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Abstract. The continued monitoring of the ozone layer and its long-term evolution leans on comparative studies
of merged satellite records. Comparing such records presents unique challenges due to differences in sampling,
coverage, and retrieval algorithms between observing platforms, all of which complicate the detection of trends.
Here we examine the effects of broad nadir averaging kernels on vertically resolved ozone trends, using one
record as an example. We find errors as large as 1 % per decade and displacements in trend profile features by
as much as 6 km in altitude due to the vertical redistribution of information by averaging kernels. Furthermore,
we show that averaging kernels tend to increase (by 10 %–80 %, depending on the location) the length of the
record needed to determine whether trend estimates are distinguishable from natural variability with good statis-
tical confidence. We conclude that trend uncertainties may be underestimated, in part because averaging kernels
misrepresent decadal to multidecadal internal variability, and in part because the removal of known modes of
variability from the observed record can yield residual errors. The study provides a framework to reconcile dif-
ferences between observing platforms and highlights the need for caution when using records from instruments
with broad averaging kernels to quantify trends and their uncertainties.

1 Introduction

Since the discovery of the Antarctic ozone hole (Farman
et al., 1985) and the advent of the World Meteorological Or-
ganization (WMO)/United Nations Environment Programme
(UNEP) ozone assessment reports in 1989, there have been
a number of activities dedicated to monitoring the state of
the ozone layer and providing attribution of the long-term
changes in ozone distribution. Notwithstanding declining
levels of ozone-depleting substances (ODSs) (WMO, 2022),
the search for evidence of the beginning of the recovery of
the global ozone layer is ongoing. A number of chemistry–
climate feedbacks complicate this search. The greenhouse-

driven cooling of the stratosphere is thought to aid the re-
covery in the mid-to-upper stratosphere by slowing down
reactions that deplete ozone (Fels et al., 1980). In contrast,
the acceleration of the Brewer–Dobson circulation widely
predicted by chemistry–climate models (e.g., Eyring et al.,
2013a; Meul et al., 2014; Abalos et al., 2021) is expected
to redistribute stratospheric ozone from the tropics to the
midlatitudes (e.g., Rind et al., 1990; Mahfouf et al., 1994;
Shepherd, 2008) and to decrease stratospheric ozone abun-
dances in the tropics (Shepherd, 2008; Li et al., 2009; Waugh
et al., 2009; SPARC, 2010; Oman et al., 2010; Plummer
et al., 2010; Meul et al., 2014; Banerjee et al., 2016; Chiodo
et al., 2018; Dietmüller et al., 2021), with large impacts on
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surface warming (Nowack et al., 2015) and ultraviolet radi-
ation (Hegglin and Shepherd, 2009). Similarly, the expan-
sion of the troposphere was also found to decrease strato-
spheric ozone by eroding the ozone layer from below (Match
and Gerber, 2022). Because of these feedbacks, projected
rates of recovery from chemistry–climate models are sensi-
tive to model formulation (Dietmüller et al., 2014) and green-
house gas emission scenarios (Revell et al., 2012). Lastly,
emerging influences are adding new complexity to our un-
derstanding of the composition of the stratosphere, for in-
stance, large wildfires and associated aerosols (Santee et al.,
2022; Solomon et al., 2023); recent noncompliant ODS emis-
sions (e.g., Montzka et al., 2018; Rigby et al., 2019; Chipper-
field et al., 2020); new estimates for ODS lifetimes (Lickley
et al., 2021), possibly increasing dynamical variability (Di-
allo et al., 2018, 2019); and large volcanic eruptions (e.g.,
the Hunga eruption in 2022; WMO, 2022; Wang et al., 2023;
Evan et al., 2023; Santee et al., 2023; Wilmouth et al., 2023;
Manney et al., 2023).

In light of such complexity, the analysis of observed
trends continues to present challenges. The last WMO report
(WMO, 2022) found a small but positive trend (0.3± 0.2 %
per decade) in the near-global (60° S–60° N) total column
ozone. Vertically resolved trends reveal regional patterns
hinting at competing influences on ozone abundances. The
analysis of merged satellite products (e.g., Sofieva et al.,
2017; Steinbrecht et al., 2017; Ball et al., 2017; Bourassa
et al., 2018; WMO, 2018; Petropavlovskikh et al., 2019)
found large positive post-2000 trends across the upper strato-
sphere (above 5 hPa), in agreement with the Chemistry–
Climate Model Initiative (CCMI) simulations (Eyring et al.,
2013b; Godin-Beekmann et al., 2022). However, agreement
is lacking in the lower stratosphere (50–10 hPa): negative
but uncertain trends are found in several satellite records,
and although CCMI trends agree in sign below 30 hPa
(Petropavlovskikh et al., 2019), the range across models
and even across ensemble members of a single model is
large (Stone et al., 2018). In the lowermost stratosphere (50–
100 hPa), modeled and measured ozone and its trends remain
highly uncertain. In addition, reanalysis products present
varying degrees of realism in ozone trends (Davis et al.,
2017) and should only be used with great caution (Box 3.2
in WMO, 2022). Whether models are flawed in their rep-
resentation of stratospheric ozone or whether the statistical
confidence placed in trend estimates is sufficient to address
disagreements between models and observations, the need to
improve our ability to distinguish trends from internal vari-
ability is clear.

In this paper, we turn to the nontrivial effects of error prop-
agation in algorithms used to retrieve ozone abundances from
spaceborne nadir measurements. Such errors are generally
known to reduce the statistical confidence placed in trend es-
timates from merged records (Tummon et al., 2015; Hubert
et al., 2016; Steinbrecht et al., 2017; Ball et al., 2017). This
is especially concerning given that trends that were originally

assigned high statistical confidence can still suddenly change
magnitude or even sign after the addition of just a few years
of record (Chipperfield et al., 2018; Ball et al., 2019). The
past literature provides extensive discussion about quantify-
ing and reducing uncertainty in ozone trends (e.g., Stolarski
and Frith, 2006; Harris et al., 2015; Petropavlovskikh et al.,
2019), but methods have not yet been developed to systemati-
cally account for the limitations of satellite records. Using the
example of the Solar Backscatter Ultraviolet (SBUV) merged
record (McPeters et al., 2013), we utilize a novel method
(Rivoire et al., 2024) to determine whether current trend es-
timates are distinguishable from natural variability, particu-
larly when accounting for the effects of errors attributable to
the SBUV averaging kernels.

