Articles | Volume 25, issue 14
https://doi.org/10.5194/acp-25-7597-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-7597-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical–chemical properties of particles in hailstones from central Argentina
Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA
Angela K. Rowe
Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA
Lucia E. Arena
Facultad de Matemáticas, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina
Observatorio Hidrometereológico de Córdoba, Córdoba, Argentina
William O. Nachlas
Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA
Related authors
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, William O. Nachlas, and Maria L. Asar
Atmos. Meas. Tech., 17, 5561–5579, https://doi.org/10.5194/amt-17-5561-2024, https://doi.org/10.5194/amt-17-5561-2024, 2024
Short summary
Short summary
Hail is a challenging weather phenomenon to forecast due to an incomplete understanding of hailstone formation. Microscopy temperature limitations required previous studies to melt hail for analysis. This paper introduces a unique technique using a plastic cover to preserve particles in their location within the hailstone without melting. Therefore, CLSM and SEM–EDS microscopes can be used to determine individual particle sizes and their chemical composition related to hail-formation processes.
Miles M. Reed, Ken L. Ferrier, William O. Nachlas, Bil Schneider, Chloé Arson, Tingting Xu, Xianda Shen, and Nicole West
Geosci. Instrum. Method. Data Syst., 14, 193–209, https://doi.org/10.5194/gi-14-193-2025, https://doi.org/10.5194/gi-14-193-2025, 2025
Short summary
Short summary
We constructed an easy-to-use, open-source method for mapping minerals in rock thin sections. We implemented the method within the geographical information system QGIS and the Orfeo ToolBox plugin using random forest image classification on scanning electron microscope data. We applied the method to 14 rock thin sections. Mineral abundance estimates from our method compare favorably to previously published estimates, and 96 % spatially and categorically agree with manually derived mineral maps.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 25, 8087–8106, https://doi.org/10.5194/acp-25-8087-2025, https://doi.org/10.5194/acp-25-8087-2025, 2025
Short summary
Short summary
Numerical modeling simulations are used to investigate ice crystal growth and decay processes within a banded region of enhanced precipitation rates during a prominent winter storm. We identify robust primary ice growth in the upper portion of the cloud but decay exceeding 70 % during fallout through a subsaturated layer. The ice fall characteristics and decay rate are sensitive to the ambient cloud properties, which has implications for radar-based measurements and precipitation accumulations.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, William O. Nachlas, and Maria L. Asar
Atmos. Meas. Tech., 17, 5561–5579, https://doi.org/10.5194/amt-17-5561-2024, https://doi.org/10.5194/amt-17-5561-2024, 2024
Short summary
Short summary
Hail is a challenging weather phenomenon to forecast due to an incomplete understanding of hailstone formation. Microscopy temperature limitations required previous studies to melt hail for analysis. This paper introduces a unique technique using a plastic cover to preserve particles in their location within the hailstone without melting. Therefore, CLSM and SEM–EDS microscopes can be used to determine individual particle sizes and their chemical composition related to hail-formation processes.
