Articles | Volume 25, issue 4
https://doi.org/10.5194/acp-25-2269-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-2269-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite nadir-viewing geometry affects the magnitude and detectability of long-term trends in stratospheric ozone
Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Marianna Linz
Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Jessica L. Neu
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA
Michelle L. Santee
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Related authors
No articles found.
Paul Konopka, Felix Ploeger, Francesco D'Amato, Teresa Campos, Marc von Hobe, Shawn B. Honomichl, Peter Hoor, Laura L. Pan, Michelle L. Santee, Silvia Viciani, Kaley A. Walker, and Michaela I. Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1155, https://doi.org/10.5194/egusphere-2025-1155, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We present an improved version of the Chemical Lagrangian Model of the Stratosphere (CLaMS-3.0), which better represents transport from the lower atmosphere to the upper troposphere and lower stratosphere. By refining grid resolution and improving convection representation, the model more accurately simulates carbon monoxide transport. Comparisons with satellite and in situ observations highlight its ability to capture seasonal variations and improve our understanding of atmospheric transport.
Elyse A. Pennington, Gregory B. Osterman, Vivienne H. Payne, Kazuyuki Miyazaki, Kevin W. Bowman, and Jessica L. Neu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3701, https://doi.org/10.5194/egusphere-2024-3701, 2024
Short summary
Short summary
Tropospheric ozone is a harmful pollutant & powerful greenhouse gas. For satellite products to accurately quantify trends in tropospheric ozone, they must have low bias compared to a reliable source of data. This study compares 3 TROPESS satellite products – CrIS, AIRS, & AIRSOMI – to ozonesonde data. They have low global measurement bias & thus can be used to detect global tropospheric ozone trends, but the measurement bias should be considered in certain regions & time periods.
Laura N. Saunders, Kaley A. Walker, Gabriele P. Stiller, Thomas von Clarmann, Florian Haenel, Hella Garny, Harald Bönisch, Chris D. Boone, Ariana E. Castillo, Andreas Engel, Johannes C. Laube, Marianna Linz, Felix Ploeger, David A. Plummer, Eric A. Ray, and Patrick E. Sheese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2117, https://doi.org/10.5194/egusphere-2024-2117, 2024
Short summary
Short summary
We present a 17-year stratospheric age of air dataset derived from ACE-FTS satellite measurements of sulfur hexafluoride. This is the longest continuous, global, and vertically resolved age of air time series available to date. In this paper, we show that this dataset agrees well with age of air datasets based on measurements from other instruments. We also present trends in the midlatitude lower stratosphere that indicate changes in the global circulation that are predicted by climate models.
Jezabel Curbelo and Marianna Linz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1348, https://doi.org/10.5194/egusphere-2024-1348, 2024
Short summary
Short summary
Studying stratospheric mixing is crucial for understanding atmospheric dynamics and chemical transport. We propose a new Lagrangian metric based on the density of transport barriers, attracting/repelling coherent structures, to analyze mixing in the Whole Atmosphere Community Climate Model. Our metric is a promising tool for stratospheric analysis, consistent with commonly used metrics to quantify mixing while also providing the advantage of reflecting Lagrangian transport in physical latitude.
Hella Garny, Roland Eichinger, Johannes C. Laube, Eric A. Ray, Gabriele P. Stiller, Harald Bönisch, Laura Saunders, and Marianna Linz
Atmos. Chem. Phys., 24, 4193–4215, https://doi.org/10.5194/acp-24-4193-2024, https://doi.org/10.5194/acp-24-4193-2024, 2024
Short summary
Short summary
Transport circulation in the stratosphere is important for the distribution of tracers, but its strength is hard to measure. Mean transport times can be inferred from observations of trace gases with certain properties, such as sulfur hexafluoride (SF6). However, this gas has a chemical sink in the high atmosphere, which can lead to substantial biases in inferred transport times. In this paper we present a method to correct mean transport times derived from SF6 for the effects of chemical sinks.
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 23, 7447–7460, https://doi.org/10.5194/acp-23-7447-2023, https://doi.org/10.5194/acp-23-7447-2023, 2023
Short summary
Short summary
Here, we show how projected changes to tropical circulation will impact the water vapor concentration in the lower stratosphere, which has implications for surface climate and stratospheric chemistry. In our transport scenarios with slower east–west winds, air parcels ascending into the stratosphere do not experience the same cold temperatures that they would today. This effect could act in concert with previously modeled changes to stratospheric water vapor to amplify surface warming.
Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee
Atmos. Meas. Tech., 16, 2733–2751, https://doi.org/10.5194/amt-16-2733-2023, https://doi.org/10.5194/amt-16-2733-2023, 2023
Short summary
Short summary
The algorithm that produces the near-real-time data products of the Aura Microwave Limb Sounder has been updated. The new algorithm is based on machine learning techniques and yields data products with much improved accuracy. It is shown that the new algorithm outperforms the previous versions, even when it is trained on only a few years of satellite observations. This confirms the potential of applying machine learning to the near-real-time efforts of other current and future mission concepts.
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 22, 13325–13339, https://doi.org/10.5194/acp-22-13325-2022, https://doi.org/10.5194/acp-22-13325-2022, 2022
Short summary
Short summary
Here, we tested the impact of spatial and temporal resolution on Lagrangian trajectory studies in a key region of interest for climate feedbacks and stratospheric chemistry. Our analysis shows that new higher-resolution input data provide an opportunity for a better understanding of physical processes that control how air moves from the troposphere to the stratosphere. Future studies of how these processes will change in a warming climate will benefit from these results.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irene Erner, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, https://doi.org/10.5194/wcd-3-977-2022, 2022
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Lucien Froidevaux, Douglas E. Kinnison, Michelle L. Santee, Luis F. Millán, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, John J. Orlando, and Ryan A. Fuller
Atmos. Chem. Phys., 22, 4779–4799, https://doi.org/10.5194/acp-22-4779-2022, https://doi.org/10.5194/acp-22-4779-2022, 2022
Short summary
Short summary
We analyze satellite-derived distributions of chlorine monoxide (ClO) and hypochlorous acid (HOCl) in the upper atmosphere. For 2005–2020, from 50°S to 50°N and over ~30 to 45 km, ClO and HOCl decreased by −0.7 % and −0.4 % per year, respectively. A detailed model of chemistry and dynamics agrees with the results. These decreases confirm the effectiveness of the 1987 Montreal Protocol, which limited emissions of chlorine- and bromine-containing source gases, in order to protect the ozone layer.
Vijay Natraj, Ming Luo, Jean-Francois Blavier, Vivienne H. Payne, Derek J. Posselt, Stanley P. Sander, Zhao-Cheng Zeng, Jessica L. Neu, Denis Tremblay, Longtao Wu, Jacola A. Roman, Yen-Hung Wu, and Leonard I. Dorsky
Atmos. Meas. Tech., 15, 1251–1267, https://doi.org/10.5194/amt-15-1251-2022, https://doi.org/10.5194/amt-15-1251-2022, 2022
Short summary
Short summary
High-fidelity monitoring and forecast of air quality and the hydrological cycle require understanding the vertical distribution of temperature, humidity, and trace gases at high spatiotemporal resolution. We describe a new instrument concept, called the JPL GEO-IR Sounder, that would provide this information for the first time from a single instrument platform. Simulations demonstrate the benefits of combining measurements from multiple wavelengths for this purpose from geostationary orbit.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021, https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary
Short summary
In this study we present an improved cloud detection scheme for the Microwave Limb Sounder, which is based on a feedforward artificial neural network. This new algorithm is shown not only to reliably detect high and mid-level convection containing even small amounts of cloud water but also to distinguish between high-reaching and mid-level to low convection.
Hugh C. Pumphrey, Michael J. Schwartz, Michelle L. Santee, George P. Kablick III, Michael D. Fromm, and Nathaniel J. Livesey
Atmos. Chem. Phys., 21, 16645–16659, https://doi.org/10.5194/acp-21-16645-2021, https://doi.org/10.5194/acp-21-16645-2021, 2021
Short summary
Short summary
Forest fires in British Columbia in August 2017 caused an unusual phenomonon: smoke and gases from the fires rose quickly to a height of 10 km. From there, the pollution continued to rise more slowly for many weeks, travelling around the world as it did so. In this paper, we describe how we used data from a satellite instrument to observe this polluted volume of air. The satellite has now been working for 16 years but has observed only three events of this type.
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021, https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Short summary
The Microwave Limb Sounder (MLS), an instrument on NASA's Aura mission launched in 2004, measures vertical profiles of the temperature and composition of Earth's "middle atmosphere" (the region from ~12 to ~100 km altitude). We describe how, among the 16 trace gases measured by MLS, the measurements of water vapor (H2O) and nitrous oxide (N2O) have started to drift since ~2010. The paper also discusses the origins of this drift and work to ameliorate it in a new version of the MLS dataset.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Zhen Qu, Daven K. Henze, Owen R. Cooper, and Jessica L. Neu
Atmos. Chem. Phys., 20, 13109–13130, https://doi.org/10.5194/acp-20-13109-2020, https://doi.org/10.5194/acp-20-13109-2020, 2020
Short summary
Short summary
We use satellite observations and chemical transport modeling to quantify sources of NOx, a major air pollutant, over the past decade. We find improved simulations of the magnitude, seasonality, and trends of NO2 and ozone concentrations using these derived emissions. Changes in ozone pollution driven by human and natural sources are identified in different regions. This work shows the benefits of remote-sensing data and inverse modeling for more accurate ozone simulations.
Benjamin Birner, Martyn P. Chipperfield, Eric J. Morgan, Britton B. Stephens, Marianna Linz, Wuhu Feng, Chris Wilson, Jonathan D. Bent, Steven C. Wofsy, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Chem. Phys., 20, 12391–12408, https://doi.org/10.5194/acp-20-12391-2020, https://doi.org/10.5194/acp-20-12391-2020, 2020
Short summary
Short summary
With new high-precision observations from nine aircraft campaigns and 3-D chemical transport modeling, we show that the argon-to-nitrogen ratio (Ar / N2) in the lowermost stratosphere provides a useful constraint on the “age of air” (the time elapsed since entry of an air parcel into the stratosphere). Therefore, Ar / N2 in combination with traditional age-of-air indicators, such as CO2 and N2O, could provide new insights into atmospheric mixing and transport.
Quentin Errera, Simon Chabrillat, Yves Christophe, Jonas Debosscher, Daan Hubert, William Lahoz, Michelle L. Santee, Masato Shiotani, Sergey Skachko, Thomas von Clarmann, and Kaley Walker
Atmos. Chem. Phys., 19, 13647–13679, https://doi.org/10.5194/acp-19-13647-2019, https://doi.org/10.5194/acp-19-13647-2019, 2019
Short summary
Short summary
BRAM2 is a 13-year reanalysis of the chemical composition from the upper troposphere to the lower mesosphere based on the assimilation of the Microwave Limb Sounder observations where eight species are assimilated: O3, H2O, N2O, HNO3, HCl, ClO, CH3Cl and CO. BRAM2 agrees generally well with independent observations in the middle stratosphere, the polar vortex and the upper troposphere–lower stratosphere but also shows several issues in the model and in the observations.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Marianna Linz, Marta Abalos, Anne Sasha Glanville, Douglas E. Kinnison, Alison Ming, and Jessica L. Neu
Atmos. Chem. Phys., 19, 5069–5090, https://doi.org/10.5194/acp-19-5069-2019, https://doi.org/10.5194/acp-19-5069-2019, 2019
Short summary
Short summary
The stratospheric circulation is important for transporting ozone and water vapor, and models of the stratosphere differ. The metrics used to compare models are inconsistent between studies and cannot be calculated from observational data. In this paper, we explore a metric for the circulation that can be calculated from observations and examine how it relates to the more commonly used metrics. We find substantial differences in the upper and lower stratosphere depending on the choice of metric.