2 Model output and observational data

In this section we introduce the datasets used in this study,
namely:

– a pre-industrial chemistry–climate control simulation
used as a reference for internal variability,

– chemistry–climate simulations used to estimate the time
of emergence of future long-term ozone trends,

– the SBUV merged record, used as reference for the ef-
fects of satellite kernels, and

– other merged satellite records, used to compare against
SBUV.

2.1 Simulations used as a reference for internal
variability

In order to determine whether a trend derived from the obser-
vational record reflects natural variability or arises because of
anthropogenic forcings, we need to compare said trend to a
reference distribution of naturally occurring trends in a pre-
industrial setting. Since the satellite era only covers the past
40–50 years, satellite records cannot be used to determine
such a reference distribution. We therefore turn to a long
simulation of the pre-industrial climate from a chemistry–
climate model, building on standard practice (e.g., Kay et al.,
2015).

Two runs from the Geophysical Fluid Dynamics Labora-
tory Earth System Model version 4.1 (ESM4.1; Dunne et al.,
2020) are used as a reference: (1) a 500-year pre-industrial
run (“piControl” in CMIP6 nomenclature) and (2) a historical
run from 1850 to the end of 2014 (“historical”). The histor-
ical run provides a benchmark for the model’s performance
given forcings and boundary conditions matching the histor-
ical record, including aerosol optical depths, 43 short-lived
and long-lived greenhouse gases (GHGs), land use, solar
forcing, sea surface temperatures, and sea ice concentrations.
The pre-industrial run excludes such time-dependent forc-
ings and is instead run with a prescribed global annual mean
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atmospheric CO2 concentration equal to that of 1850 (Eyring
et al., 2016) and with a time-invariant volcanic aerosol forc-
ing equivalent to the historical average (1850–2014). We use
this simulation to quantify internal variability in the pre-
industrial climate over any time period of a chosen length.
Solar irradiance is also maintained constant following the
specifications for the CMIP6 pre-industrial run (documented
at http://goo.gl/r8up31, last access: 7 February 2025). The
Quasi-Biennial Oscillation (QBO) in the model is internally
generated.

The ESM4.1 model is the product of development efforts
to capture coupled ocean–atmosphere and land–atmosphere
interactions, biogeochemical cycles and ecosystem physics,
sea ice, aerosol processes, and – importantly for this study –
interactive ozone chemistry. The ozone chemistry includes
an improved representation of ozone precursors (methane,
carbon monoxide, nitrogen oxides, and volatile organic com-
pounds) and accounts for heterogeneous reactions that occur
on the surface of aerosols (Austin et al., 2013). ESM4.1 fea-
tures 49 vertical levels with a model top at 1 Pa (∼ 80 km)
to better capture stratospheric chemistry and dynamics com-
pared to the previous model generation (Horowitz et al.,
2020). In the lower stratosphere, ESM4.1-simulated fields
have a vertical resolution of about 2–3 km compared to the
4–6 km vertical resolution of SBUV (see Sect. 2.3). Coupled
model simulations rarely include fully interactive chemistry
in their extended control runs, making the ESM4.1 control
run a unique asset for our study.

In order to ensure that the simulation provides suitable
reference trend distributions, we assess the realism of the
model’s representation of stratospheric ozone variability.
Simulated and observed variability is portrayed by power
density spectra in Fig. 1. The spectra are estimated using
the multitaper method (Thomson, 1982), which is suitable
for short records. On interannual to multidecadal scales, it
is inherently difficult to test whether the ozone variability
produced by the model under pre-industrial conditions is re-
alistic, as we have no historical record that spans the pre-
industrial era. However, we can test whether the simulated
ozone variability is on par with observations when the model
is provided with historical radiative and chemical forcings
that correspond to greenhouse gas and ODS emissions. If the
model can capture the historical variability, we can at least
say that it is skilled at capturing processes that are relevant to
our current understanding of the atmosphere. One caveat in
this reasoning is the fact that model improvements are tested
against the historical record, which contains anthropogenic
forcings; i.e., it is possible that some model improvements
target modes of variability that are specific to external forc-
ings rather than to natural climate variability. That being said,
the historical model simulation exhibits improvements in the
representation of total column ozone interannual variabil-
ity and trends vs. previous versions of the model (Horowitz
et al., 2020).

Figure 1. Comparison between observed and simulated normal-
ized variability in the de-seasonalized zonal mean ozone for the
10–16 hPa layer in the Northern Hemisphere midlatitudes (37.5–
57.5° N), pictured using power spectral densities (PSDs) estimated
with the multitaper method. Shaded areas indicate chi-squared 95 %
confidence intervals. To ensure comparability between spectra, the
ESM4.1 historical run (1850–2014) is sub-sampled in 13-year pe-
riods, matching the longest continuous period given by the SBUV
record (dashed line in a), and the resulting power spectra are sub-
sequently averaged. Similarly, in (b), the ESM4.1 pre-industrial run
(500 years) is sub-sampled in 165-year periods, corresponding to
the length of the historical run. Further, spectral density is normal-
ized by the area under each power spectrum to remove changes in
total power.

The pre-industrial simulation produces less ozone vari-
ability on decadal to centennial periods than the histori-
cal run. This behavior is expected since the pre-industrial
run excludes forcings that affect ozone on these timescales
(ODSs, GHGs, volcanic eruptions). This result means that
trend uncertainties estimated from pre-industrial simulations
are likely to be underestimated.

