi.org/10.1029/2003JD004168, 2004.
Vanhellemont, F., Fussen, D., Mateshvili, N., Tétard, C., Bingen, C., Dekemper, E., Loodts, N., Kyrölä, E., Sofieva, V., Tamminen, J., Hauchecorne, A., Bertaux, J.-L., Dalaudier, F., Blanot, L., Fanton d'Andon, O., Barrot, G., Guirlet, M., Fehr, T., and Saavedra, L.: Optical extinction by upper tropospheric/stratospheric aerosols and clouds: GOMOS observations for the period 2002–2008, Atmos. Chem. Phys., 10, 7997–8009, https://doi.org/10.5194/acp-10-7997-2010, 2010.
Yee Jr., J.-H., R. J. V., Demajistre, R., Morgan, F., Carbary, J. F., Romick, G. J., Morrison, D., Lloyd, S. A., DeCola, P. L., Paxton, L. J., Anderson, D. E., Kumar, C. K., and Meng, C.-I.: Atmospheric remote sensing using a combined extinctive and refractive stellar occultation technique, 1. overview and proof-of-concept observations, J. Geophys. Res., 107(10), 1029, https://doi.org/10.1029/2001JD000794, 2002.
Altmetrics
Final-revised paper
Preprint