Cited articles
Allen, J. T., Tippett, M. K., Kaheil, Y., Sobel, A. H., Lepore, C., Nong, S., and Muehlbauer, A.: An Extreme Value Model for U.S. Hail Size, Mon. Weather Rev., 145, 4501–4519, https://doi.org/10.1175/MWR-D-17-0119.1, 2017. a
Allen, J. T., Giammanco, I. M., Kumjian, M. R., Jurgen Punge, H., Zhang, Q., Groenemeijer, P., Kunz, M., and Ortega, K.: Understanding Hail in the Earth System, Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665, 2020. a, b
Arena, L. and Crespo, A.: Recopilación de estudios primarios de caracterización cristalográfica de granizos y de las tormentas que los originan, Universidad Nacional de Córdoba, https://repositoriosdigitales.mincyt.gob.ar/vufind/Record/RDUUNC_35bc5a10fa9dbe231285cb6365785426 (last access: 18 October 2024), 2019. a
Arena, L. E.: Cosecheros. Argentina.gob.ar, https://www.argentina.gob.ar/sites/default/files/cosecheros_de_granizo_cordoba.pdf (last access: 27 October 2023), 2022. a
Arena, L. E.: Identificación de partículas incluidas en hielos naturales (glaciares, permafrost, granizo) por sublimación adaptada, Anales AFA, 35, 25–27, https://doi.org/10.31527/analesafa.2024.35.2.25, 2024. a
Argentina, F.: ZINC 700, FMC Argentina, http://www.fmcargentina.com.ar/productos/zinc-700/ (last access: 19 September 2024), 2024. a
Ashbaugh, L. L., Malm, W. C., and Sadeh, W. Z.: A Residence Time Probability Analysis of Sulfur Concentrations at Grand Canyon National Park, Atmos. Environ., 19, 1263–1270, 1985. a
Bakan, S., Hinzpeter, H., Höller, H., Jaenicke, R., Jeske, H., Laube, M., Volland, H., Warneck, P., and Wurzinger, C.: Physical and Chemical Properties of the Air/Physikalische Und Chemische Eigenschaften Der Luft, in: vol. 4 Sub Vol B of Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology – New Series, Springer, Berlin, Heidelberg, ISBN 3-540-17603-9, 1987. a
Bang, S. D. and Cecil, D. J.: Constructing a Multifrequency Passive Microwave Hail Retrieval and Climatology in the GPM Domain, J. Appl. Meteorol. Clim., 58, 1889–1904, https://doi.org/10.1175/JAMC-D-19-0042.1, 2019. a
Beal, A., Martins, L. D., Martins, J. A., Rudke, A. P., de Almeida, D. S., Costa, L. M., and Tarley, C. R. T.: Evaluation of the Chemical Composition of Hailstones from Triple Border Paraná, Santa Catarina (Brazil) and Argentina, Atmos. Pollut. Res., 12, 184–192, https://doi.org/10.1016/j.apr.2021.01.009, 2021. a, b, c, d, e
Bernal Ayala, A. C., Rowe, A. K., Arena, L. E., and Desai, A. R.: Evaluation of Satellite-Derived Signatures for Three Verified Hailstorms in Central Argentina, Meteorology, 1, 183–210, https://doi.org/10.3390/meteorology1020013, 2022. a, b, c, d
Bernal Ayala, A. C., Rowe, A., Arena, L. E., and Nachlas, W. O.: Individual Particle Dataset: Physical-chemical Properties of Non-Soluble Particles in a Hailstone Collected in Argentina, Zenodo [data set], https://doi.org/10.5281/zenodo.10455803, 2024a. a
Bernal Ayala, A. C., Rowe, A. K., Arena, L. E., Nachlas, W. O., and Asar, M. L.: Exploring non-soluble particles in hailstones through innovative confocal laser and scanning electron microscopy techniques, Atmos. Meas. Tech., 17, 5561–5579, https://doi.org/10.5194/amt-17-5561-2024, 2024b. a, b, c, d, e, f, g, h, i, j, k, l, m
Borda, L. G., Cosentino, N. J., Iturri, L. A., García, M. G., and Gaiero, D. M.: Is Dust Derived From Shrinking Saline Lakes a Risk to Soil Sodification in Southern South America?, J. Geophys. Res.-Earth, 127, e2021JF006585, https://doi.org/10.1029/2021JF006585, 2022. a