Mohamadou Diallo, Paul Konopka, Michelle L. Santee, Rolf Müller, Mengchu Tao, Kaley A. Walker, Bernard Legras, Martin Riese, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, https://doi.org/10.5194/acp-19-425-2019, 2019
Short summary
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Farahnaz Khosrawi, Oliver Kirner, Gabriele Stiller, Michael Höpfner, Michelle L. Santee, Sylvia Kellmann, and Peter Braesicke
Atmos. Chem. Phys., 18, 8873–8892, https://doi.org/10.5194/acp-18-8873-2018, https://doi.org/10.5194/acp-18-8873-2018, 2018
Short summary
Short summary
An extensive assessment of the performance of the chemistry–climate model EMAC is given for Arctic winters 2009/2010 and 2010/2011. The EMAC simulations are compared to satellite observations. The comparisons between EMAC simulations and satellite observations show that model and measurements compare well for these two Arctic winters. However, differences between model and observations are found that need improvements in the model in the future.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Mengchu Tao, Rolf Müller, Michelle L. Santee, Jianchun Bian, and Martin Riese
Atmos. Chem. Phys., 18, 8079–8096, https://doi.org/10.5194/acp-18-8079-2018, https://doi.org/10.5194/acp-18-8079-2018, 2018
Short summary
Short summary
Many works investigate the impact of ENSO on the troposphere. However, only a few works check the impact of ENSO at higher altitudes.
Here, we analyse the impact of ENSO on the vicinity of the tropopause using reanalysis, satellite, in situ and model data. We find that ENSO shows the strongest signal in winter, but its impact can last until early the next summer. The ENSO anomaly is insignificant in late summer. Our study can help to understand the atmosphere propagation after ENSO.
Luis F. Millán, Nathaniel J. Livesey, Michelle L. Santee, and Thomas von Clarmann
Atmos. Chem. Phys., 18, 4187–4199, https://doi.org/10.5194/acp-18-4187-2018, https://doi.org/10.5194/acp-18-4187-2018, 2018
Short summary
Short summary
This study investigates orbital sampling biases and evaluates the additional impact caused by data quality screening for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Aura Microwave Limb Sounder (MLS).
Alyn Lambert and Michelle L. Santee
Atmos. Chem. Phys., 18, 1945–1975, https://doi.org/10.5194/acp-18-1945-2018, https://doi.org/10.5194/acp-18-1945-2018, 2018
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Gloria L. Manney, Michaela I. Hegglin, Zachary D. Lawrence, Krzysztof Wargan, Luis F. Millán, Michael J. Schwartz, Michelle L. Santee, Alyn Lambert, Steven Pawson, Brian W. Knosp, Ryan A. Fuller, and William H. Daffer
Atmos. Chem. Phys., 17, 11541–11566, https://doi.org/10.5194/acp-17-11541-2017, https://doi.org/10.5194/acp-17-11541-2017, 2017
Short summary
Short summary
The upper tropospheric–lower stratospheric (UTLS) jet stream and multiple tropopause distributions are compared among five state-of-the-art reanalyses. The reanalyses show very similar global distributions of UTLS jets, reflecting their overall high quality; slightly larger differences are seen in tropopause characteristics. Regional and seasonal differences, albeit small, may have implications for using these reanalyses for quantitative dynamical and transport studies focusing on the UTLS.
Karen E. Cady-Pereira, Vivienne H. Payne, Jessica L. Neu, Kevin W. Bowman, Kazuyuki Miyazaki, Eloise A. Marais, Susan Kulawik, Zitely A. Tzompa-Sosa, and Jennifer D. Hegarty
Atmos. Chem. Phys., 17, 9379–9398, https://doi.org/10.5194/acp-17-9379-2017, https://doi.org/10.5194/acp-17-9379-2017, 2017
Short summary
Short summary
Air quality is a major issue for megacities. Our paper looks at satellite measurements over Mexico City and Lagos of several trace gases gases related to air quality to determine the temporal and spatial variability of these gases, and it relates this variability to local conditions, such as topography, winds and biomass burning events. We find that, while Mexico City is known for severe pollution events, the levels of of pollution in Lagos are much higher and more persistent.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Alyn Lambert, Michelle L. Santee, and Nathaniel J. Livesey
Atmos. Chem. Phys., 16, 15219–15246, https://doi.org/10.5194/acp-16-15219-2016, https://doi.org/10.5194/acp-16-15219-2016, 2016
Luis F. Millán, Nathaniel J. Livesey, Michelle L. Santee, Jessica L. Neu, Gloria L. Manney, and Ryan A. Fuller
Atmos. Chem. Phys., 16, 11521–11534, https://doi.org/10.5194/acp-16-11521-2016, https://doi.org/10.5194/acp-16-11521-2016, 2016
Short summary
Short summary
This paper describes the impact of orbital sampling applied to stratospheric temperature and trace gas fields. Model fields are sampled using real sampling patterns from different satellites. We find that coarse nonuniform sampling patterns may introduce non-negligible errors into the inferred magnitude of temperature and trace gas trends and necessitate considerably longer records for their definitive detection.
Gerald E. Nedoluha, Brian J. Connor, Thomas Mooney, James W. Barrett, Alan Parrish, R. Michael Gomez, Ian Boyd, Douglas R. Allen, Michael Kotkamp, Stefanie Kremser, Terry Deshler, Paul Newman, and Michelle L. Santee
Atmos. Chem. Phys., 16, 10725–10734, https://doi.org/10.5194/acp-16-10725-2016, https://doi.org/10.5194/acp-16-10725-2016, 2016
Short summary
Short summary
Chlorine monoxide (ClO) is central to the formation of the springtime Antarctic ozone hole since it is the catalytic agent in the most important ozone-depleting chemical cycle. We present 20 years of measurements of ClO from the Chlorine monOxide Experiment at Scott Base, Antarctica, and 12 years of measurements from the Aura Microwave Limb Sounder to show that the trends in ClO during the ozone hole season are consistent with changes in stratospheric chlorine observed elsewhere.
Hilke Oetjen, Vivienne H. Payne, Jessica L. Neu, Susan S. Kulawik, David P. Edwards, Annmarie Eldering, Helen M. Worden, and John R. Worden
Atmos. Chem. Phys., 16, 10229–10239, https://doi.org/10.5194/acp-16-10229-2016, https://doi.org/10.5194/acp-16-10229-2016, 2016
Short summary
Short summary
We developed and tested a strategy for combining TES and IASI free-tropospheric ozone data. A time series of the merged ozone data is presented for regional monthly means over the western US, Europe, and eastern Asia. We show that free-tropospheric ozone over Europe and the western US has remained relatively constant over the past decade but that, contrary to expectations, ozone over Asia in recent years does not continue the rapid rate of increase observed from 2004–2010.
Hideaki Nakajima, Ingo Wohltmann, Tobias Wegner, Masanori Takeda, Michael C. Pitts, Lamont R. Poole, Ralph Lehmann, Michelle L. Santee, and Markus Rex
Atmos. Chem. Phys., 16, 3311–3325, https://doi.org/10.5194/acp-16-3311-2016, https://doi.org/10.5194/acp-16-3311-2016, 2016
Short summary
Short summary
This paper presents the first trial of analyzing amount of chlorine activation on different PSC compositions by using match analysis on trajectories initiated from PSC locations identified by CALIPSO/CALIOP measurements. The measured minor species such as HCl and ClO by MLS are compared with ATLAS chemistry-transport model (CTM) results. PSC growth to NAT, NAT/STS mixture, and ice were identified by different temperature decrease histories on trajectories.
L. Froidevaux, J. Anderson, H.-J. Wang, R. A. Fuller, M. J. Schwartz, M. L. Santee, N. J. Livesey, H. C. Pumphrey, P. F. Bernath, J. M. Russell III, and M. P. McCormick
Atmos. Chem. Phys., 15, 10471–10507, https://doi.org/10.5194/acp-15-10471-2015, https://doi.org/10.5194/acp-15-10471-2015, 2015
J. Kuttippurath, S. Godin-Beekmann, F. Lefèvre, M. L. Santee, L. Froidevaux, and A. Hauchecorne
Atmos. Chem. Phys., 15, 10385–10397, https://doi.org/10.5194/acp-15-10385-2015, https://doi.org/10.5194/acp-15-10385-2015, 2015
Short summary
Short summary
Our study finds large interannual variability in Antarctic ozone loss in the recent decade, with a number of winters showing shallow ozone holes but also with the year of the largest ozone hole in the last decades. These smaller ozone holes or ozone losses are mainly related to the year-to-year changes in dynamical processes rather than the variations in anthropogenic ozone-depleting substances (ODSs), as the change in ODS levels during the study period was very small.
N. J. Livesey, M. L. Santee, and G. L. Manney
Atmos. Chem. Phys., 15, 9945–9963, https://doi.org/10.5194/acp-15-9945-2015, https://doi.org/10.5194/acp-15-9945-2015, 2015
Short summary
Short summary
Employing the well-established "Match" technique, we quantify polar
stratospheric ozone loss during multiple Arctic and Antarctic winters,
based on observations from the spaceborne Aura Microwave Limb Sounder
(MLS) instrument. The dense MLS spatial coverage enables many more
matches than is possible for balloon-based observations. Applying the
same technique to MLS observations of the long-lived N2O molecule gives
an measure of the impact of transport errors on our ozone loss
estimates.
G. L. Manney, Z. D. Lawrence, M. L. Santee, N. J. Livesey, A. Lambert, and M. C. Pitts
Atmos. Chem. Phys., 15, 5381–5403, https://doi.org/10.5194/acp-15-5381-2015, https://doi.org/10.5194/acp-15-5381-2015, 2015
Short summary
Short summary
Sudden stratospheric warmings (SSWs) cause a rapid rise in lower stratospheric temperatures, terminating conditions favorable to chemical ozone loss. We show that although temperatures rose precipitously during the vortex split SSW in early Jan 2013, because the offspring vortices each remained isolated and in regions that received sunlight, chemical ozone loss continued for over 1 month after the SSW. Dec/Jan Arctic ozone loss was larger than any previously observed during that period.
Z. D. Lawrence, G. L. Manney, K. Minschwaner, M. L. Santee, and A. Lambert
Atmos. Chem. Phys., 15, 3873–3892, https://doi.org/10.5194/acp-15-3873-2015, https://doi.org/10.5194/acp-15-3873-2015, 2015
Short summary
Short summary
We use a comprehensive set of diagnostics to investigate how two widely used modern reanalysis data sets might affect studies of lower stratospheric polar processing and ozone loss. Our results show that the agreement in temperature diagnostics between the two reanalyses improves over time in both hemispheres with increasing assimilation model inputs. This suggests that both data sets are appropriate choices for studies of polar processing in recent winters.