2.2 Simulations used to estimate trends

We use the average ozone trends from 2000 to 2020 from
the same dataset as in Godin-Beekmann et al. (2022): the
multi-model mean (16 models) from the CCMI’s 1960–2100
period (REF-C2; Eyring et al., 2013b). The purpose of the
REF-C2 experiments is to capture future climate trends, and
as such, they follow the WMO (2011) A1 scenario for ODSs
and the Representative Concentration Pathway (RCP) 6.0 for
other greenhouse gas, ozone precursor, and aerosol precursor
emissions. Depending on model capabilities, ocean boundary
conditions and forcings for the 11-year solar cycle and the
QBO are either simulated separately or generated internally.
Although the recommendation was not to use volcanic forc-
ings, some models do include them (Godin-Beekmann et al.,
2022). More information about the forcings can be found in
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Eyring et al. (2013a), Hegglin et al. (2016), and Morgenstern
et al. (2017). Model runs are accessible at http://catalogue.
ceda.ac.uk/uuid/9cc6b94df0f4469d8066d69b5df879d5/ (last
access: 7 February 2025) Hegglin et al. (2015).

2.3 SBUV satellite record

The SBUV Merged Ozone Dataset (MOD; version 2 release
1, https://acd-ext.gsfc.nasa.gov/Data_services/merged/, last
access: 7 February 2025; see Frith et al., 2014, 2017) com-
bines retrievals from backscattered ultraviolet radiation sen-
sors on board a series of polar-orbiting satellites to pro-
vide total column and profile ozone products with monthly
frequency. Retrievals include those from first- and second-
generation SBUV sensors (algorithm version 8.7) and from
the nadir profilers included in the Ozone Mapping and Pro-
filing Suite (OMPS NP, algorithm version 2.8). We use the
2000–2020 portion (21 years) of the MOD (a) to focus on
the time period after which the decline in ozone in the upper
stratosphere stopped (Newchurch et al., 2003; WMO, 2007),
(b) for consistency with other studies, and (c) to avoid is-
sues with coverage gaps in the earlier parts of the record.
Indeed, the MOD provides nearly global spatial coverage
but suffers from substantial gaps in its temporal coverage.
For instance, no reliable measurements are available from
April 1976 through November 1978, and there are also none
following large volcanic eruptions that injected aerosols in
the stratosphere and affected the retrieval (e.g., mid-1991
through 1993; see Bhartia et al., 1993). Early portions of
the dataset are also unsuitable for trend analysis due to par-
tial instrument failure (May 1970 to April 1976). Note that
among existing merged datasets, the SBUV record provides
the densest and most spatially uniform sampling over the
2000–2020 time period (Tummon et al., 2015). Moreover, the
MOD record merges data from similar SBUV instruments,
and its sampling and retrieval characteristics are more ho-
mogeneous over the time period we use than other merged
records that rely on more varied data sources.

Both total column and profile ozone products used in this
study have a 5° horizontal resolution and are zonally aver-
aged to minimize instrumental uncertainty. The ozone profile
product provides ozone amounts in Dobson units (DU) for
seven vertical layers spanning the mid-to-upper stratosphere,
with layer edges near 25,16,10,6.4,4,2.5,1.6, and 1 hPa or
approximately 23,27,31,35,40,46,50, and 54 km near the
Equator (i.e., 4–6 km resolution, which is comparable to that
of other nadir-viewing instruments). Data across these lay-
ers have accuracy suitable for long-term trend analysis and
compare well with ozone records from other spaceborne and
ground-based instruments (within 5 %; Bhartia et al., 2013;
McPeters et al., 2013). Data outside the 25–1 hPa range tend
to be heavily influenced by the a priori ozone climatology
used in the retrieval algorithm (Bhartia et al., 1996) and are
therefore not relevant to this analysis (see Methods section).

Total column ozone data lie within 1 % of the ground-based
instrumental record (McPeters et al., 2013).

2.4 Merged satellite trend estimates

We use trend estimates from the ninth report from the initia-
tive on Stratosphere–Troposphere Processes and their Role
in Climate (SPARC) on Long-term Ozone Trends and Uncer-
tainties in the Stratosphere (LOTUS; Petropavlovskikh et al.,
2019) to provide context for trends derived using the SBUV
record alone. The homogenized satellite record used in the
LOTUS report includes six merged datasets:

– two that rely on nadir-viewing instruments with rela-
tively broad averaging kernels and low vertical resolu-
tion: the SBUV MOD (v8.6, Frith et al., 2014) and the
SBUV cohesive dataset from NOAA, and

– four that rely on limb-viewing instruments and oc-
cultation techniques characterized by relatively nar-
row averaging kernels and high vertical resolution:
the Global OZone Chemistry And Related trace gas
Data records for the Stratosphere (GOZCARDS v2.20,
Froidevaux et al., 2015), the Stratospheric Water and
Ozone Satellite Homogenized database (SWOOSH
v2.6, Davis et al., 2016), the SAGE-OSIRIS-OMPS
dataset corrected for sampling effects (corr-SAGE-
OSIRIS-OMPS, Damadeo et al., 2018), and the SAGE-
CCI-OMPS dataset from ESA (Sofieva et al., 2017).

The LOTUS trend estimates are based on multilinear re-
gression and include proxies to correct for the effects of
a range of known climate oscillations (El Niño–Southern
Oscillation (ENSO), the QBO, the 11-year solar cycle, the
Arctic and Antarctic Oscillations, the North Atlantic Oscil-
lation), as well as changes in the stratospheric meridional
circulation, tropopause height, stratospheric sulfate aerosol
abundances, and long-term trends in chemically reactive
halogens (Steinbrecht et al., 2017). A comprehensive list of
references for these proxies is provided in the LOTUS report
(Petropavlovskikh et al., 2019). Trends are calculated as the
unweighted average of trends from each of the six merged
datasets. Trend uncertainties account for the degree of de-
pendency between the datasets and the propagation of errors
in the regression model (see Sect. 5.3.2 in Petropavlovskikh
et al., 2019). In this study, we use trend estimates for the
2000–2020 period, shown in Figs. 8 and 9 for three broad
latitude bands.