Bruick, Z. S., Rassumen, K. L., and Cecil, D. J.: Subtropical South American Hailstorm Characteristics and Environments, Mon. Weather Rev., 147, 4289–4304, https://doi.org/10.1175/MWR-D-19-0011.1, 2019. a, b
Burrows, S. M., McCluskey, C. S., Cornwell, G., Steinke, I., Zhang, K., Zhao, B., Zawadowicz, M., Raman, A., Kulkarni, G., China, S., Zelenyuk, A., and DeMott, P. J.: Ice-Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs, Rev. Geophys., 60, e2021RG000745, https://doi.org/10.1029/2021RG000745, 2022. a
Caburé, E.: Fertilizante foliar orgánico con acción insecticida, https://www.elcabureia.com/portfolio/items/fertilizante-foliar-organico-con-accion-insecticida (last access: 9 October 2024), 2024. a
Cecil, D. J. and Blankenship, C. B.: Toward a Global Climatology of Severe Hailstorms as Estimated by Satellite Passive Microwave Imagers, J. Climate, 25, 687–703, https://doi.org/10.1175/JCLI-D-11-00130.1, 2012. a, b
Changnon, S. A.: Temporal and Spatial Distributions of Damaging Hail in the Continental United States, Phys. Geogr., 29, 341–350, https://doi.org/10.2747/0272-3646.29.4.341, 2008. a
Chen, J., Wu, Z., Chen, J., Reicher, N., Fang, X., Rudich, Y., and Hu, M.: Size-resolved atmospheric ice-nucleating particles during East Asian dust events, Atmos. Chem. Phys., 21, 3491–3506, https://doi.org/10.5194/acp-21-3491-2021, 2021. a
Claquin, T., Schulz, M., and Balkanski, Y. J.: Modeling the Mineralogy of Atmospheric Dust Sources, J. Geophys. Res.-Atmos., 104, 22243–22256, https://doi.org/10.1029/1999JD900416, 1999. a
Conen, F., Morris, C. E., Leifeld, J., Yakutin, M. V., and Alewell, C.: Biological Residues Define the Ice Nucleation Properties of Soil Dust, Atmos. Chem. Phys., 11, 9643–9648, https://doi.org/10.5194/acp-11-9643-2011, 2011. a
Conny, J. M., Willis, R. D., and Ortiz-Montalvo, D. L.: Analysis and Optical Modeling of Individual Heterogeneous Asian Dust Particles Collected at Mauna Loa Observatory, J. Geophys. Res.-Atmos., 124, 2702–2723, https://doi.org/10.1029/2018JD029387, 2019. a
Copernicus Climate Change Service: Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observations, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/CDS.006F2C9A, 2019. a, b
Cornwell, G. C., Steinke, I., Lata, N. N., Zelenyuk, A., Kulkarni, G., Pekour, M., Perkins, R., Levin, E. J. T., China, S., DeMott, P. J., and Burrows, S. M.: Enrichment of Phosphates, Lead, and Mixed Soil-Organic Particles in INPs at the Southern Great Plains Site, J. Geophys. Res.-Atmos., 129, e2024JD040826, https://doi.org/10.1029/2024JD040826, 2024. a, b
Cziczo, D. J., Stetzer, O., Worringen, A., Ebert, M., Weinbruch, S., Kamphus, M., Gallavardin, S. J., Curtius, J., Borrmann, S., Froyd, K. D., Mertes, S., Möhler, O., and Lohmann, U.: Inadvertent Climate Modification Due to Anthropogenic Lead, Nat. Geosci., 2, 333–336, https://doi.org/10.1038/ngeo499, 2009. a
DeMott, P. J. and Prenni, A. J.: New Directions: Need for Defining the Numbers and Sources of Biological Aerosols Acting as Ice Nuclei, Atmos. Environ., 44, 1944–1945, https://doi.org/10.1016/j.atmosenv.2010.02.032, 2010. a
DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D. B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., Lee, T., Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S., Lewis, E. R., Wentzell, J. J. B., Abbatt, J., Lee, C., Sultana, C. M., Ault, A. P., Axson, J. L., Martinez, M. D., Venero, I., Santos-Figueroa, G., Stokes, M. D., Deane, G. B., Mayol-Bracero, O. L., Grassian, V. H., Bertram, T. H., Bertram, A. K., Moffett, B. F., and Franc, G. D.: Sea Spray Aerosol as a Unique Source of Ice Nucleating Particles, P. Natl. Acad. Sci. USA, 113, 5797–5803, https://doi.org/10.1073/pnas.1514034112, 2016. a, b