M. Rex, S. Kremser, P. Huck, G. Bodeker, I. Wohltmann, M. L. Santee, and P. Bernath
Atmos. Chem. Phys., 14, 6545–6555, https://doi.org/10.5194/acp-14-6545-2014, https://doi.org/10.5194/acp-14-6545-2014, 2014
S. M. Khaykin, I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer, A. D. Lykov, S. Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter
Atmos. Chem. Phys., 13, 11503–11517, https://doi.org/10.5194/acp-13-11503-2013, https://doi.org/10.5194/acp-13-11503-2013, 2013
I. Fiorucci, G. Muscari, L. Froidevaux, and M. L. Santee
Atmos. Meas. Tech., 6, 2441–2453, https://doi.org/10.5194/amt-6-2441-2013, https://doi.org/10.5194/amt-6-2441-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
B. J. Connor, T. Mooney, G. E. Nedoluha, J. W. Barrett, A. Parrish, J. Koda, M. L. Santee, and R. M. Gomez
Atmos. Chem. Phys., 13, 8643–8650, https://doi.org/10.5194/acp-13-8643-2013, https://doi.org/10.5194/acp-13-8643-2013, 2013
M. Khosravi, P. Baron, J. Urban, L. Froidevaux, A. I. Jonsson, Y. Kasai, K. Kuribayashi, C. Mitsuda, D. P. Murtagh, H. Sagawa, M. L. Santee, T. O. Sato, M. Shiotani, M. Suzuki, T. von Clarmann, K. A. Walker, and S. Wang
Atmos. Chem. Phys., 13, 7587–7606, https://doi.org/10.5194/acp-13-7587-2013, https://doi.org/10.5194/acp-13-7587-2013, 2013
N. J. Livesey, J. A. Logan, M. L. Santee, J. W. Waters, R. M. Doherty, W. G. Read, L. Froidevaux, and J. H. Jiang
Atmos. Chem. Phys., 13, 579–598, https://doi.org/10.5194/acp-13-579-2013, https://doi.org/10.5194/acp-13-579-2013, 2013
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Emissions of methane from coal fields, thermal power plants, and wetlands and their implications for atmospheric methane across the south Asian region
Ozone anomalies over the polar regions during stratospheric warming events
No severe ozone depletion in the tropical stratosphere in recent decades
The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI
Solar FTIR measurements of NOx vertical distributions – Part 1: First observational evidence of a seasonal variation in the diurnal increasing rates of stratospheric NO2 and NO
Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
Climatology, sources, and transport characteristics of observed water vapor extrema in the lower stratosphere
Impact of chlorine ion chemistry on ozone loss in the middle atmosphere during very large solar proton events
Total ozone variability and trends over the South Pole during the wintertime
Inferring the photolysis rate of NO2 in the stratosphere based on satellite observations
Technical note: On HALOE stratospheric water vapor variations and trends at Boulder, Colorado
Microwave radiometer observations of the ozone diurnal cycle and its short-term variability over Switzerland
Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021
Water vapour and ozone in the upper troposphere–lower stratosphere: global climatologies from three Canadian limb-viewing instruments
Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model
Polar stratospheric nitric acid depletion surveyed from a decadal dataset of IASI total columns
Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets
Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record
Upper stratospheric ClO and HOCl trends (2005–2020): Aura Microwave Limb Sounder and model results
Challenge of modelling GLORIA observations of upper troposphere–lowermost stratosphere trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models
A single-peak-structured solar cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations
OClO as observed by TROPOMI: a comparison with meteorological parameters and polar stratospheric cloud observations
The Michelson Interferometer for Passive Atmospheric Sounding global climatology of BrONO2 2002–2012: a test for stratospheric bromine chemistry
Microwave Limb Sounder (MLS) observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017
Exceptional loss in ozone in the Arctic winter/spring of 2019/2020
Fifty years of balloon-borne ozone profile measurements at Uccle, Belgium: a short history, the scientific relevance, and the achievements in understanding the vertical ozone distribution
On the use of satellite observations to fill gaps in the Halley station total ozone record
Pollution trace gases C2H6, C2H2, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations
Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP)
Indicators of Antarctic ozone depletion: 1979 to 2019
Observational evidence of energetic particle precipitation NOx (EPP-NOx) interaction with chlorine curbing Antarctic ozone loss
Total column ozone in New Zealand and in the UK in the 1950s
Study of the dependence of long-term stratospheric ozone trends on local solar time
Technical note: LIMS observations of lower stratospheric ozone in the southern polar springtime of 1978
Chlorine partitioning near the polar vortex edge observed with ground-based FTIR and satellites at Syowa Station, Antarctica, in 2007 and 2011
Is the recovery of stratospheric O3 speeding up in the Southern Hemisphere? An evaluation from the first IASI decadal record (2008–2017)
Nitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015–2016
Improved FTIR retrieval strategy for HCFC-22 (CHClF2), comparisons with in situ and satellite datasets with the support of models, and determination of its long-term trend above Jungfraujoch
A study on harmonizing total ozone assimilation with multiple sensors
Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations
Dynamically controlled ozone decline in the tropical mid-stratosphere observed by SCIAMACHY
Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
Space–time variability in UTLS chemical distribution in the Asian summer monsoon viewed by limb and nadir satellite sensors
Using satellite measurements of N2O to remove dynamical variability from HCl measurements
Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002–2011: SD-WACCM simulations compared to GOMOS observations
The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives
Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study
Diurnal variation in middle-atmospheric ozone observed by ground-based microwave radiometry at Ny-Ålesund over 1 year
Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery
The impact of nonuniform sampling on stratospheric ozone trends derived from occultation instruments
Mahalakshmi Venkata Dangeti, Mahesh Pathakoti, Kanchana Lakshmi Asuri, Sujatha Peethani, Ibrahim Shaik, Rajan Krishnan Sundara, Vijay Kumar Sagar, Raja Pushpanathan, Yogesh Kumar Tiwari, and Prakash Chauhan
Atmos. Chem. Phys., 24, 12843–12859, https://doi.org/10.5194/acp-24-12843-2024, https://doi.org/10.5194/acp-24-12843-2024, 2024
Short summary
Short summary
The present study investigated the space–time variability of XCH4 over coal fields, power plants, and wetlands using long-term GOSAT and S5/TROPOMI data. The XCH4 variability associated with the heterogenous sources present in the south Asian (India) region and their implications for atmospheric XCH4 concentrations were evaluated. The CH4 concentrations were mapped against the emissions in the agro-climatic zones, and a statistically high correlation was found in the Indo-Gangetic Plain region.
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
Atmos. Chem. Phys., 24, 10187–10207, https://doi.org/10.5194/acp-24-10187-2024, https://doi.org/10.5194/acp-24-10187-2024, 2024
Short summary
Short summary
Here we investigated ozone anomalies over polar regions during sudden stratospheric and final stratospheric warming with ground-based microwave radiometers at polar latitudes compared with reanalysis and satellite data. The underlying dynamical and chemical mechanisms are responsible for the observed ozone anomalies in both events. Our research sheds light on these processes, emphasizing the need for a deeper understanding of these processes for more accurate climate modeling and forecasting.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes, and J. Pepijn Veefkind
Atmos. Chem. Phys., 24, 4511–4535, https://doi.org/10.5194/acp-24-4511-2024, https://doi.org/10.5194/acp-24-4511-2024, 2024
Short summary
Short summary
Removal of stratospheric nitrogen oxides is crucial for the formation of the ozone hole. TROPOMI satellite measurements of nitrogen dioxide reveal the presence of a not dissimilar "nitrogen hole" that largely coincides with the ozone hole. Three very distinct regimes were identified: inside and outside the ozone hole and the transition zone in between. Our results introduce a valuable and innovative application highly relevant for Antarctic ozone hole and ozone layer recovery.
Pinchas Nürnberg, Markus Rettinger, and Ralf Sussmann
Atmos. Chem. Phys., 24, 3743–3757, https://doi.org/10.5194/acp-24-3743-2024, https://doi.org/10.5194/acp-24-3743-2024, 2024
Short summary
Short summary
For a better understanding of stratospheric photochemistry, we analyzed long-term data from spectroscopic measurements at Zugspitze and Garmisch, Germany. We provide information about the seasonal cycle of diurnal nitrogen oxide variation in the stratosphere. For the first time we create an experimental data set to validate stratospheric model simulation that can improve satellite validation to gain further insights into ozone depletion and smog prevention.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Emily N. Tinney and Cameron R. Homeyer
Atmos. Chem. Phys., 23, 14375–14392, https://doi.org/10.5194/acp-23-14375-2023, https://doi.org/10.5194/acp-23-14375-2023, 2023
Short summary
Short summary
A long-term record of satellite observations is used to study extreme water vapor concentrations in the lower stratosphere, which are important to climate variability and change. We use a deeper layer of stratospheric observations than prior work to more comprehensively identify these events. We show that extreme water vapor concentrations are frequent, especially in the lowest layers of the stratosphere that have not been analyzed previously.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Vitali Fioletov, Xiaoyi Zhao, Ihab Abboud, Michael Brohart, Akira Ogyu, Reno Sit, Sum Chi Lee, Irina Petropavlovskikh, Koji Miyagawa, Bryan J. Johnson, Patrick Cullis, John Booth, Glen McConville, and C. Thomas McElroy
Atmos. Chem. Phys., 23, 12731–12751, https://doi.org/10.5194/acp-23-12731-2023, https://doi.org/10.5194/acp-23-12731-2023, 2023
Short summary
Short summary
Stratospheric ozone within the Southern Hemisphere springtime polar vortex has been a subject of intense research since the discovery of the Antarctic ozone hole. The wintertime ozone in the vortex is less studied. We show that the recent wintertime ozone values over the South Pole were about 12 % below the pre-1980s level; i.e., the decline there was nearly twice as large as that over southern midlatitudes. Thus, wintertime ozone there can be used as an indicator of the ozone layer state.
Jian Guan, Susan Solomon, Sasha Madronich, and Douglas Kinnison
Atmos. Chem. Phys., 23, 10413–10422, https://doi.org/10.5194/acp-23-10413-2023, https://doi.org/10.5194/acp-23-10413-2023, 2023
Short summary
Short summary
This paper provides a novel method to obtain a global and accurate photodissociation coefficient for NO2 (J(NO2)) based on satellite data, and the results are shown to be consistent with model results. The J(NO2) value decreases as the solar zenith angle increases and has a weak altitude dependence. A key finding is that the satellite-derived J(NO2) increases in the polar regions, in good agreement with model predictions, due to the effects of ice and snow on surface albedo.
Ellis Remsberg
Atmos. Chem. Phys., 23, 9637–9646, https://doi.org/10.5194/acp-23-9637-2023, https://doi.org/10.5194/acp-23-9637-2023, 2023
Short summary
Short summary
This study compares analysis of trends in stratospheric water vapor from the Halogen Occultation Experiment satellite instrument with those from local frost-point hygrometers (FPHs) at 30 and 50 hPa over Boulder, Colorado (40°N), for 1993 to 2005. The FPH measurements are assumed correct. However, the seasonal sampling by HALOE is marginal from 2002 to 2005, such that its trends have a bias after 2001. Trend comparisons for 1993 to 2002 at 30 hPa agree within the uncertainties of both datasets.
Eric Sauvageat, Klemens Hocke, Eliane Maillard Barras, Shengyi Hou, Quentin Errera, Alexander Haefele, and Axel Murk
Atmos. Chem. Phys., 23, 7321–7345, https://doi.org/10.5194/acp-23-7321-2023, https://doi.org/10.5194/acp-23-7321-2023, 2023
Short summary
Short summary
In Switzerland, two microwave radiometers can measure continuous ozone profiles in the middle atmosphere. From these instruments, we can study the diurnal variation of ozone, which is difficult to observe otherwise. It is valuable to validate the model simulations of diurnal variations in this region. We present results obtained during the last decade and compare them against various models. For the first time, we also show that the winter diurnal variations have some short-term fluctuations.
Michael J. Prather, Lucien Froidevaux, and Nathaniel J. Livesey
Atmos. Chem. Phys., 23, 843–849, https://doi.org/10.5194/acp-23-843-2023, https://doi.org/10.5194/acp-23-843-2023, 2023
Short summary
Short summary
From satellite data for nitrous oxide (N2O), ozone and temperature, we calculate the monthly loss of N2O and find it is increasing faster than expected, resulting in a shorter lifetime, which reduces the impact of anthropogenic emissions. We identify the cause as enhanced vertical lofting of high-N2O air into the tropical middle stratosphere, where it is destroyed photochemically. Because global warming is due in part to N2O, this finding presents a new negative climate-chemistry feedback.
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022, https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Short summary
The upper troposphere–lower stratosphere is one of the most variable regions in the atmosphere. To improve our understanding of water vapour and ozone concentrations in this region, climatologies have been developed from 14 years of measurements from three Canadian satellite instruments. Horizontal and vertical coordinates have been chosen to minimize the effects of variability. To aid in analysis, model simulations have been used to characterize differences between instrument climatologies.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Catherine Wespes, Gaetane Ronsmans, Lieven Clarisse, Susan Solomon, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 22, 10993–11007, https://doi.org/10.5194/acp-22-10993-2022, https://doi.org/10.5194/acp-22-10993-2022, 2022
Short summary
Short summary
The first 10-year data record (2008–2017) of HNO3 total columns measured by the IASI-A/MetOp infrared sounder is exploited to monitor the relationship between the temperature decrease and the HNO3 loss observed each year in the Antarctic stratosphere during the polar night. We verify the recurrence of specific regimes in the cycle of IASI HNO3 and identify the day and the 50 hPa temperature (
drop temperature) corresponding to the onset of denitrification in Antarctic winter for each year.