3 Methods

3.1 Synthetic SBUV observations for the pre-industrial
era

In order to quantify the impact of satellite averaging kernels
on the observed variability in stratospheric ozone, we create
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synthetic observations by applying the SBUV kernels to the
ESM4.1 pre-industrial control run. As discussed in the pre-
vious section, the model run itself is used as a reference, and
the “kernelized” run is used as equivalent observations of the
atmosphere had satellites equipped with SBUV sensors flown
during the pre-industrial era.

3.1.1 Averaging kernels for synthetic observations

Ozone profiles retrieved by remote sensing are not perfect
measurements of the ozone concentrations in each layer of
the atmosphere with independent errors but are rather best
estimates made given measured radiances and some prior
knowledge about the state of the atmosphere. Retrievals are
an estimate of some smoothed function of the actual state,
with errors that are correlated between different altitudes. As
described in Rodgers (1990, 2000), the ozone profile x̂ that is
retrieved is related to the true ozone profile x and an a priori
profile xa used in its retrieval by

x̂− xa = A(x− xa)+ εx,

where A is the averaging kernel matrix, and εx represents
random and systematic measurement errors. The ith row of
A describes where in the column the information attributed
to the ith vertical level actually comes from. Thus, averaging
kernels are peaked functions whose half-widths correspond
to the vertical resolution of the retrieval. Two examples for
SBUV are shown in Fig. 2 (also see Fig. 2 in Kramarova
et al., 2013a, for more examples). The blue line shows the
row of the kernel matrix that corresponds to the 10.1–6.4 hPa
layer, and the red line shows the same for the 101.3–63.9 hPa
layer. The averaging kernel for the upper level has a peak at
the target level, so the concentration attributed to the 10.1–
6.4 hPa layer is the weighted average of concentrations be-
tween about 2 and 25 hPa but with the largest weight at the
target level. The averaging kernel that is intended to represent
the 101.3–63.9 hPa layer has a peak around 50 hPa and ex-
hibits large sensitivity to tropospheric ozone, as discussed in
Bhartia et al. (2012). Visualizing the kernels helps to demon-
strate the limits of SBUV ozone retrievals in the lower strato-
sphere compared to the middle to upper stratosphere; for ver-
tical levels below 25 hPa, averaging kernels have broad peaks
that are significantly shifted away from their respective tar-
get levels, indicating that the retrieval for those levels heavily
relies on a priori information (Rodgers, 2000). For this rea-
son, as stated in Sect. 2, the analysis with SBUV is limited to
pressure levels 25.45 hPa through 1.013 hPa (levels 9 through
15 in the MOD files) and to the total column. Kernel matri-
ces are produced for each retrieval but are only available as
monthly averages. We use the monthly averaged kernels for
1 representative year, chosen to be 2005. For simplicity and
to reduce the computational cost of the study, we only use the
SBUV kernels, even though the MOD record includes OMPS
retrievals; note that MOD relies at least in part on SBUV un-
til March 2018.

A priori information typically consists of a climatology
obtained via independent measurements. For instance, a pri-
ori states for the SBUV merged dataset come from a com-
bination of independent satellite retrievals and reanalysis
data validated by comparison with balloon-borne ozoneson-
des from the Southern Hemisphere ADditional OZoneson-
des (SHADOZ) network (Ziemke et al., 2021). However, no
such independent climatology exists when it comes to cre-
ating synthetic retrievals using a pre-industrial model run.
Synthetic a priori information is therefore created using the
model monthly mean state itself; that is to say, the averaging
kernels are applied to the departure of the model state from
its monthly climatology. The synthetic a priori is therefore
unbiased by construction, and the synthetic retrievals repre-
sent a best-case scenario. As a consequence, variability in
the synthetic retrievals may be underestimated, but this ap-
proach has the added benefit of isolating the effects of the
SBUV kernels on the retrieved variability in stratospheric
ozone from any effect of the a priori. The relationship be-
tween the synthetic retrieval and the simulated ozone (the
reference or “true” quantity) is written as

x̂ = x+A(x− x)+ εx,

where x denotes the monthly averaged zonal mean sim-
ulated ozone profile. As in Rodgers and Connor (2003),
the simulated ozone profile is first interpolated onto the
coarser SBUV vertical grid so that it can be convolved with
the SBUV averaging kernel matrix to produce synthetic re-
trievals. While the vertical interpolation leads to a loss of
some of the higher-resolution information from the model,
it is necessary in order to isolate the effects of the averaging
kernels, which are illustrated in Fig. 2. The synthetic pro-
file appears smoother than the true profile (hence the expres-
sion “smoothing” errors) and is closer to the a priori than the
true profile is. Below 25 hPa in the lower stratosphere, the
averaging kernels become broader and the retrieval’s qual-
ity degrades accordingly, hindering the accurate retrieval of
large vertical gradients in ozone concentration. Note that
the SBUV kernels are not defined during polar night, which
means that the synthetic SBUV data effectively capture the
seasonal dependence of the SBUV sampling.

3.1.2 Consideration of known sources of errors

Random errors (e.g., instrumental noise) in retrieved SBUV
profiles are on the order of 1 % (Natalya A. Kramarova, per-
sonal communication, 26 January 2023), but since retrievals
are averaged zonally and monthly across ∼ 1000 profiles,
random errors in the MOD product are neglected, consistent
with Kramarova et al. (2013b). This substantial sample size
also allows us to ignore the effects of the spatial sampling of
SBUV platforms: monthly zonal means in the pre-industrial
model are equated with monthly zonal means in the SBUV
dataset.
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Figure 2. (a) Two rows of the averaging kernel matrix and their
corresponding SBUV layers (see legend) for 47.5° N in July 2005,
normalized using the SBUV a priori as in Kramarova et al. (2013a)
(their Eq. 3). (b) One example of a model profile and its synthetic
SBUV counterpart for the same time and location, shown as devi-
ations from the model a priori profile to emphasize vertical struc-
tures; in this case, maximum deviations are on the order of 1 % of
the a priori above (i.e., at pressures lower than) 25 hPa, where the a
priori profile peaks, and 1 %–10 % below. The model profile is in-
terpolated onto the SBUV vertical grid to isolate the effects of the
averaging kernels.