Di Biagio, C., Balkanski, Y., Albani, S., Boucher, O., and Formenti, P.: Direct Radiative Effect by Mineral Dust Aerosols Constrained by New Microphysical and Spectral Optical Data, Geophys. Res. Lett., 47, e2019GL086186, https://doi.org/10.1029/2019GL086186, 2020. a
Espeche, M. J. and Lira, R.: Ecandrewsite (ZnTiO3) in Amphibolites, Sierras de Córdoba, Argentina: Mineral Chemistry and Comparison with Different Worldwide Paragenetic Occurrences, Can. Mineralog., 60, 677–686, https://doi.org/10.3749/canmin.2100055, 2022. a
Filmetrics: ProfilmOnline 3D Imaging and Analysis Software, https://www.kla.com/products/instruments/optical-profilers/profilm3d (last access: 6 July 2024), 2017. a
Fletcher, C.: Physical Geology: The Science of Earth, Wiley, ISBN-13 9780471220374, 2011. a
Gao, K., Zhou, C.-W., Meier, E. J. B., and Kanji, Z. A.: Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles, Atmos. Chem. Phys., 22, 5331–5364, https://doi.org/10.5194/acp-22-5331-2022, 2022. a
Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott, J. H. J., and Joy, D. C.: Scanning Electron Microscopy and X-Ray Microanalysis, Springer, ISBN 978-1-4939-6676-9, 2017. a
Grenier, J.-C. and Sadok Zair, P. A.: Hailstone Growth Trajectories in the Dynamic Evolution of a Moderate Hailstorm, J. Appl. Meteorol. Clim., 22, 1008–1021, https://doi.org/10.1175/1520-0450(1983)022<1008:HGTITD>2.0.CO;2, 1983. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 Hourly Data on Pressure Levels from 1940 to Present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023. a
Heymsfield, A. J. and Pflaum, J. C.: A Quantitative Assessment of the Accuracy of Techniques for Calculating Graupel Growth, J. Atmos. Sci., 42, 2264–2274, https://doi.org/10.1175/1520-0469(1985)042<2264:AQAOTA>2.0.CO;2, 1985. a
Holden, M. A., Campbell, J. M., Meldrum, F. C., Murray, B. J., and Christenson, H. K.: Active Sites for Ice Nucleation Differ Depending on Nucleation Mode, P. Natl. Acad. Sci. USA, 118, e2022859118, https://doi.org/10.1073/pnas.2022859118, 2021. a
Huang, Y., Kok, J. F., Kandler, K., Lindqvist, H., Nousiainen, T., Sakai, T., Adebiyi, A., and Jokinen, O.: Climate Models and Remote Sensing Retrievals Neglect Substantial Desert Dust Asphericity, Geophys. Res. Lett., 47, e2019GL086592, https://doi.org/10.1029/2019GL086592, 2020. a
International Trade Administration: Argentina – Mining, https://www.trade.gov/country-commercial-guides/argentina-mining (last access: 18 October 2024), 2023. a
Iturri, L. A., Funk, R., Leue, M., Sommer, M., and Buschiazzo, D. E.: Wind Sorting Affects Differently the Organo-Mineral Composition of Saltating and Particulate Materials in Contrasting Texture Agricultural Soils, Aeolian Res., 28, 39–49, https://doi.org/10.1016/j.aeolia.2017.07.005, 2017. a
Jaenicke, R.: Physical Properties of Atmospheric Particulate Sulfur Compounds, Atmos. Environ., 12, 161–169, https://doi.org/10.1016/0004-6981(78)90197-X, 1978. a
Jeong, G. Y. and Achterberg, E. P.: Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans, Atmos. Chem. Phys., 14, 12415–12428, https://doi.org/10.5194/acp-14-12415-2014, 2014. a
Jeong, G. Y. and Nousiainen, T.: TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling, Atmos. Chem. Phys., 14, 7233–7254, https://doi.org/10.5194/acp-14-7233-2014, 2014. a