Mark Weber, Carlo Arosio, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, Kleareti Tourpali, John P. Burrows, and Diego Loyola
Atmos. Chem. Phys., 22, 6843–6859, https://doi.org/10.5194/acp-22-6843-2022, https://doi.org/10.5194/acp-22-6843-2022, 2022
Short summary
Short summary
Long-term trends in column ozone have been determined from five merged total ozone datasets spanning the period 1978–2020. We show that ozone recovery due to the decline in stratospheric halogens after the 1990s (as regulated by the Montreal Protocol) is evident outside the tropical region and amounts to half a percent per decade. The ozone recovery in the Northern Hemisphere is however compensated for by the negative long-term trend contribution from atmospheric dynamics since the year 2000.
Melanie Coldewey-Egbers, Diego G. Loyola, Christophe Lerot, and Michel Van Roozendael
Atmos. Chem. Phys., 22, 6861–6878, https://doi.org/10.5194/acp-22-6861-2022, https://doi.org/10.5194/acp-22-6861-2022, 2022
Short summary
Short summary
Monitoring the long-term evolution of ozone and the evaluation of trends is essential to assess the efficacy of the Montreal Protocol and its amendments. The first signs of recovery as a consequence of decreasing amounts of ozone-depleting substances have been reported, but the impact needs to be investigated in more detail. In the Southern Hemisphere significant positive trends were found, but in the Northern Hemisphere the expected increase is still not yet visible.
Lucien Froidevaux, Douglas E. Kinnison, Michelle L. Santee, Luis F. Millán, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, John J. Orlando, and Ryan A. Fuller
Atmos. Chem. Phys., 22, 4779–4799, https://doi.org/10.5194/acp-22-4779-2022, https://doi.org/10.5194/acp-22-4779-2022, 2022
Short summary
Short summary
We analyze satellite-derived distributions of chlorine monoxide (ClO) and hypochlorous acid (HOCl) in the upper atmosphere. For 2005–2020, from 50°S to 50°N and over ~30 to 45 km, ClO and HOCl decreased by −0.7 % and −0.4 % per year, respectively. A detailed model of chemistry and dynamics agrees with the results. These decreases confirm the effectiveness of the 1987 Montreal Protocol, which limited emissions of chlorine- and bromine-containing source gases, in order to protect the ozone layer.
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys., 22, 2843–2870, https://doi.org/10.5194/acp-22-2843-2022, https://doi.org/10.5194/acp-22-2843-2022, 2022
Short summary
Short summary
We compare remote sensing observations of H2O, O3, HNO3 and clouds in the upper troposphere–lowermost stratosphere during an Arctic winter long-range research flight with simulations by two different state-of-the-art model systems. We find good agreement for dynamical structures, trace gas distributions and clouds. We investigate model biases and sensitivities, with the goal of aiding model development and improving our understanding of processes in the upper troposphere–lowermost stratosphere.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Jānis Puķīte, Christian Borger, Steffen Dörner, Myojeong Gu, and Thomas Wagner
Atmos. Chem. Phys., 22, 245–272, https://doi.org/10.5194/acp-22-245-2022, https://doi.org/10.5194/acp-22-245-2022, 2022
Short summary
Short summary
Chlorine dioxide (OClO) is an indicator for chlorine activation. New OClO data by TROPOMI (S5P) are interpreted in a meteorological context and related to CALIOP PSC observations. We report very high OClO levels for the northern hemispheric winter 2019/20 with an extraordinarily long period with a stable polar vortex. A minor stratospheric warming in the Southern Hemisphere was also observed in September 2019, where usual OClO values rapidly deactivated 1–2 weeks earlier.
Michael Höpfner, Oliver Kirner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Sören Johansson, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, and Thomas von Clarmann
Atmos. Chem. Phys., 21, 18433–18464, https://doi.org/10.5194/acp-21-18433-2021, https://doi.org/10.5194/acp-21-18433-2021, 2021
Short summary
Short summary
BrONO2 is an important reservoir gas for inorganic stratospheric bromine linked to the chemical cycles of stratospheric ozone depletion. Presently infrared limb sounding is the only way to measure BrONO2 in the atmosphere. We provide global distributions of BrONO2 derived from MIPAS observations 2002–2012. Comparisons with EMAC atmospheric modelling show an overall agreement and enable us to derive an independent estimate of stratospheric bromine of 21.2±1.4pptv based on the BrONO2 measurements.
Hugh C. Pumphrey, Michael J. Schwartz, Michelle L. Santee, George P. Kablick III, Michael D. Fromm, and Nathaniel J. Livesey
Atmos. Chem. Phys., 21, 16645–16659, https://doi.org/10.5194/acp-21-16645-2021, https://doi.org/10.5194/acp-21-16645-2021, 2021
Short summary
Short summary
Forest fires in British Columbia in August 2017 caused an unusual phenomonon: smoke and gases from the fires rose quickly to a height of 10 km. From there, the pollution continued to rise more slowly for many weeks, travelling around the world as it did so. In this paper, we describe how we used data from a satellite instrument to observe this polluted volume of air. The satellite has now been working for 16 years but has observed only three events of this type.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Roeland Van Malderen, Dirk De Muer, Hugo De Backer, Deniz Poyraz, Willem W. Verstraeten, Veerle De Bock, Andy W. Delcloo, Alexander Mangold, Quentin Laffineur, Marc Allaart, Frans Fierens, and Valérie Thouret
Atmos. Chem. Phys., 21, 12385–12411, https://doi.org/10.5194/acp-21-12385-2021, https://doi.org/10.5194/acp-21-12385-2021, 2021
Short summary
Short summary
The main aim of initiating measurements of the vertical distribution of the ozone concentration by means of ozonesondes attached to weather balloons at Uccle in 1969 was to improve weather forecasts. Since then, this measurement technique has barely changed, but the dense, long-term, and homogeneous Uccle dataset currently remains crucial for studying the temporal evolution of ozone from the surface to the stratosphere and is also the backbone of the validation of satellite ozone retrievals.
Lily N. Zhang, Susan Solomon, Kane A. Stone, Jonathan D. Shanklin, Joshua D. Eveson, Steve Colwell, John P. Burrows, Mark Weber, Pieternel F. Levelt, Natalya A. Kramarova, and David P. Haffner
Atmos. Chem. Phys., 21, 9829–9838, https://doi.org/10.5194/acp-21-9829-2021, https://doi.org/10.5194/acp-21-9829-2021, 2021
Short summary
Short summary
In the 1980s, measurements at the British Antarctic Survey station in Halley, Antarctica, led to the discovery of the ozone hole. The Halley total ozone record continues to be uniquely valuable for studies of long-term changes in Antarctic ozone. Environmental conditions in 2017 forced a temporary cessation of operations, leading to a gap in the historic record. We develop and test a method for filling in the Halley record using satellite data and find evidence to further support ozone recovery.
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021, https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Short summary
Measurements of the pollutants C2H6, C2H2, HCOOH, and PAN were performed in the North Atlantic UTLS region with the airborne limb imager GLORIA in 2017. Enhanced amounts of these species were detected in the upper troposphere and even in the lowermost stratosphere (PAN). Main sources of these gases are forest fires in North America and anthropogenic pollution in South Asia. Simulations of EMAC and CAMS are qualitatively able to reproduce the measured data but underestimate the absolute amounts.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Greg E. Bodeker and Stefanie Kremser
Atmos. Chem. Phys., 21, 5289–5300, https://doi.org/10.5194/acp-21-5289-2021, https://doi.org/10.5194/acp-21-5289-2021, 2021
Short summary
Short summary
This paper presents measures of the severity of the Antarctic ozone hole covering the period 1979 to 2019. The paper shows that while the severity of Antarctic ozone depletion grew rapidly through the last two decades of the 20th century, the severity declined thereafter and faster than expected from declines in stratospheric concentrations of the chlorine- and bromine-containing chemical compounds that destroy ozone.
Emily M. Gordon, Annika Seppälä, Bernd Funke, Johanna Tamminen, and Kaley A. Walker
Atmos. Chem. Phys., 21, 2819–2836, https://doi.org/10.5194/acp-21-2819-2021, https://doi.org/10.5194/acp-21-2819-2021, 2021
Short summary
Short summary
Energetic particle precipitation (EPP) is the rain of solar energetic particles into the Earth's atmosphere. EPP is known to deplete O3 in the polar mesosphere–upper stratosphere via the formation of NOx. NOx also causes chlorine deactivation in the lower stratosphere and has, thus, been proposed to potentially result in reduced ozone depletion in the spring. We provide the first evidence to show that NOx formed by EPP is able to remove active chlorine, resulting in enhanced total ozone column.
Stefan Brönnimann and Sylvia Nichol
Atmos. Chem. Phys., 20, 14333–14346, https://doi.org/10.5194/acp-20-14333-2020, https://doi.org/10.5194/acp-20-14333-2020, 2020
Short summary
Short summary
Historical column ozone data from New Zealand and the UK from the 1950s are digitised and re-evaluated. They allow studying the ozone layer prior to the era of ozone depletion. Day-to-day changes are addressed, which reflect the flow near the tropopause and hence may serve as a diagnostic for atmospheric circulation in a time and region of sparse radiosondes. A long-term comparison shows the amount of ozone depletion at southern mid-latitudes and indicates how far we are from full recovery.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Ellis Remsberg, V. Lynn Harvey, Arlin Krueger, Larry Gordley, John C. Gille, and James M. Russell III
Atmos. Chem. Phys., 20, 3663–3668, https://doi.org/10.5194/acp-20-3663-2020, https://doi.org/10.5194/acp-20-3663-2020, 2020
Short summary
Short summary
The Nimbus 7 limb infrared monitor of the stratosphere (LIMS) instrument operated from October 25, 1978, through May 28, 1979. This note focuses on the lower stratosphere of the southern hemisphere, subpolar regions in relation to the position of the polar vortex. Both LIMS ozone and nitric acid show reductions within the edge of the polar vortex at 46 hPa near 60° S from late October through mid-November 1978, indicating that there was a chemical loss of Antarctic ozone some weeks earlier.
Hideaki Nakajima, Isao Murata, Yoshihiro Nagahama, Hideharu Akiyoshi, Kosuke Saeki, Takeshi Kinase, Masanori Takeda, Yoshihiro Tomikawa, Eric Dupuy, and Nicholas B. Jones
Atmos. Chem. Phys., 20, 1043–1074, https://doi.org/10.5194/acp-20-1043-2020, https://doi.org/10.5194/acp-20-1043-2020, 2020
Short summary
Short summary
This paper presents temporal evolution of stratospheric chlorine and minor species related to Antarctic ozone depletion, based on FTIR measurements at Syowa Station, and satellite measurements by MLS and MIPAS in 2007 and 2011. After chlorine reservoir species were processed on PSCs and active ClO was formed, different chlorine deactivation pathways into reservoir species were identified, depending on the relative location of Syowa Station to the polar vortex boundary.
Catherine Wespes, Daniel Hurtmans, Simon Chabrillat, Gaétane Ronsmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 19, 14031–14056, https://doi.org/10.5194/acp-19-14031-2019, https://doi.org/10.5194/acp-19-14031-2019, 2019
Short summary
Short summary
This paper highlights the global fingerprint of recent changes in O3 in both the middle–upper and lower stratosphere from the first 10 years of the IASI/Metop-A satellite measurements. The results present the first detection of a significant O3 recovery at middle–high latitudes in winter–spring in the stratosphere as well as in the total column from one single dataset. They also show a speeding up in the recovery at high southern latitudes contrasting with a decline at northern mid-latitudes.