Several non-random error sources in εx produce latitude-
and month-dependent biases; these include errors in a priori
profiles as well as calibration-related errors in atmospheric
attenuation estimates (N values; see Bhartia et al., 2013).
However, errors that normally affect a priori states are not rel-
evant to this study since the a priori states are known with cer-
tainty (see Sect. 3.1.1). In addition, since we analyze decadal
trends, data are de-seasonalized, and calibration errors that
normally affect the seasonal cycle can thus be ignored. Other
more sporadic sources of errors, including polar mesospheric
clouds, volcanic aerosols, ash, and smoke, are also neglected.
Accounting for errors resulting from the merging of different
SBUV records and biases from non-uniform temporal sam-
pling (orbital drift) is also challenging because of the nature
of our analysis. Therefore, such errors are also neglected.

Given these considerations, the error term εx is consid-
ered negligible. What differs between the synthetic retrievals
and the simulated ozone is their respective evolution over
the course of the 500 years of simulation – any differ-
ences being attributable to the averaging kernels. The im-
pact of these differences on ozone variability is shown in
Fig. 3: decadal to multidecadal variability is misrepresented
throughout the upper and middle stratosphere, with errors in
integrated power frequently exceeding 25 % and occasion-
ally approaching or exceeding 100 %. Unless these errors are
explicitly accounted for, they will affect the apparent vari-

Figure 3. Effect of the SBUV averaging kernels on decadal to mul-
tidecadal ozone variability visualized (a) locally for the topmost
SBUV layer, 1.6–1 hPa, between 27.5° S and 27.5° N (see the black
box in panel b), and (b) globally, as the percent relative error in in-
tegrated power density between the pre-industrial run and the syn-
thetic SBUV time series for periods of 10–60 years. Results for
only October or March are shown in the high-latitude regions where
SBUV data are not available year-round.

ability around SBUV trend estimates, and by extension the
degree of statistical significance associated with those trend
estimates in a general signal-to-noise-ratio sense. Regions
in blue indicate where the statistical significance of trends
will be overestimated since internal variability is underrepre-
sented there. Regions in red indicate where statistical signif-
icance is underestimated; for instance, between 0 and 2.5° N
in the 16.4–10 hPa layer, the variability around trends is in-
flated because the averaging kernels assign variability from
adjacent layers (see Fig. 5a) to this layer.

3.1.3 Removal of known modes of variability

As in other studies (e.g., Steinbrecht et al., 2017;
Petropavlovskikh et al., 2019), an attempt is made to remove
the contributions of known modes of variability to the time
series of ozone in order to better isolate the internal variabil-
ity. Several known modes of variability are frequently con-
sidered: the seasonal cycle, ENSO, and the QBO on interan-
nual timescales and the solar cycle of irradiance on decadal
timescales. Solar irradiance is constant in the pre-industrial
run, so no removal of that variability is needed. The seasonal
component of variability is modeled as the long-term average
ozone abundance for each month of the year and is subse-
quently removed. The Arctic, Antarctic, and North Atlantic
Oscillations were found to have negligible impacts on trends
(Petropavlovskikh et al., 2019) and are therefore ignored. Re-
maining ozone variations are then modeled using the follow-
ing regression model, similar to that used by Stolarski et al.
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(1991):

1O3(t)= αQBO1(t)+βQBO2(t)+ γENSO(t)+ ε(t),

where α, β, and γ are parameters determined using regres-
sion analysis. Unexplained ozone variability is represented
by ε(t). QBO1(t) and QBO2(t) are the two leading empiri-
cal orthogonal functions (EOFs) of the de-seasonalized zonal
mean monthly zonal wind between 10 and 70 hPa from the
model simulations (see Fig. A1), as in Wallace et al. (1993).
Following Oman et al. (2013), ENSO(t) is based on the
NOAA Oceanic Niño Index (ONI) and captures variations
in (modeled) sea surface temperature in the Niño 3.4 region
(5° S–5° N, 170–120° W) in the central Pacific Ocean, lagged
by 2 months as in Randel et al. (2009). In the pre-industrial
model run, QBO1(t) and QBO2(t) account for 68 % of the
normalized variance of the zonal wind time series. By con-
struction, the correlation between the two EOFs is exactly
zero. Thanks in part to the substantial length of the pre-
industrial run, the correlation between the QBO EOFs and
ENSO(t) is very small (less than 0.05), yielding virtually in-
dependent regression terms.

The zonal wind data in Fig. A1 clearly show that the
model’s internally generated QBO is far from realistic: the
weak QBO-like signal is confined to lower pressures, is
much more prone to disruption, propagates vertically at more
variable rates, and exhibits higher frequencies than the ob-
served QBO. Given these differences, the appropriateness
of the traditional EOF-based QBO removal could be called
into question, but the model does produce a semi-periodic
downward-propagating signal reminiscent of the QBO. Such
signals produce large retrieval errors (1 %–6 % in obser-
vations) when convolved with the averaging kernels (Kra-
marova et al., 2013a). Since errors of this nature are the focus
of this study, we use the traditional EOF-based approach to
removing QBO variability. The QBO removal is performed
after the simulated ozone is convolved with the SBUV aver-
aging kernels, to mimic the residual errors produced by the
removal of the QBO in SBUV observations.

While the use of EOFs allows us to account for variability
due to changes in the amplitude and phase of zonal wind os-
cillations, it does not account for variability due to changes
in the frequency of the oscillations. This is slightly prob-
lematic for the removal of the QBO signal in ozone since
its frequencies differ between the Equator (where the EOFs
are extracted) and higher latitudes (Tung and Yang, 1994).
Nevertheless, the average contribution of the QBO to near-
equatorial ozone variability is estimated to be about 0.5 %
in the model (much smaller than the estimated 10 %–20 %
in observations; see Brunner et al., 2006) and is expected
to be even smaller at extratropical latitudes, where the at-
mospheric jets produce large variability. The EOF-based re-
moval of QBO variability is therefore considered sufficient
for the purposes of this study.