Jeong, G. Y., Park, M. Y., Kandler, K., Nousiainen, T., and Kemppinen, O.: Mineralogical properties and internal structures of individual fine particles of Saharan dust, Atmos. Chem. Phys., 16, 12397–12410, https://doi.org/10.5194/acp-16-12397-2016, 2016. a
Kandler, K., Benker, N., Bundke, U., Cuevas, E., Ebert, M., Knippertz, P., Rodríguez, S., Schütz, L., and Weinbruch, S.: Chemical Composition and Complex Refractive Index of Saharan Mineral Dust at Izaña, Tenerife (Spain) Derived by Electron Microscopy, Atmos. Environ., 41, 8058–8074, https://doi.org/10.1016/j.atmosenv.2007.06.047, 2007. a
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer, M.: Overview of Ice Nucleating Particles, Meteorol. Monogr., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017. a, b
Kemppinen, O., Nousiainen, T., and Jeong, G. Y.: Effects of dust particle internal structure on light scattering, Atmos. Chem. Phys., 15, 12011–12027, https://doi.org/10.5194/acp-15-12011-2015, 2015. a
Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A., Gerthsen, D., and Leisner, T.: Active Sites in Heterogeneous Ice Nucleation, the Example of K-rich Feldspars, Science, 355, 367–371, https://doi.org/10.1126/science.aai8034, 2017. a
Knopf, D. A., Alpert, P. A., and Wang, B.: The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review, ACS Earth Space Chem., 2, 168–202, https://doi.org/10.1021/acsearthspacechem.7b00120, 2018. a, b
Kozjek, M., Vengust, D., Radošević, T., Žitko, G., Koren, S., Toplak, N., Jerman, I., Butala, M., Podlogar, M., and Viršek, M. K.: Dissecting Giant Hailstones: A Glimpse into the Troposphere with Its Diverse Bacterial Communities and Fibrous Microplastics, Sci. Total Environ., 856, 158786, https://doi.org/10.1016/j.scitotenv.2022.158786, 2023. a
Kumjian, M. R. and Lombardo, K.: A Hail Growth Trajectory Model for Exploring the Environmental Controls on Hail Size: Model Physics and Idealized Tests, J. Atmos. Sci., 77, 2765–2791, https://doi.org/10.1175/JAS-D-20-0016.1, 2020. a
Kumjian, M. R., Lebo, Z. J., and Ward, A. M.: Storms Producing Large Accumulations of Small Hail, J. Appl. Meteorol. Clim., 58, 341–364, https://doi.org/10.1175/JAMC-D-18-0073.1, 2019. a
Kumjian, M. R., Gutierrez, R., Soderholm, J. S., Nesbitt, S. W., Maldonado, P., Luna, L. M., Marquis, J., Bowley, K. A., Imaz, M. A., and Salio, P.: Gargantuan Hail in Argentina, B. Am. Meteorol. Soc., 101, E1241–E1258, https://doi.org/10.1175/BAMS-D-19-0012.1, 2020. a, b
Lamb, D. and Verlinde, J.: Physics and Chemistry of Clouds, Cambridge University Press, Cambridge, ISBN 978-0-521-89910-9, https://doi.org/10.1017/CBO9780511976377, 2011. a, b
Levi, L., Lubart, L., Nasello, O. B., and Arena, L.: Analysis of a Hailstorm Ocurred in Alta Gracia Cordoba, Argentina, in: Third International Conference on Southern Hemisphere Meteorology and Oceanography, 13–17 November 1989, Buenos Aires, Argentina, 343 pp., https://www.jstor.org/stable/26227436 (last access: 2 April 2025), 1989. a
Levi, L., Arena, L., Nasello, O., and Lubart, L.: Condiciones Iniciales de Crecimiento de Granizos Gigantes, in: CONGREMET VI, Anales del Centro Argentino de Meterologìa, Buenos Aires, Argentina, 23–27, 1991. a
Lewis, K. A., Tzilivakis, J., Warner, D. J., and Green, A.: An International Database for Pesticide Risk Assessments and Management, Hum. Ecol. Risk Assess., 22, 1050–1064, https://doi.org/10.1080/10807039.2015.1133242, 2016. a
Li, L. and Sokolik, I. N.: The Dust Direct Radiative Impact and Its Sensitivity to the Land Surface State and Key Minerals in the WRF-Chem-DuMo Model: A Case Study of Dust Storms in Central Asia, J. Geophys. Res.-Atmos., 123, 4564–4582, https://doi.org/10.1029/2017JD027667, 2018. a