Marleen Braun, Jens-Uwe Grooß, Wolfgang Woiwode, Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Hermann Oelhaf, Peter Preusse, Jörn Ungermann, Björn-Martin Sinnhuber, Helmut Ziereis, and Peter Braesicke
Atmos. Chem. Phys., 19, 13681–13699, https://doi.org/10.5194/acp-19-13681-2019, https://doi.org/10.5194/acp-19-13681-2019, 2019
Short summary
Short summary
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements. Vertical cross sections of HNO3 for several flights show complex fine–scale structures and enhanced values down to 9 km. The extent of overall nitrification is quantified based on HNO3–O3 correlations and reaches between 5 ppbv and 7 ppbv at potential temperature levels between 350 and 380 K. Further, we compare our result with the atmospheric model CLaMS.
Maxime Prignon, Simon Chabrillat, Daniele Minganti, Simon O'Doherty, Christian Servais, Gabriele Stiller, Geoffrey C. Toon, Martin K. Vollmer, and Emmanuel Mahieu
Atmos. Chem. Phys., 19, 12309–12324, https://doi.org/10.5194/acp-19-12309-2019, https://doi.org/10.5194/acp-19-12309-2019, 2019
Short summary
Short summary
Hydrochlorofluorocarbons (HCFCs) are the first, but temporary, substitution products for the strong ozone-depleting chlorofluorocarbons (CFCs). In this work, we present and validate an improved method to retrieve the most abundant HCFC in the atmosphere, allowing its evolution to be monitored independently in the troposphere and stratosphere. These kinds of contributions are fundamental for scrutinizing the fulfilment of the Montreal Protocol on Substances that Deplete the Ozone Layer.
Yves J. Rochon, Michael Sitwell, and Young-Min Cho
Atmos. Chem. Phys., 19, 9431–9451, https://doi.org/10.5194/acp-19-9431-2019, https://doi.org/10.5194/acp-19-9431-2019, 2019
Short summary
Short summary
This paper describes adaptable methodologies and results of bias correction applied for the assimilation of total column ozone data from different satellite instruments. The results demonstrate the capability of ensuring short-term forecast biases of total column ozone to be typically within 1 % of a reference for latitudinal ranges where measurements are available. The bias estimation and correction software can be utilized for measurements of other constituents.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Evgenia Galytska, Alexey Rozanov, Martyn P. Chipperfield, Sandip. S. Dhomse, Mark Weber, Carlo Arosio, Wuhu Feng, and John P. Burrows
Atmos. Chem. Phys., 19, 767–783, https://doi.org/10.5194/acp-19-767-2019, https://doi.org/10.5194/acp-19-767-2019, 2019
Short summary
Short summary
In this study we analysed ozone changes in the tropical mid-stratosphere as observed by the SCIAMACHY instrument during 2004–2012. We used simulations from TOMCAT model with different chemical and dynamical forcings to reveal primary causes of ozone changes. We also considered measured NO2 and modelled NOx, NOx, and N2O data. With modelled AoA data we identified seasonal changes in the upwelling speed and explained how those changes affect N2O chemistry which leads to observed ozone changes.
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019, https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary
Short summary
Ozone in the stratosphere is important to protect the Earth from UV radiation. Using measurements taken by the Atmospheric Chemistry Experiment satellite between 2005 and 2013, we examine different methods to calculate the ozone loss in the high Arctic and establish the altitude at which most of the ozone is destroyed. Our results show that the different methods agree within the uncertainties. Recommendations are made on which methods are most appropriate to use.
Jiali Luo, Laura L. Pan, Shawn B. Honomichl, John W. Bergman, William J. Randel, Gene Francis, Cathy Clerbaux, Maya George, Xiong Liu, and Wenshou Tian
Atmos. Chem. Phys., 18, 12511–12530, https://doi.org/10.5194/acp-18-12511-2018, https://doi.org/10.5194/acp-18-12511-2018, 2018
Short summary
Short summary
We analyze upper tropospheric CO and O3 using satellite data from limb-viewing (MLS) and nadir-viewing (IASI and OMI) sensors, together with dynamical variables, to examine how the two types of data complement each other in representing the chemical variability associated with the day-to-day dynamical variability in the Asian summer monsoon anticyclone. The results provide new observational evidence of eddy shedding in upper tropospheric CO distribution.
Richard S. Stolarski, Anne R. Douglass, and Susan E. Strahan
Atmos. Chem. Phys., 18, 5691–5697, https://doi.org/10.5194/acp-18-5691-2018, https://doi.org/10.5194/acp-18-5691-2018, 2018
Short summary
Short summary
Detecting trends in short data sets of stratospheric molecules is difficult because of variability due to dynamical fluctuations. We suggest that one way around this difficulty is using the measurements of one molecule to remove dynamical variability from the measurements of another molecule. We illustrate this using Aura MLS measurements of N2O to help us sort out issues in the determination of trends in HCl. This shows that HCl is decreasing throughout the middle stratosphere as expected.
Erkki Kyrölä, Monika E. Andersson, Pekka T. Verronen, Marko Laine, Simo Tukiainen, and Daniel R. Marsh
Atmos. Chem. Phys., 18, 5001–5019, https://doi.org/10.5194/acp-18-5001-2018, https://doi.org/10.5194/acp-18-5001-2018, 2018
Short summary
Short summary
In this work we compare three key constituents of the middle atmosphere (ozone, NO2, and NO3) from the GOMOS satellite instrument with the WACCM model. We find that in the stratosphere (below 50 km) ozone differences are very small, but in the mesosphere large deviations are found. GOMOS and WACCM NO2 agree reasonably well except in the polar areas. These differences can be connected to the solar particle storms. For NO3, WACCM results agree with GOMOS with a very high correlation.
Martine De Mazière, Anne M. Thompson, Michael J. Kurylo, Jeannette D. Wild, Germar Bernhard, Thomas Blumenstock, Geir O. Braathen, James W. Hannigan, Jean-Christopher Lambert, Thierry Leblanc, Thomas J. McGee, Gerald Nedoluha, Irina Petropavlovskikh, Gunther Seckmeyer, Paul C. Simon, Wolfgang Steinbrecht, and Susan E. Strahan
Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, https://doi.org/10.5194/acp-18-4935-2018, 2018
Short summary
Short summary
This paper serves as an introduction to the special issue "Twenty-five years of operations of the Network for the Detection of Atmospheric Composition Change (NDACC)". It describes the origins of the network, its actual status, and some perspectives for its future evolution in the context of atmospheric sciences.
Gaétane Ronsmans, Catherine Wespes, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 18, 4403–4423, https://doi.org/10.5194/acp-18-4403-2018, https://doi.org/10.5194/acp-18-4403-2018, 2018
Short summary
Short summary
The paper aims at understanding the variability of nitric acid (HNO3) in the stratosphere; 9-year time series of IASI measurements are analysed and, for the first time for HNO3, fitted with regression models in order to identify the factors at play. It was found that the annual variability is the main driver and that the polar stratospheric clouds influence greatly HNO3 variability at polar latitudes. The results show the potential of such analyses to better understand the polar processes.
Franziska Schranz, Susana Fernandez, Niklaus Kämpfer, and Mathias Palm
Atmos. Chem. Phys., 18, 4113–4130, https://doi.org/10.5194/acp-18-4113-2018, https://doi.org/10.5194/acp-18-4113-2018, 2018
Short summary
Short summary
We present 1 year of ozone measurements form two ground-based microwave radiometers located at Ny-Ålesund, Svalbard. The ozone measurements cover an altitude range of 25–70 km altitude and have a high time resolution of 1–2 h. With these datasets and model data a comprehensive analysis of the ozone diurnal cycle in the Arctic is performed for the different insolation conditions throughout the year. In the stratosphere we find a diurnal cycle which persists over the whole polar day.
Mark Weber, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, John P. Burrows, Craig S. Long, and Diego Loyola
Atmos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-18-2097-2018, https://doi.org/10.5194/acp-18-2097-2018, 2018
Short summary
Short summary
This paper commemorates the 30-year anniversary of the initial signing of the Montreal Protocol (MP) on substances that deplete the ozone layer. The MP is so far successful in reducing ozone-depleting substances, and total ozone decline was successfully stopped by the late 1990s. Total ozone levels have been mostly stable since then. In some regions, barely significant upward trends are observed that suggest an emergence into the expected ozone recovery phase.
Robert P. Damadeo, Joseph M. Zawodny, Ellis E. Remsberg, and Kaley A. Walker
Atmos. Chem. Phys., 18, 535–554, https://doi.org/10.5194/acp-18-535-2018, https://doi.org/10.5194/acp-18-535-2018, 2018
Short summary
Short summary
An ozone trend analysis that compensates for sampling biases is applied to sparsely sampled occultation data sets. International assessments have noted deficiencies in past trend analyses and this work addresses those sources of uncertainty. The nonuniform sampling patterns in data sets and drifts between data sets can affect derived recovery trends by up to 2 % decade−1. The limitations inherent to all techniques are also described and a potential path forward towards resolution is presented.