The methods discussed in this section provide a set of syn-
thetic SBUV data in the absence of anthropogenic forcings

Figure 4. (a) Sample time series of pre-industrial ozone residuals
at 2.5–1.6 hPa, 42.5° S, with 10-year trend examples calculated in
percent of the mean ozone value at that location,∼ 4.5 DU. (b) Dis-
tribution of ozone residuals for the 500 years of pre-industrial sim-
ulation and (c) the corresponding reference distribution of 10-year
unforced trends. Dashed lines show Gaussian distributions with mo-
ments identical to those from the model distributions for reference.
The skewness and excess kurtosis of the distributions are provided
in the legend.

and without known climate oscillations. We use this syn-
thetic record to quantify the internal variability in the cli-
mate system relevant to stratospheric ozone, so as to esti-
mate the lead time required for long-term trends in ozone to
emerge in observations against the backdrop of internal vari-
ability. For simplicity, we assume that the modern climate
system produces the same internal variability as that during
the pre-industrial era. However, while this assumption has
been widely used in the analysis of climate model output
(e.g., IPCC, 2001; Hegerl et al., 2007; Deser et al., 2012),
evidence showing that it may not hold for some variables
in climate models exists (e.g., Schär et al., 2004; Scherrer
et al., 2005; Rodgers et al., 2021), although different models
exhibit different responses in their internal variability under
forced change (Maher et al., 2021). Therefore, we suggest
caution in interpreting statistical confidence.
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3.2 Time of emergence of linear trends

Generally speaking, the smaller the trend, the longer it
takes to become distinguishable from background noise.
Several methods have been employed in the past to calcu-
late the time of emergence of linear trends. Emergence has
sometimes been said to occur when the ratio of the signal
(trend) to the noise (internal variability) is large or exceeds
a pre-determined threshold (Madden and Ramanathan, 1980;
Wigley and Jones, 1981; Giorgi and Bi, 2009; Hawkins and
Sutton, 2012). Such methods do not provide the formalism
needed for a measure of statistical confidence that links the
robustness of the results to the choice of the threshold to ex-
ceed. Another method (Mahlstein et al., 2011) defines the
time of emergence as that when a statistical test deems an ob-
servation unlikely to belong to a distribution that represents
an unperturbed climate state. A problem with this method,
however, is that it does not account for autocorrelation in
the time series, which means that the time of emergence for
time series with nonzero autocorrelation is underestimated.
Other approaches do take autocorrelation into account; ex-
amples include the methods of Tiao et al. (1990), Weather-
head et al. (1998), and Li et al. (2017). In the latter, emer-
gence occurs when a predicted confidence interval of a cu-
mulative trend excludes zero. The confidence interval is de-
scribed analytically based on the work of Thompson et al.
(2015) and accounts for lag-one autocorrelation. However,
the method requires the residuals representing internal vari-
ability to be normally distributed. This is generally not the
case for stratospheric ozone: after removing the seasonal cy-
cle and the contributions from ENSO and the QBO, distri-
butions of residuals often have heavier tails and a narrower
peak than a normal distribution (positive excess kurtosis) and
are not symmetric (skewness is nonzero; see an example in
Fig. 4b).

3.2.1 Definition of the time of emergence

For these reasons, the time of emergence is calculated using
the method of Rivoire et al. (2024) (R24 hereafter), which
provides nearly identical results to that of Li et al. (2017)
but can handle non-normally distributed residuals. R24 found
empirical evidence that the method of Li et al. (2017) may
still be used when residuals exhibit nonzero skewness or ex-
cess kurtosis, but without any formalism to prove this gener-
ally, we consider the method of R24 to be a safer choice. The
general principle behind the method is to compare a linear
trend of interest, denoted b, to a distribution of linear trends
that arise purely as a result of internal variability. If b is lo-
cated near the central quantiles of the reference distribution,
then b aligns with typical fluctuations seen in the absence of
external forcings. Conversely, if b is located near the outer
quantiles, then it is unusually large compared to natural fluc-
tuations and can reasonably be hypothesized to be the result
of external forcings.

The reference distribution is calculated by sampling linear
trends in the control simulation using a sampling window of
fixed length (see Fig. 4a and c). The time of emergence, de-
noted y, is the length of the sampling window that yields a
reference distribution such that |b| exceeds c = cd+100

2 % of
unforced trends, with cd as the statistical confidence thresh-
old for a two-sided test. In the rest of the paper we use
cd = 95 % as the threshold for statistical significance. Al-
though the use of this particular threshold is commonplace,
we emphasize its arbitrary nature and caution against over-
interpreting its significance.

In practice, the time of emergence is determined by iter-
ation, starting with the shortest possible sampling window
of two model time steps. The reference distribution of un-
forced trends over all possible two-step intervals (with over-
lap) is calculated, and its cth percentile is compared to |b|.
The length of the sampling window is then progressively in-
creased until the statistical criterion described above is met.
For more details on this technique and its efficient implemen-
tation, the reader is referred to Sect. 2 of R24.

Since the time of emergence y is calculated using a trend
distribution sampled directly from a model run, it neglects
the effects of observational uncertainties. Figure 5 shows this
“ideal” time of emergence – which is valid only if one pos-
sesses omniscient knowledge of the atmosphere – for both a
homogeneous trend and the actual trends from CCMI-1 sim-
ulations. R24 shows that observational uncertainties can in-
troduce large errors in y, and they provide the formalism to
correct y accordingly. In our case, the correction for y ac-
counts for the effects of the vertical redistribution of ozone
variability by the averaging kernels (see Figs. 2 and 3). The
corrected time of emergence is denoted y∗ and is calculated
using reference trend distributions sampled from the syn-
thetic SBUV retrievals introduced earlier (e.g., the red curve
in Fig. 4c) rather than the model run itself (the black curve in
Fig. 4c). As a result, y∗ quantifies the time of emergence of
ozone trends as seen by SBUV platforms (see Sect. 4.2 and
Fig. 6).