Lubart, L. and Levi, L.: Crecimiento de Embriones de Granizo de Tipo “Graupel”, Geoacta, 12, 157–168, 1984. a
Mahoney, K.: Extreme Hail Storms and Climate Change: Foretelling the Future in Tiny, Turbulent Crystal Balls?, B. Am. Meteorol. Soc., 101, S17–S22, https://doi.org/10.1175/BAMS-D-19-0233.1, 2020. a
Manoj, P.: Copper Oxychloride Market Report 2024 (Global Edition), Tech. Rep. CMR767910, Cognitive Market Research, https://www.cognitivemarketresearch.com/copper-oxychloride-market-report (last access: 9 February 2024), 2023. a
Michaud, A. B., Dore, J. E., Leslie, D., Lyons, W. B., Sands, D. C., and Priscu, J. C.: Biological Ice Nucleation Initiates Hailstone Formation, J. Geophys. Res.-Atmos., 119, 12186–12197, https://doi.org/10.1002/2014JD022004, 2014. a, b, c, d
Mokkapati, S. P.: Simulation of Particle Agglomeration Using Dissipative Particle Dynamics, PhD thesis, https://hdl.handle.net/1969.1/ETD-TAMU-1149 (last access: 9 March 2025), 2009. a
Mulholland, J. P., Nesbitt, S. W., Trapp, R. J., Rasmussen, K. L., and Salio, P. V.: Convective Storm Life Cycle and Environments near the Sierras de Córdoba, Argentina, Mon. Weather Rev., 146, 2541–2557, https://doi.org/10.1175/MWR-D-18-0081.1, 2018. a, b
Murillo, E. M. and Homeyer, C. R.: Severe Hail Fall and Hailstorm Detection Using Remote Sensing Observations, J. Appl. Meteorol. Clim., 58, 947–970, https://doi.org/10.1175/JAMC-D-18-0247.1, 2019. a
Nesbitt, S. W., Salio, P. V., Ávila, E., Bitzer, P., Carey, L., Chandrasekar, V., Deierling, W., Dominguez, F., Dillon, M. E., Garcia, C. M., Gochis, D., Goodman, S., Hence, D. A., Kosiba, K. A., Kumjian, M. R., Lang, T., Luna, L. M., Marquis, J., Marshall, R., McMurdie, L. A., Nascimento, E. D. L., Rasmussen, K. L., Roberts, R., Rowe, A. K., Ruiz, J. J., Sabbas, E. F. M. T. S., Saulo, A. C., Schumacher, R. S., Skabar, Y. G., Machado, L. A. T., Trapp, R. J., Varble, A. C., Wilson, J., Wurman, J., Zipser, E. J., Arias, I., Bechis, H., and Grover, M. A.: A Storm Safari in Subtropical South America: Proyecto RELAMPAGO, B. Am. Meteorol. Soc., 102, E1621–E1644, https://doi.org/10.1175/BAMS-D-20-0029.1, 2021. a
Ni, X., Liu, C., Cecil, D. J., and Zhang, Q.: On the Detection of Hail Using Satellite Passive Microwave Radiometers and Precipitation Radar, J. Appl. Meteorol. Climatol., 56, 2693–2709, https://doi.org/10.1175/JAMC-D-17-0065.1, 2017. a
NOAA: HYSPLIT, https://www.ready.noaa.gov/HYSPLIT.php (last access: 14 July 2025), 2025. a
Nousiainen, T., Zubko, E., Niemi, J. V., Kupiainen, K., Lehtinen, M., Muinonen, K., and Videen, G.: Single-Scattering Modeling of Thin, Birefringent Mineral-Dust Flakes Using the Discrete-Dipole Approximation, J. Geophys. Res.-Atmos., 114, D07207, https://doi.org/10.1029/2008JD011564, 2009. a
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, in: vol. 18, Springer Netherlands, ISBN 978-0-7923-4211-3, 1980. a
Rangno, A. L. and Hobbs, P. V.: Ice Particle Concentrations and Precipitation Development in Small Polar Maritime Cumuliform Clouds, Q. J. Roy. Meteorol. Soc., 117, 207–241, https://doi.org/10.1002/qj.49711749710, 1991. a
Rasmussen, K. L. and Houze, Jr., R. A.: Convective Initiation near the Andes in Subtropical South America, Mon. Weather Rev., 144, 2351–2374, https://doi.org/10.1175/MWR-D-15-0058.1, 2016. a, b, c
Rasmussen, K. L., Zuluaga, M. D., and Houze Jr., R. A.: Severe Convection and Lightning in Subtropical South America, Geophys. Res. Lett., 41, 7359–7366, https://doi.org/10.1002/2014GL061767, 2014. a