Cited articles
Abalos, M., Calvo, N., Benito-Barca, S., Garny, H., Hardiman, S. C., Lin, P., Andrews, M. B., Butchart, N., Garcia, R., Orbe, C., Saint-Martin, D., Watanabe, S., and Yoshida, K.: The Brewer–Dobson circulation in CMIP6, Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, 2021. a
Arblaster, J. M., Gillett, N. P., Calvo, N., Forster, P. M., Polvani, L. M., Son, W. S., Waugh, D. W., Young, P. J., Barnes, E. A., Cionni, I., Garfinkel, C. I., Gerber, E. P., Hardiman, S. C., Hurst, D. F., Lamarque, J.-F., Lim, E.-P., Meredith, M. P., Perlwitz, J., Portmann, R. W., Previdi, M., Sigmond, M., Swart, N. C., Vernier, J.-P., and Wu, Y.: Stratospheric ozone changes and climate, in: Scientific assessment of ozone depletion: 2014, World Meteorological Organization, 416 pp., https://csl.noaa.gov/assessments/ozone/2014/report/2014OzoneAssessment.pdf (last access: 7 February 2025), 2014. a
Arosio, C., Rozanov, A., Malinina, E., Eichmann, K.-U., von Clarmann, T., and Burrows, J. P.: Retrieval of ozone profiles from OMPS limb scattering observations, Atmos. Meas. Tech., 11, 2135–2149, https://doi.org/10.5194/amt-11-2135-2018, 2018. a
Austin, J., Horowitz, L. W., Schwarzkopf, M. D., Wilson, R. J., and Levy, H.: Stratospheric ozone and temperature simulated from the preindustrial era to the present day, J. Climate, 26, 3528–3543, https://doi.org/10.1175/jcli-d-12-00162.1, 2013. a
Ball, W. T., Alsing, J., Mortlock, D. J., Rozanov, E. V., Tummon, F., and Haigh, J. D.: Reconciling differences in stratospheric ozone composites, Atmos. Chem. Phys., 17, 12269–12302, https://doi.org/10.5194/acp-17-12269-2017, 2017. a, b
Ball, W. T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S., Froidevaux, L., Roth, C., Sofieva, V., Wang, R., Wild, J., Yu, P., Ziemke, J. R., and Rozanov, E. V.: Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery, Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, 2018. a, b
Ball, W. T., Alsing, J., Staehelin, J., Davis, S. M., Froidevaux, L., and Peter, T.: Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability, Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, 2019. a
Banerjee, A., Maycock, A. C., Archibald, A. T., Abraham, N. L., Telford, P., Braesicke, P., and Pyle, J. A.: Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100, Atmos. Chem. Phys., 16, 2727–2746, https://doi.org/10.5194/acp-16-2727-2016, 2016. a
Bhartia, P., McPeters, R., Mateer, C., Flynn, L., and Wellemeyer, C.: Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique, J. Geophys. Res.-Atmos., 101, 18793–18806, https://doi.org/10.1029/96jd01165, 1996. a
Bhartia, P. K., Herman, J., McPeters, R. D., and Torres, O.: Effect of Mount Pinatubo aerosols on total ozone measurements from backscatter ultraviolet (BUV) experiments, J. Geophys. Res.-Atmos., 98, 18547–18554, https://doi.org/10.1029/93jd01739, 1993. a
Bhartia, P. K., McPeters, R. D., Flynn, L. E., Taylor, S., Kramarova, N. A., Frith, S., Fisher, B., and DeLand, M.: Solar Backscatter UV (SBUV) total ozone and profile algorithm, Atmos. Meas. Tech., 6, 2533–2548, https://doi.org/10.5194/amt-6-2533-2013, 2013. a
Bhartia, P. K., McPeters, R. D., Flynn, L. E., Taylor, S., Kramarova, N. A., Frith, S., Fisher, B., and DeLand, M.: Solar Backscatter UV (SBUV) total ozone and profile algorithm, Atmos. Meas. Tech., 6, 2533–2548, https://doi.org/10.5194/amt-6-2533-2013, 2013. a, b
Bourassa, A. E., Roth, C. Z., Zawada, D. J., Rieger, L. A., McLinden, C. A., and Degenstein, D. A.: Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends, Atmos. Meas. Tech., 11, 489–498, https://doi.org/10.5194/amt-11-489-2018, 2018. a
Brönnimann, S.: Century-long column ozone records show that chemical and dynamical influences counteract each other, Nat. Commun. Earth Environ., 3, 143, https://doi.org/10.1038/s43247-022-00472-z, 2022. a
Brunner, D., Staehelin, J., Maeder, J. A., Wohltmann, I., and Bodeker, G. E.: Variability and trends in total and vertically resolved stratospheric ozone based on the CATO ozone data set, Atmos. Chem. Phys., 6, 4985–5008, https://doi.org/10.5194/acp-6-4985-2006, 2006. a
Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D.: The global ozone monitoring experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., 56, 151–175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2, 1999. a
Charlton-Perez, A. J., Hawkins, E., Eyring, V., Cionni, I., Bodeker, G. E., Kinnison, D. E., Akiyoshi, H., Frith, S. M., Garcia, R., Gettelman, A., Lamarque, J. F., Nakamura, T., Pawson, S., Yamashita, Y., Bekki, S., Braesicke, P., Chipperfield, M. P., Dhomse, S., Marchand, M., Mancini, E., Morgenstern, O., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J., Shibata, K., Shepherd, T. G., Tian, W., and Waugh, D. W.: The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century, Atmos. Chem. Phys., 10, 9473–9486, https://doi.org/10.5194/acp-10-9473-2010, 2010. a
Chiodo, G., Polvani, L. M., Marsh, D. R., Stenke, A., Ball, W., Rozanov, E., Muthers, S., and Tsigaridis, K.: The response of the ozone layer to quadrupled CO2 concentrations, J. Climate, 31, 3893–3907, https://doi.org/10.1175/JCLI-D-17-0492.1, 2018. a
Chipperfield, M. P., Bekki, S., Dhomse, S., Harris, N. R., Hassler, B., Hossaini, R., Steinbrecht, W., Thiéblemont, R., and Weber, M.: Detecting recovery of the stratospheric ozone layer, Nature, 549, 211–218, https://doi.org/10.1038/nature23681, 2017. a
Chipperfield, M. P., Dhomse, S., Hossaini, R., Feng, W., Santee, M. L., Weber, M., Burrows, J. P., Wild, J. D., Loyola, D., and Coldewey-Egbers, M.: On the cause of recent variations in lower stratospheric ozone, Geophys. Res. Lett., 45, 5718–5726, https://doi.org/10.1029/2018gl078071, 2018. a
Chipperfield, M. P., Hossaini, R., Montzka, S. A., Reimann, S., Sherry, D., and Tegtmeier, S.: Renewed and emerging concerns over the production and emission of ozone-depleting substances, Nat. Rev. Earth Environ., 1, 251–263, https://doi.org/10.1038/s43017-020-0048-8, 2020. a
Cisewski, M., Zawodny, J., Gasbarre, J., Eckman, R., Topiwala, N., Rodriguez-Alvarez, O., Cheek, D., and Hall, S.: The stratospheric aerosol and gas experiment (SAGE III) on the International Space Station (ISS) Mission, in: Sensors, Systems, and Next-Generation Satellites XVIII, Vl. 9241, 59–65, SPIE, https://doi.org/10.1117/12.2073131, 2014. a
Damadeo, R. P., Zawodny, J. M., Remsberg, E. E., and Walker, K. A.: The impact of nonuniform sampling on stratospheric ozone trends derived from occultation instruments, Atmos. Chem. Phys., 18, 535–554, https://doi.org/10.5194/acp-18-535-2018, 2018. a
Davis, S. M., Rosenlof, K. H., Hassler, B., Hurst, D. F., Read, W. G., Vömel, H., Selkirk, H., Fujiwara, M., and Damadeo, R.: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies, Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, 2016. a
Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S.: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, 2017. a
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability, Clim. Dynam., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012. a
Diallo, M., Riese, M., Birner, T., Konopka, P., Müller, R., Hegglin, M. I., Santee, M. L., Baldwin, M., Legras, B., and Ploeger, F.: Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016, Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, 2018. a
Diallo, M., Konopka, P., Santee, M. L., Müller, R., Tao, M., Walker, K. A., Legras, B., Riese, M., Ern, M., and Ploeger, F.: Structural changes in the shallow and transition branch of the Brewer–Dobson circulation induced by El Niño, Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, 2019. a
Dietmüller, S., Ponater, M., and Sausen, R.: Interactive ozone induces a negative feedback in CO2-driven climate change simulations, J. Geophys. Res.-Atmos., 119, 1796–1805, https://doi.org/10.1002/2013jd020575, 2014. a
Dietmüller, S., Garny, H., Eichinger, R., and Ball, W. T.: Analysis of recent lower-stratospheric ozone trends in chemistry climate models, Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, 2021. a
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y., and Zhao, M.: The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics, J. Adv. Model Earth Sy., 12, e2019MS002015, https://doi.org/10.1029/2019ms002015, 2020. a
Evan, S., Brioude, J., Rosenlof, K. H., Gao, R.-S., Portmann, R. W., Zhu, Y., Volkamer, R., Lee, C. F., Metzger, J.-M., Lamy, K., Walter, P., Alvarez, S. L., Flynn, J. H., Asher, E., Todt, M., Davis, S. M., Thornberry, T., Vömel, H., Wienhold, F. G., Stauffer, R. M., Millán, L., Santee, M. L., Froidevaux, L., and Read, W. G.: Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga Eruption, Science, 382, eadg2551, https://doi.org/10.1126/science.adg2551, 2023. a
Eyring, V., Arblaster, J. M., Cionni, I., Sedláček, J., Perlwitz, J., Young, P. J., Bekki, S., Bergmann, D., Cameron-Smith, P., Collins, W. J., Faluvegi, G., Gottschaldt, K.-D., Horowitz, L. W., Kinnison, D. E., Lamarque, J.-F., Marsh, D. R., Saint-Martin, D., Shindell, D. T., Sudo, K., Szopa, S., and Watanabe, S.: Long-term ozone changes and associated climate impacts in CMIP5 simulations, J. Geophys. Res.-Atmos., 118, 5029–5060, https://doi.org/10.1002/jgrd.50316, 2013a. a, b
Eyring, V., Lamarque, J.-F., Hess, P., Arfeuille, F., Bowman, K., Chipperfiel, M. P., Duncan, B., Fiore, A., Gettelman, A., Giorgetta, M. A., Granier, C., Hegglin, M., Kinnison, D., Kunze, M., Langematz, U., Luo, B., Randall, M., Matthes, K., Newman, P. A., Peter, T., Robock, A., Ryerson, T., Saiz-Lopez, A., Salawitch, R., Schultz, M., Shepherd, T. G., Shindell, D., Staehelin, J., Tegtmeier, S., Thomason, L., Tilmes, S., Vernier, J.-P., Waugh, D., and Young, P. Y.: Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments, SPARC newsletter, 40, 48–66, https://oceanrep.geomar.de/id/eprint/20227 (last access: 7 February 2025), 2013b. a, b
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207–210, https://doi.org/10.1038/315207a0, 1985. a
Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D., and Sinclair, R. W.: Stratospheric sensitivity to perturbations in ozone and carbon dioxide- Radiative and dynamical response, J. Atmos. Sci., 37, 2265–2297, https://doi.org/10.1175/1520-0469(1980)037<2265:sstpio>2.0.co;2, 1980. a
Frith, S. M., Kramarova, N. A., Stolarski, R. S., McPeters, R. D., Bhartia, P. K., and Labow, G. J.: Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set, J. Geophys. Res.-Atmos., 119, 9735–9751, https://doi.org/10.1002/2014jd021889, 2014. a, b, c
Frith, S. M., Stolarski, R. S., Kramarova, N. A., and McPeters, R. D.: Estimating uncertainties in the SBUV Version 8.6 merged profile ozone data set, Atmos. Chem. Phys., 17, 14695–14707, https://doi.org/10.5194/acp-17-14695-2017, 2017. a
Froidevaux, L., Anderson, J., Wang, H.-J., Fuller, R. A., Schwartz, M. J., Santee, M. L., Livesey, N. J., Pumphrey, H. C., Bernath, P. F., Russell III, J. M., and McCormick, M. P.: Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3, Atmos. Chem. Phys., 15, 10471–10507, https://doi.org/10.5194/acp-15-10471-2015, 2015. a
Gillett, N. P., Akiyoshi, H., Bekki, S., Braesicke, P., Eyring, V., Garcia, R., Karpechko, A. Yu., McLinden, C. A., Morgenstern, O., Plummer, D. A., Pyle, J. A., Rozanov, E., Scinocca, J., and Shibata, K.: Attribution of observed changes in stratospheric ozone and temperature, Atmos. Chem. Phys., 11, 599–609, https://doi.org/10.5194/acp-11-599-2011, 2011. a
Giorgi, F. and Bi, X.: Time of emergence (TOE) of GHG-forced precipitation change hot-spots, Geophys. Res. Lett., 36, L06709, https://doi.org/10.1029/2009gl037593, 2009. a