3.2.2 Notes on the realism of the pre-industrial control
simulation

Since emergence is defined based on the representation of
internal variability from a model, the realism of the model
comes into question. On the one hand, the time of emergence
y is subject to the realism – or lack thereof – of the model:
misrepresentations in the magnitude or frequency spectrum
of internal variability yield errors in the time of emergence.
Although we provide an analysis of said realism to the ex-
tent possible (Sect. 2.1), quantifying these errors is inher-
ently difficult given the absence of pre-industrial references
for observed variability. On the other hand, R24 showed that
the adjustment for the effect of observational uncertainties
on the time of emergence, when expressed as a relative error
( y
∗
−y
y

), is accurate even if the model dramatically misrep-
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resents internal variability. For this reason, we quantify the
effect of the SBUV kernels on the time of emergence as a
relative error (see Sect. 4.2).

4 Results

4.1 Time of emergence

Figure 5 provides estimates for the time of emergence (y, in
years since 2000) with 95 % confidence for both a spatially
homogeneous 1 % per decade trend (panel b) and the 2000–
2020 trends from CCMI-1 (panel c). To put this into context,
panel (a) shows the average ozone abundances and their stan-
dard deviation in the pre-industrial run. The spatially homo-
geneous trend serves to illustrate the effects of internal ozone
variability on the time of emergence. Except for the lower-
most stratosphere, a general correlation is seen between the
time of emergence and ozone variability as quantified by its
standard deviation: the largest values are found in the tropical
middle-stratosphere and polar regions. Departures from this
correlation arise where the spectrum of variability includes
non-Gaussian behavior and is not well described by the stan-
dard deviation alone.

According to our method and based on ESM4.1 as a
reference for internal variability, trends associated with the
CCMI-modeled evolution of ozone under the Montreal Pro-
tocol may not emerge until the second half of the century in
the heart of the midlatitude ozone layer (panel c). In the upper
stratosphere (above 10 hPa), chemistry–climate model trends
for 2000–2020 are largely distinguishable from ESM4.1’s
natural variability with∼ 20 years of model record, in agree-
ment with the previous literature showing significantly in-
creased ozone abundances (Gillett et al., 2011; Arblaster
et al., 2014). Lower down, especially in the middle strato-
sphere (10–30 hPa), our method finds that trends have gener-
ally not emerged yet. In the midlatitudes (35–60° N/S), trends
may require decades of additional record to emerge, owing in
part to large variability and in part to small trends. This find-
ing is generally consistent with the existing literature, which
finds little to no significance to trends in the region (WMO,
2022, and references therein). Over the Arctic, we find that
the emergence of positive trends could occur by 2030, com-
pared to the literature expecting visible signs of recovery
there in the mid-2040s. However, since our results are based
on the analysis of a single model, we urge caution: previ-
ous analyses have concluded that large dynamical variability
in this region precludes the detection of recovery until the
late 21st century (WMO, 2022). It is possible that the ozone
interannual variability in ESM4.1 still lacks realism despite
recent improvements (Horowitz et al., 2020, their Fig. 11).

For vertically integrated ozone (panel d), despite the rela-
tively small variability in the tropical region, emergence oc-
curs later there because trends are small. Trends associated
with chemical loss over the polar caps in spring are isolated
using October- and March-only time series in the South-

ern Hemisphere and Northern Hemisphere, respectively. Al-
though ozone loss is largest over Antarctica and is therefore
expected to exhibit the clearest signs of recovery (Newchurch
et al., 2003; Yang et al., 2008; Charlton-Perez et al., 2010),
the analysis predicts that trends for October and March only
emerge after ∼ 40 years near the strongest trends (65° N/S,
not shown), owing to large variability. Closer to the poles,
October and March trends become very small and therefore
take much longer to emerge.

Some caveats should be kept in mind: the time of emer-
gence is based on a representation of unforced ozone vari-
ability that excludes the effects of ozone-depleting sub-
stances or volcanic aerosols (see Fig. 1). As a result, time of
emergence estimates provide lower bounds for the timing of
the detection of recovery (as long as the linear trend approxi-
mation holds). Further, in the previous literature, statistically
significant trends associated with the recovery of the ozone
layer are based on more than just ozone abundances; they
include trends in other metrics, such as the minimum in 15 d
average total ozone, maximum in 15 d average 220 DU ozone
hole area, minimum in 15 d average ozone mass deficit, and
the duration of the ozone hole (e.g., Tully et al., 2020). It
is possible that these metrics provide more detectable trends
than ozone abundances alone. Lastly, we highlight the fact
that quantifying the emergence of a trend vs. that of an epoch
difference may yield different results.

4.2 Effect of the SBUV kernels on the time of
emergence

Results established so far apply to the “model world” only
and do not factor in the limitations of observing platforms
that make up the historical record. The synthetic SBUV
record from Sect. 3 provides an example of the effect of ob-
servational limitations on the time of emergence. Figure 6
shows those limitations as the relative difference between the
kernel-adjusted time of emergence y∗ and the ideal time of
emergence y. Large errors throughout the middle and upper
tropical stratosphere are reminiscent of the patterns of vari-
ability associated with the QBO despite the prior removal
of QBO variability (Sect. 3.1.3). This result arises because
the convolution of the SBUV kernels with the ozone data af-
fects the representation of the QBO (Kramarova et al., 2013a)
but does not affect the wind field that is used to perform the
QBO removal. Other error patterns arise where ozone vari-
ability is large, for example across the 16–10.1 hPa layer and
above the polar caps (refer to Fig. 5a). The unavailability of
SBUV retrievals during polar night may contribute to errors
over the polar caps. Interestingly, errors are opposite in sign
between the two polar caps at some levels, indicating oppo-
site effects due to the combined SBUV averaging kernels and
lack of measurements there. Errors are slightly larger over the
southern polar cap than the northern, which is attributable to
slightly larger internal variability in ESM4.1 in the Antarc-
tic (as shown in Fig. 5a). This result is more specifically at-
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Figure 5. (a) Average ozone abundance in the ESM4.1 pre-
industrial run (in DU per km, colors) and relative standard devia-
tion of the de-seasonalized time series (black contours, in percent).
(b) Ideal time of emergence (y) for a spatially homogeneous 1 % per
decade trend in years, with contours every 10 years. (c) Ideal time
of emergence for 2000–2020 trends in CCMI-1 ref-C2 (shown by
overlaid red contours, % per decade). (d) Ideal time of emergence
(y) for 2000–2020 trends in CCMI-1 ref-C2 total column ozone.
Results for October only (March only) are shown in the Southern
(Northern) Hemisphere.