Raupach, T. H., Martius, O., Allen, J. T., Kunz, M., Lasher-Trapp, S., Mohr, S., Rasmussen, K. L., Trapp, R. J., and Zhang, Q.: The Effects of Climate Change on Hailstorms, Nat. Rev. Earth Environ., 2, 213–226, https://doi.org/10.1038/s43017-020-00133-9, 2021. a, b
Ren, L., Yang, Y., Wang, H., Wang, P., Chen, L., Zhu, J., and Liao, H.: Aerosol transport pathways and source attribution in China during the COVID-19 outbreak, Atmos. Chem. Phys., 21, 15431–15445, https://doi.org/10.5194/acp-21-15431-2021, 2021. a
Rizobacter: Status ZN, https://rizobacter.com.ar/es/productos/argentina/status-zn (last access: 19 September 2024), 2024. a
Sander, J., Eichner, J. F., Faust, E., and Steuer, M.: Rising Variability in Thunderstorm-Related U.S. Losses as a Reflection of Changes in Large-Scale Thunderstorm Forcing, Weather Clim. Soc., 5, 317–331, https://doi.org/10.1175/WCAS-D-12-00023.1, 2013. a
Šantl-Temkiv, T., Finster, K., Dittmar, T., Hansen, B. M., Thyrhaug, R., Nielsen, N. W., and Karlson, U. G.: Hailstones: A Window into the Microbial and Chemical Inventory of a Storm Cloud, PLOS ONE, 8, 1–7, https://doi.org/10.1371/journal.pone.0053550, 2013. a, b, c, d
Sasaki, C. R. S., Rowe, A. K., McMurdie, L. A., and Rasmussen, K. L.: New Insights into the South American Low-Level Jet from RELAMPAGO Observations, Mon. Weather Rev., 150, 1247–1271, https://doi.org/10.1175/MWR-D-21-0161.1, 2022. a, b
Sasaki, C. R. S., Rowe, A. K., McMurdie, L. A., Varble, A. C., and Zhang, Z.: Influences of the South American Low-Level Jet on the Convective Environment in Central Argentina Using a Convection-Permitting Simulation, Mon. Weather Rev., 152, 629–648, https://doi.org/10.1175/MWR-D-23-0122.1, 2024. a, b, c, d
Schütz, L. and Sebert, M.: Mineral Aerosols and Source Identification, J. Aerosol Sci., 18, 1–10, https://doi.org/10.1016/0021-8502(87)90002-4, 1987. a
Soderholm, J. S. and Kumjian, M. R.: Automating the analysis of hailstone layers, Atmos. Meas. Tech., 16, 695–706, https://doi.org/10.5194/amt-16-695-2023, 2023. a, b
Sokolik, I. N. and Toon, O. B.: Direct Radiative Forcing by Anthropogenic Airborne Mineral Aerosols, Nature, 381, 681–683, https://doi.org/10.1038/381681a0, 1996. a
Sokolik, I. N. and Toon, O. B.: Incorporation of Mineralogical Composition into Models of the Radiative Properties of Mineral Aerosol from UV to IR Wavelengths, J. Geophys. Res.-Atmos., 104, 9423–9444, https://doi.org/10.1029/1998JD200048, 1999. a
SRL: Fábrica de fertilizantes|Recuperar S.R.L.|Córdoba, https://www.recuperarsrl.com.ar (last access: 9 October 2024), 2021. a
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015. a
Steinke, I., Funk, R., Busse, J., Iturri, A., Kirchen, S., Leue, M., Möhler, O., Schwartz, T., Schnaiter, M., Sierau, B., Toprak, E., Ullrich, R., Ulrich, A., Hoose, C., and Leisner, T.: Ice Nucleation Activity of Agricultural Soil Dust Aerosols from Mongolia, Argentina, and Germany, J. Geophys. Res.-Atmos., 121, 13559–13576, https://doi.org/10.1002/2016JD025160, 2016. a, b
Takahashi, T.: Hawaiian Hailstones – 30 January 1985, B. Am. Meteorol. Soc., 68, 1530–1534, https://doi.org/10.1175/1520-0477(1987)068<1530:HHJ>2.0.CO;2, 1987. a, b, c, d
Tarn, M. D., Sikora, S. N. F., Porter, G. C. E., O'Sullivan, D., Adams, M., Whale, T. F., Harrison, A. D., Vergara-Temprado, J., Wilson, T. W., Shim, J.-U., and Murray, B. J.: The Study of Atmospheric Ice-Nucleating Particles via Microfluidically Generated Droplets, Microfluid Nanofluid., 22, 52, https://doi.org/10.1007/s10404-018-2069-x, 2018. a