Godin-Beekmann, S., Azouz, N., Sofieva, V. F., Hubert, D., Petropavlovskikh, I., Effertz, P., Ancellet, G., Degenstein, D. A., Zawada, D., Froidevaux, L., Frith, S., Wild, J., Davis, S., Steinbrecht, W., Leblanc, T., Querel, R., Tourpali, K., Damadeo, R., Maillard Barras, E., Stübi, R., Vigouroux, C., Arosio, C., Nedoluha, G., Boyd, I., Van Malderen, R., Mahieu, E., Smale, D., and Sussmann, R.: Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model , Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, 2022. a, b, c, d
Harris, N. R. P., Hassler, B., Tummon, F., Bodeker, G. E., Hubert, D., Petropavlovskikh, I., Steinbrecht, W., Anderson, J., Bhartia, P. K., Boone, C. D., Bourassa, A., Davis, S. M., Degenstein, D., Delcloo, A., Frith, S. M., Froidevaux, L., Godin-Beekmann, S., Jones, N., Kurylo, M. J., Kyrölä, E., Laine, M., Leblanc, S. T., Lambert, J.-C., Liley, B., Mahieu, E., Maycock, A., de Mazière, M., Parrish, A., Querel, R., Rosenlof, K. H., Roth, C., Sioris, C., Staehelin, J., Stolarski, R. S., Stübi, R., Tamminen, J., Vigouroux, C., Walker, K. A., Wang, H. J., Wild, J., and Zawodny, J. M.: Past changes in the vertical distribution of ozone – Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, 2015. a, b
Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophys. Res. Lett., 39, L01702, https://doi.org/10.1029/2011gl050087, 2012. a
Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N. P., Luo, Y., Marengo Orsini, J. A., Nicholls, N., Penner, J. E., and Stott, P. A.: Understanding and attributing climate change, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter9-1.pdf (last access: 7 February 2025), 2007. a
Hegglin, M., Lamarque, J., Duncan, B., Eyring, V., Gettelman, A., Hess, P., Myhre, G., Nagashima, T., Plummer, D., Ryerson, T., Shepherd, T., and Waugh, D.: Report on the IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) 2015 Science Workshop, SPARC Newsletter, 46, 37–42, 2016. a
Hegglin, M. I. and Shepherd, T. G.: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux, Nat. Geosci., 2, 687–691, https://doi.org/10.1038/ngeo604, 2009. a
Hegglin, M. I., Lamarque, J. F., and Eyring, V.: The IGAC/SPARC Chemistry-Climate Model Initiative Phase-1 (CCMI-1) model data output, NCAS British Atmospheric Data Centre [data set], date of citation, http://catalogue.ceda.ac.uk/uuid/9cc6b94df0f4469d8066d69b5df879d5/ (last access: 7 February 2025), 2015. a, b
Horowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne, J. P., Mao, J., Schnell, J., Chen, X., He, J., John, J. G., Lin, M., Lin, P., Malyshev, S., Paynter, D., Shevliakova, E., and Zhao, M.: The GFDL global atmospheric chemistry-climate model AM4. 1: Model description and simulation characteristics, J. Adv. Model Earth Sy., 12, e2019MS002032, https://doi.org/10.1029/2019ms002032, 2020. a, b, c
Hubert, D., Lambert, J.-C., Verhoelst, T., Granville, J., Keppens, A., Baray, J.-L., Bourassa, A. E., Cortesi, U., Degenstein, D. A., Froidevaux, L., Godin-Beekmann, S., Hoppel, K. W., Johnson, B. J., Kyrölä, E., Leblanc, T., Lichtenberg, G., Marchand, M., McElroy, C. T., Murtagh, D., Nakane, H., Portafaix, T., Querel, R., Russell III, J. M., Salvador, J., Smit, H. G. J., Stebel, K., Steinbrecht, W., Strawbridge, K. B., Stübi, R., Swart, D. P. J., Taha, G., Tarasick, D. W., Thompson, A. M., Urban, J., van Gijsel, J. A. E., Van Malderen, R., von der Gathen, P., Walker, K. A., Wolfram, E., and Zawodny, J. M.: Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497–2534, https://doi.org/10.5194/amt-9-2497-2016, 2016. a
IPCC: Climate change 2001: the scientific basis, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Vol. 881, Cambridge University Press, https://www.ipcc.ch/report/ar3/wg1/ (last access: 7 February 2025), 2001. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability, B. Am. Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015. a
Kramarova, N. A., Frith, S. M., Bhartia, P. K., McPeters, R. D., Taylor, S. L., Fisher, B. L., Labow, G. J., and DeLand, M. T.: Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm, Atmos. Chem. Phys., 13, 6887–6905, https://doi.org/10.5194/acp-13-6887-2013, 2013b. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A., Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M., Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B., Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I. M., Horowitz, L. W., Lin, P., Milly, P. C. D., Shevliakova, E., Stock, C., Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP piControl, Version 20191127, Earth System Grid Federation, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.8669, 2018a. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A., Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M., Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B., Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I. M., Horowitz, L. W., Lin, P., Milly, P. C. D., Shevliakova, E., Stock, C., Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical, Version 20210526, Earth System Grid Federation, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.8597, 2018b. a
Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H., Bhartia, P. K., Tamminen, J., de Haan, J. F., and Veefkind, J. P.: Science objectives of the ozone monitoring instrument, IEEE T. Geosci. Remote, 44, 1199–1208, https://doi.org/10.1109/tgrs.2006.872336, 2006. a
Li, F., Stolarski, R. S., and Newman, P. A.: Stratospheric ozone in the post-CFC era, Atmos. Chem. Phys., 9, 2207–2213, https://doi.org/10.5194/acp-9-2207-2009, 2009. a
Li, J., Thompson, D. W., Barnes, E. A., and Solomon, S.: Quantifying the lead time required for a linear trend to emerge from natural climate variability, J. Climate, 30, 10179–10191, https://doi.org/10.1175/jcli-d-16-0280.1, 2017. a, b, c
Lickley, M., Fletcher, S., Rigby, M., and Solomon, S.: Joint inference of CFC lifetimes and banks suggests previously unidentified emissions, Nat. Commun., 12, 2920, https://doi.org/10.1038/s41467-021-23229-2, 2021. a
Livesey, N. J., Van Snyder, W., Read, W. G., and Wagner, P. A.: Retrieval algorithms for the EOS Microwave limb sounder (MLS), IEEE T. Geosci. Remote, 44, 1144–1155, https://doi.org/10.1109/tgrs.2006.872327, 2006. a
Madden, R. A. and Ramanathan, V.: Detecting climate change due to increasing carbon dioxide, Science, 209, 763–768, https://doi.org/10.1126/science.209.4458.763, 1980. a
Maher, N., Power, S. B., and Marotzke, J.: More accurate quantification of model-to-model agreement in externally forced climatic responses over the coming century, Nat. Commun., 12, 788, https://doi.org/10.1038/s41467-020-20635-w, 2021. a
Mahfouf, J., Cariolle, D., Royer, J., Geleyn, J., and Timbal, B.: Response of the Meteo-France climate model to changes in CO2 and sea surface temperature, Clim. Dynam., 9, 345–362, https://doi.org/10.1007/bf00223447, 1994. a
Mahlstein, I., Knutti, R., Solomon, S., and Portmann, R. W.: Early onset of significant local warming in low latitude countries, Environ. Res. Lett., 6, 034009, https://doi.org/10.1088/1748-9326/6/3/034009, 2011. a
Manney, G. L., Santee, M. L., Lambert, A., Millán, L. F., Minschwaner, K., Werner, F., Lawrence, Z. D., Read, W. G., Livesey, N. J., and Wang, T.: Siege in the Southern Stratosphere: Hunga Tonga-Hunga Ha'apai Water Vapor Excluded From the 2022 Antarctic Polar Vortex, Geophys. Res. Lett., 50, e2023GL103855, https://doi.org/10.1029/2023gl103855, 2023. a
Match, A. and Gerber, E. P.: Tropospheric expansion under global warming reduces tropical lower stratospheric ozone, Geophys. Res. Lett., 49, e2022GL099463, https://doi.org/10.1029/2022gl099463, 2022. a
McPeters, R. D., Bhartia, P. K., Haffner, D., Labow, G. J., and Flynn, L.: The version 8.6 SBUV ozone data record: An overview, J. Geophys. Res.-Atmos., 118, 8032–8039, https://doi.org/10.1002/jgrd.50597, 2013. a, b, c
Meul, S., Langematz, U., Oberländer, S., Garny, H., and Jöckel, P.: Chemical contribution to future tropical ozone change in the lower stratosphere, Atmos. Chem. Phys., 14, 2959–2971, https://doi.org/10.5194/acp-14-2959-2014, 2014. a, b
Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., and Elkins, J. W.: An unexpected and persistent increase in global emissions of ozone-depleting CFC-11, Nature, 557, 413–417, https://doi.org/10.1038/s41586-018-0106-2, 2018. a
Morgenstern, O., Hegglin, M. I., Rozanov, E., O'Connor, F. M., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jöckel, P., Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M. E., Marchand, M., Marécal, V., Michou, M., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., and Zeng, G.: Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, 2017. a
NASA Goddard Space Flight Center: SBUV Merged Ozone Data Set (MOD), NASA [data set], https://acd-ext.gsfc.nasa.gov/Data_services/merged/ (last access: 7 February 2025). a
Newchurch, M. J., Yang, E.-S., Cunnold, D. M., Reinsel, G. C., Zawodny, J., and Russell III, J. M.: Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery, J. Geophys. Res.-Atmos., 108, 4507, https://doi.org/10.1029/2003jd003471, 2003. a, b
Nowack, P. J., Luke Abraham, N., Maycock, A. C., Braesicke, P., Gregory, J. M., Joshi, M. M., Osprey, A., and Pyle, J. A.: A large ozone-circulation feedback and its implications for global warming assessments, Nat. Clim. Change, 5, 41–45, https://doi.org/10.1038/nclimate2451, 2015. a
Oman, L., Plummer, D., Waugh, D., Austin, J., Scinocca, J., Douglass, A., Salawitch, R., Canty, T., Akiyoshi, H., Bekki, S., Braesicke, P., Butchart, N., Chipperfield, M. P., Cugnet, D., Dhomse, S., Eyring, V., Frith, S., Hardiman, S. C., Kinnison, D. E., Lamarque, J.-F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Nielsen, J. E., Olivié, D., Pitari, G., Pyle, J., Rozanov, E., Shepherd, T. G., Shibata, K., Stolarski, R. S., Teyssèdre, H., Tian, W., Yamashita, Y., and Ziemke, J. R.: Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century, J. Geophys. Res.-Atmos., 115, D24306, https://doi.org/10.1029/2010jd014362, 2010. a
Oman, L. D., Douglass, A. R., Ziemke, J. R., Rodriguez, J. M., Waugh, D. W., and Nielsen, J. E.: The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation, J. Geophys. Res.-Atmos., 118, 965–976, https://doi.org/10.1029/2012jd018546, 2013. a
Petropavlovskikh, I., Godin-Beekmann, S., Hubert, D., Damadeo, R., Hassler, B., and Sofieva, V.: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere, SPARC Report No. 9, GAW Report No. 241, WCRP-17/2018, https://doi.org/10.17874/f899e57a20b, 2019. a, b, c, d, e, f, g, h, i, j
Plummer, D. A., Scinocca, J. F., Shepherd, T. G., Reader, M. C., and Jonsson, A. I.: Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases, Atmos. Chem. Phys., 10, 8803–8820, https://doi.org/10.5194/acp-10-8803-2010, 2010. a
Randel, W. J., Garcia, R. R., Calvo, N., and Marsh, D.: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere, Geophys. Res. Lett., 36, L15822, https://doi.org/10.1029/2009gl039343, 2009. a
Revell, L. E., Bodeker, G. E., Huck, P. E., Williamson, B. E., and Rozanov, E.: The sensitivity of stratospheric ozone changes through the 21st century to N2O and CH4, Atmos. Chem. Phys., 12, 11309–11317, https://doi.org/10.5194/acp-12-11309-2012, 2012. a
Ridolfi, M., Carli, B., Carlotti, M., von Clarmann, T., Dinelli, B. M., Dudhia, A., Flaud, J.-M., Höpfner, M., Morris, P. E., Raspollini, P., Stiller, G., and Wells, R. J.: Optimized forward model and retrieval scheme for MIPAS near-real-time data processing, Appl. Opt., 39, 1323–1340, https://doi.org/10.1117/12.317770, 2000. a