Tegen, I. and Lacis, A. A.: Modeling of Particle Size Distribution and Its Influence on the Radiative Properties of Mineral Dust Aerosol, J. Geophys. Res.-Atmos., 101, 19237–19244, https://doi.org/10.1029/95JD03610, 1996. a
Testa, B., Hill, T. C. J., Marsden, N. A., Barry, K. R., Hume, C. C., Bian, Q., Uetake, J., Hare, H., Perkins, R. J., Möhler, O., Kreidenweis, S. M., and DeMott, P. J.: Ice Nucleating Particle Connections to Regional Argentinian Land Surface Emissions and Weather During the Cloud, Aerosol, and Complex Terrain Interactions Experiment, J. Geophys. Res.-Atmos., 126, e2021JD035186, https://doi.org/10.1029/2021JD035186, 2021. a, b, c, d
USGS: Minerals Yearbook, 2017–2018, Latin American And Canada, in: vol. 111, US Government Publishing Office, ISBN 978-1-4113-4231-6, 2019. a
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015. a
Varble, A. C., Nesbitt, S. W., Salio, P., Hardin, J. C., Bharadwaj, N., Borque, P., DeMott, P. J., Feng, Z., Hill, T. C. J., Marquis, J. N., Matthews, A., Mei, F., Öktem, R., Castro, V., Goldberger, L., Hunzinger, A., Barry, K. R., Kreidenweis, S. M., McFarquhar, G. M., McMurdie, L. A., Pekour, M., Powers, H., Romps, D. M., Saulo, C., Schmid, B., Tomlinson, J. M., van den Heever, S. C., Zelenyuk, A., Zhang, Z., and Zipser, E. J.: Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment, B. Am. Meteorol. Soc., 102, E1597–E1620, https://doi.org/10.1175/BAMS-D-20-0030.1, 2021. a
Wang, S., Mu, L., Wang, C., Li, X., Xie, J., Shang, Y., Pu, H., and Dong, M.: Modeling and Simulation of Micron Particle Agglomeration in a Turbulent Flow: Impact of Cylindrical Disturbance and Particle Properties, ACS Omega, 9, 49302–49315, https://doi.org/10.1021/acsomega.4c06441, 2024. a
Yadav, S. K., Kompalli, S. K., Gurjar, B. R., and Mishra, R. K.: Aerosol Number Concentrations and New Particle Formation Events over a Polluted Megacity during the COVID-19 Lockdown, Atmos. Environ., 259, 118526, https://doi.org/10.1016/j.atmosenv.2021.118526, 2021. a
Zaccarini, F., Garuti, G., Ortiz-Suarez, A., and Carugno-Duran, A.: The paragenesis of pyrophanite from Sierra de Comechingones, Córdoba, Argentina, Can. Mineralog., 42, 155–168, https://doi.org/10.2113/gscanmin.42.1.155, 2004. a
Zhang, H., Lin, X., Zhang, Q., Bi, K., Ng, C.-P., Ren, Y., Xue, H., Chen, L., and Chang, Z.: Analysis of insoluble particles in hailstones in China, Atmos. Chem. Phys., 23, 13957–13971, https://doi.org/10.5194/acp-23-13957-2023, 2023. a
Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X., Huang, L., and Yung, Y. L.: Ice Nucleation by Aerosols from Anthropogenic Pollution, Nat. Geosci., 12, 602–607, https://doi.org/10.1038/s41561-019-0389-4, 2019. a
Zipser, E. J., Nesbitt, S. W., Liu, C., and Yorty, D. P.: Where Are the Most Intense Thunderstorms on Earth?, B. Am. Meteorol. Soc., 87, 1057–1071, https://doi.org/10.1175/BAMS-87-8-1057, 2006. a
Short summary
This study analyzed particles in hailstones from Argentina to better understand hail formation and growth. A unique method was used that revealed the particles’ size, composition, and location within the hail, including a variety of particle sizes and compositions linked to local land uses, such as mountainous, agricultural, and urban areas. The findings highlight the potential impacts of natural and human-related factors on hail formation and provide a new method for studying hail globally.
This study analyzed particles in hailstones from Argentina to better understand hail formation...
Altmetrics
Final-revised paper
Preprint