Rigby, M., Park, S., Saito, T., Western, L. M., Redington, A. L., Fang, X., Henne, S., Manning, A. J., Prinn, R. G., Dutton, G. S., Fraser, P. J., Ganesan, A. L., Hall, B. D., Harth, C. M., Kim, J., Kim, K.-R., Krummel, P. B., Lee, T., Li, S., Liang, Q., Lunt, M. F., Montzka, S. A., Mühle, J., O’Doherty, S., Park, M.-K., Reimann, S., Salameh, P. K., Simmonds, P., Tunnicliffe, R. L., Weiss, R. F., Yokouchi, Y., and Young, D.: Increase in CFC-11 emissions from eastern China based on atmospheric observations, Nature, 569, 546–550, https://doi.org/10.1038/s41586-019-1193-4, 2019. a
Rind, D., Suozzo, R., Balachandran, N., and Prather, M.: Climate change and the middle atmosphere. Part I: The doubled CO2 climate, J. Atmos. Sci., 47, 475–494, https://doi.org/10.1175/1520-0469(1990)047<0475:ccatma>2.0.co;2, 1990. a
Rivoire, L., Linz, M., and Li, J.: Observational limitations to the emergence of climate signals, Geophys. Res. Lett., 51, e2024GL109638, https://doi.org/10.1029/2024gl109638, 2024. a, b
Rodgers, C. D.: Characterization and error analysis of profiles retrieved from remote sounding measurements, J. Geophys. Res.-Atmos., 95, 5587–5595, https://doi.org/10.1029/jd095id05p05587, 1990. a
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice, Vol. 2, World scientific, https://doi.org/10.1142/3171, 2000. a
Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sounding instruments, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002jd002299, 2003. a
Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J., Kim, J.-E., Simpson, I. R., Stein, K., Stuecker, M. F., Yamaguchi, R., Bódai, T., Chung, E.-S., Huang, L., Kim, W. M., Lamarque, J.-F., Lombardozzi, D. L., Wieder, W. R., and Yeager, S. G.: Ubiquity of human-induced changes in climate variability, Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, 2021. a, b
Santee, M. L., Lambert, A., Manney, G. L., Livesey, N. J., Froidevaux, L., Neu, J. L., Schwartz, M., Millán, L., Werner, F., Read, W. G., Park, M., Fuller, R. A., and Ward, B. M.: Prolonged and pervasive perturbations in the composition of the Southern Hemisphere midlatitude lower stratosphere from the Australian New Year's fires, Geophys. Res. Lett., 49, e2021GL096270, https://doi.org/10.1029/2021gl096270, 2022. a
Santee, M. L., Lambert, A., Froidevaux, L., Manney, G. L., Schwartz, M. J., Millán, L., Livesey, N. J., Read, W. G., Werner, F., and Fuller, R. A.: Strong Evidence of Heterogeneous Processing on Stratospheric Sulfate Aerosol in the Extrapolar Southern Hemisphere Following the 2022 Hunga Tonga-Hunga Ha'apai Eruption, J. Geophys. Res.-Atmos., 128, e2023JD039169, https://doi.org/10.1029/2023jd039169, 2023. a
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves, Nature, 427, 332–336, https://doi.org/10.1038/nature02300, 2004. a
Scherrer, S. C., Appenzeller, C., Liniger, M. A., and Schär, C.: European temperature distribution changes in observations and climate change scenarios, Geophys. Res. Lett., 32, L19705, https://doi.org/10.1029/2005gl024108, 2005. a
Shepherd, T. G.: Dynamics, stratospheric ozone, and climate change, Atmos.-Ocean, 46, 117–138, https://doi.org/10.3137/ao.460106, 2008. a, b
Sofieva, V. F., Kyrölä, E., Laine, M., Tamminen, J., Degenstein, D., Bourassa, A., Roth, C., Zawada, D., Weber, M., Rozanov, A., Rahpoe, N., Stiller, G., Laeng, A., von Clarmann, T., Walker, K. A., Sheese, P., Hubert, D., van Roozendael, M., Zehner, C., Damadeo, R., Zawodny, J., Kramarova, N., and Bhartia, P. K.: Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere, Atmos. Chem. Phys., 17, 12533–12552, https://doi.org/10.5194/acp-17-12533-2017, 2017. a, b
Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., and Schmidt, A.: Emergence of healing in the Antarctic ozone layer, Science, 353, 269–274, https://doi.org/10.1126/science.aae0061, 2016. a
Solomon, S., Stone, K., Yu, P., Murphy, D. M., Kinnison, D., Ravishankara, A. R., and Wang, P.: Chlorine activation and enhanced ozone depletion induced by wildfire aerosol, Nature, 615, 259–264, https://doi.org/10.1038/s41586-022-05683-0, 2023. a
SPARC: SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, edited by: Eyring, V., Shepherd, T., and Waugh, D., SPARC Report No. 5, WCRP-30/2010, WMO/TD – No. 40, http://www.sparc-climate.org/publications/sparc-reports/ (last access: 7 February 2025), 2010. a
Steinbrecht, W., Froidevaux, L., Fuller, R., Wang, R., Anderson, J., Roth, C., Bourassa, A., Degenstein, D., Damadeo, R., Zawodny, J., Frith, S., McPeters, R., Bhartia, P., Wild, J., Long, C., Davis, S., Rosenlof, K., Sofieva, V., Walker, K., Rahpoe, N., Rozanov, A., Weber, M., Laeng, A., von Clarmann, T., Stiller, G., Kramarova, N., Godin-Beekmann, S., Leblanc, T., Querel, R., Swart, D., Boyd, I., Hocke, K., Kämpfer, N., Maillard Barras, E., Moreira, L., Nedoluha, G., Vigouroux, C., Blumenstock, T., Schneider, M., García, O., Jones, N., Mahieu, E., Smale, D., Kotkamp, M., Robinson, J., Petropavlovskikh, I., Harris, N., Hassler, B., Hubert, D., and Tummon, F.: An update on ozone profile trends for the period 2000 to 2016, Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, 2017. a, b, c, d, e
Stolarski, R. S. and Frith, S. M.: Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: the importance of instrument drift uncertainty, Atmos. Chem. Phys., 6, 4057–4065, https://doi.org/10.5194/acp-6-4057-2006, 2006. a
Stolarski, R. S., Bloomfield, P., McPeters, R. D., and Herman, J. R.: Total ozone trends deduced from Nimbus 7 TOMS data, Geophys. Res. Lett., 18, 1015–1018, https://doi.org/10.1029/91gl01302, 1991. a
Stone, K. A., Solomon, S., and Kinnison, D. E.: On the identification of ozone recovery, Geophys. Res. Lett., 45, 5158–5165, https://doi.org/10.1029/2018gl077955, 2018. a
Thompson, D. W., Barnes, E. A., Deser, C., Foust, W. E., and Phillips, A. S.: Quantifying the role of internal climate variability in future climate trends, J. Climate, 28, 6443–6456, https://doi.org/10.1175/jcli-d-14-00830.1, 2015. a
Thomson, D. J.: Spectrum estimation and harmonic analysis, P. IEEE, 70, 1055–1096, https://doi.org/10.1109/proc.1982.12433, 1982. a
Tiao, G. C., Reinsel, G. C., Xu, D., Pedrick, J. H., Zhu, X., Miller, A. J., DeLuisi, J. J., Mateer, C. L., and Wuebbles, D. J.: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation, J. Geophys. Res.-Atmos., 95, 20507–20517, https://doi.org/10.1029/jd095id12p20507, 1990. a
Tully, M. B., Krummel, P. B., and Klekociuk, A. R.: Trends in Antarctic ozone hole metrics 2001–17, J. Southern Hemisphere Earth Syst. Sci., 69, 52–56, https://doi.org/10.1071/es19020, 2020. a
Tummon, F., Hassler, B., Harris, N. R. P., Staehelin, J., Steinbrecht, W., Anderson, J., Bodeker, G. E., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S. M., Froidevaux, L., Kyrölä, E., Laine, M., Long, C., Penckwitt, A. A., Sioris, C. E., Rosenlof, K. H., Roth, C., Wang, H.-J., and Wild, J.: Intercomparison of vertically resolved merged satellite ozone data sets: interannual variability and long-term trends, Atmos. Chem. Phys., 15, 3021–3043, https://doi.org/10.5194/acp-15-3021-2015, 2015. a, b, c
Tung, K. and Yang, H.: Global QBO in circulation and ozone. Part I: Reexamination of observational evidence, J. Atmos. Sci., 51, 2699–2707, https://doi.org/10.1175/1520-0469(1994)051<2699:gqicao>2.0.co;2, 1994. a
von Savigny, C., Haley, C. S., Sioris, C. E., McDade, I. C., Llewellyn, E. J., Degenstein, D., Evans, W. F. J., Gattinger, R. L., Griffioen, E., Kyrölä, E., Lloyd, N. D., McConnell, J. C., McLinden, C. A., Mégie, G., Murtagh, D. P., Solheim, B., and Strong, K.: Stratospheric ozone profiles retrieved from limb scattered sunlight radiance spectra measured by the OSIRIS instrument on the Odin satellite, Geophys. Res. Lett., 30, 1755, https://doi.org/10.1029/2002gl016401, 2003. a
Walker, K. A., Randall, C. E., Trepte, C. R., Boone, C. D., and Bernath, P. F.: Initial validation comparisons for the Atmospheric Chemistry Experiment (ACE-FTS), Geophys. Res. Lett., 32, L16S04, https://doi.org/10.1029/2005gl022388, 2005. a
Wallace, J. M., Panetta, R. L., and Estberg, J.: Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space, J. Atmos. Sci., 50, 1751–1762, https://doi.org/10.1175/1520-0469(1993)050<1751:rotesq>2.0.co;2, 1993. a
Wang, X., Randel, W., Zhu, Y., Tilmes, S., Starr, J., Yu, W., Garcia, R., Toon, O. B., Park, M., Kinnison, D., Zhang, J., Bourassa, A., Rieger, L., Warnock, T., and Li, J.: Stratospheric Climate Anomalies and Ozone Loss Caused by the Hunga Tonga-Hunga Ha'apai Volcanic Eruption, J. Geophys. Res.-Atmos., 128, e2023JD039480, https://doi.org/10.1029/2023jd039480, 2023. a
Waugh, D., Oman, L., Kawa, S., Stolarski, R., Pawson, S., Douglass, A., Newman, P., and Nielsen, J.: Impacts of climate change on stratospheric ozone recovery, Geophys. Res. Lett., 36, L03805, https://doi.org/10.1029/2008gl036223, 2009. a
Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X.-L., Choi, D., Cheang, W.-K., Keller, T., DeLuisi, J., Wuebbles, D. J., Kerr, J. B., Miller, A. J., Oltmans, S. J., and Frederick, J. E.: Factors affecting the detection of trends: Statistical considerations and applications to environmental data, J. Geophys. Res.-Atmos., 103, 17149–17161, https://doi.org/10.1029/98JD00995, 1998. a
Weber, M., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Wild, J. D., Burrows, J. P., Long, C. S., and Loyola, D.: Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery, Atmos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-18-2097-2018, 2018. a
Wigley, T. and Jones, P.: Detecting CO2-induced climatic change, Nature, 292, 205–208, https://doi.org/10.1038/292205a0, 1981. a
Wilmouth, D. M., Østerstrøm, F. F., Smith, J. B., Anderson, J. G., and Salawitch, R. J.: Impact of the Hunga Tonga volcanic eruption on stratospheric composition, P. Natl. Acad. Sci. USA, 120, e2301994120, https://doi.org/10.1073/pnas.2301994120, 2023. a
WMO: Scientific assessment of ozone depletion: 2006, World Meteorological Organisation, Global Ozone Research and Monitoring Project, 50, 572, https://ozone.unep.org/sites/default/files/2023-04/SAP-report-2006.pdf (last access: 7 February 2025), 2007. a
WMO: Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project – Report No. 52, Geneva, Switzerland, 516 pp., https://ozone.unep.org/sites/default/files/2019-05/00-SAP-2010-Assement-report.pdf (last access: 7 February 2025), 2011. a
WMO: Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project – Report No. 58, Geneva, Switzerland, 588 pp., https://ozone.unep.org/sites/default/files/2019-05/SAP-2018-Assessment-report.pdf (last access: 7 February 2025), 2018. a
Worden, J., Kulawik, S. S., Shephard, M. W., Clough, S. A., Worden, H., Bowman, K., and Goldman, A.: Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection, J. Geophys. Res.-Atmos., 109, D09308, https://doi.org/10.1029/2004jd004522, 2004. a
Yang, E.-S., Cunnold, D. M., Newchurch, M. J., Salawitch, R. J., McCormick, M. P., Russell III, J. M., Zawodny, J. M., and Oltmans, S. J.: First stage of Antarctic ozone recovery, J. Geophys. Res.-Atmos., 113, D20308, https://doi.org/10.1029/2007jd009675, 2008. a
Ziemke, J. R., Labow, G. J., Kramarova, N. A., McPeters, R. D., Bhartia, P. K., Oman, L. D., Frith, S. M., and Haffner, D. P.: A global ozone profile climatology for satellite retrieval algorithms based on Aura MLS measurements and the MERRA-2 GMI simulation, Atmos. Meas. Tech., 14, 6407–6418, https://doi.org/10.5194/amt-14-6407-2021, 2021. a
Short summary
The recovery of the ozone hole since the 1987 Montreal Protocol has been observed in some regions but has yet to be seen globally. We ask how long it will take to witness a global recovery. Using a technique akin to flying a virtual satellite in a climate model, we find that the degree of confidence we place in the answer to this question is dramatically affected by errors in satellite observations.
The recovery of the ozone hole since the 1987 Montreal Protocol has been observed in some...
Altmetrics
Final-revised paper
Preprint