tributable to the shape of the power spectrum of internal vari-
ability in ESM4.1 around periods corresponding to the time
of emergence. The largest negative errors (i.e., relative dif-
ferences) found near the Equator just below 10 hPa are ex-
plained by the unusual overestimation of internal variability
attributable to the SBUV kernels shown in Fig. 3b. At all lat-
itudes, the error pattern is qualitatively unchanged whether
trend magnitudes are homogeneous (panel a) or not (panel b),
indicating that our method provides generally applicable un-
derstanding of the deficiencies of the SBUV ozone retrieval
for detecting trends.

For total column ozone, the kernel-adjusted time of emer-
gence estimates are very close to the ideal estimates (Fig. 6c).
This is consistent with the result in Kramarova et al. (2013a)
(their Fig. 6): combining SBUV layers improves the accuracy
of ozone retrievals.

Figure 6. Relative error of the time of emergence due to the SBUV
kernels ( y

∗
−y
y ) for (a) a spatially homogeneous 1 % per decade

trend and (b) the CCMI-1 trends from panel (c) in Fig. 5. Dashed
gray lines denote the latitudes poleward of which the SBUV re-
trieval is not available year-round. (c) Ideal time of emergence (y)
and kernel-adjusted time of emergence (y∗) for 2000–2020 CCMI-1
trends in total column ozone.

4.3 Effect of the SBUV kernels on vertically resolved
trend estimates

Retrieval methods based on averaging kernels have
previously been said not to affect trend estimates
(Petropavlovskikh et al., 2019). The rationale behind
this statement is straightforward: since the retrieval process
remains unchanged over time, errors attributable to it are
also constant over time (at least in a long-term sense),
and trend estimates are therefore unbiased. However, this
rationale fails to account for the vertical redistribution of
information by the kernels. As trends affect the true profile
(x in Sect. 3.1.1), the difference between the true profile and
the a priori profile (x−xa) also contains a trend signal. Once
the kernel matrix is convolved with (x− xa), the trend signal
is redistributed vertically. As a result, trend estimates at each
vertical level are affected by the trend signal from adjacent
levels in a manner defined by the shape of the averaging
kernels. This is true of any profile, including the hypothet-
ical case of a vertically uniform profile in the context of
trends expressed in percent per unit time, but errors can be
especially large when trends are vertically heterogeneous.
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Figure 7. Idealized trend profiles representing three hypotheti-
cal scenarios for ozone recovery in the mid-to-upper stratosphere
(black) and corresponding profiles that would be observed by
SBUV at 42.5° N (red). The red shading shows the interquartile
range for trends estimated using 24 years of data (roughly the length
of the record since 2000).

Figure 7 shows such errors for a few idealized trend profiles
representing possible ozone increases in the mid-to-upper
stratosphere in the northern midlatitudes (Godin-Beekmann
et al., 2022; see also Figs. 3–10 in WMO, 2022): one broad
maximum and one narrower maximum centered near 2.5 hPa
and one maximum centered near 6 hPa. The SBUV kernels
attenuate peaks in the idealized trend profiles and shift the
maxima to other altitudes above and below the true peaks.
Errors as large as 100 % and displacements as large as 6 km
are found, highlighting the importance of accounting for the
retrieval process in estimating trend uncertainties. Negative
correlation coefficients between layers in the averaging
kernel matrix can yield negative trends even when the true
trends are only positive.

The results suggest that trends in the middle and lower
stratosphere may be affected by the presence of trends in the
upper stratosphere. This is particularly relevant in the con-
text of analyses that show negative trends in the lower strato-
sphere (e.g., Ball et al., 2018). While the errors near 25 hPa
may seem small, they may induce large errors in the time
of emergence. Altogether, this analysis highlights the impor-
tance of accounting for satellite averaging kernels when ana-
lyzing vertically resolved trends.

4.4 Smallest detectable trends

When trend estimates are in disagreement across model sim-
ulations or observational records, the method from R24 can

Figure 8. Simulated 2000–2020 ozone trends from CCMI-1 and
the corresponding range of undetectable trends at the 95 % confi-
dence level. Results for total column ozone are shown at the bottom
outside each panel. Observed 2000–2020 trends from LOTUS are
shown in blue for reference.

be used to determine the range of trend magnitudes that
should be distinguishable from internal variability in the first
place. Using the time of emergence y as the length of the
sampling window used to calculate trends from the control
run (or its synthetic counterpart), b is the smallest detectable
trend at confidence level cd. Trends with a magnitude smaller
than |b| are not distinguishable from internal variability at
the chosen degree of confidence. The magnitude of b pro-
vides an “envelope of undetectability”, shown in Fig. 8 for a
few key latitude bands, assuming omniscient/model knowl-
edge. Simulated and observed 2000–2020 trends in the up-
per stratosphere (above 10 hPa) largely lie outside the range
of undetectable trends, indicating that the trend estimates
have emerged from internal variability there. Interestingly,
the inter-model spread only lies outside the envelope above
3–5 hPa. Below 10 hPa, mean trends are located within the
range of undetectability, which means that the internal vari-
ability is so large that 21 years of data is not sufficient to as-
certain whether ozone is increasing or decreasing with 95 %
certainty there. Further, simulated and observed trends within
the heart of the ozone layer (see Fig. 5a) are currently not
detectable with 95 % statistical confidence according to the
datasets used and again, assuming omniscient knowledge.

The same analysis is performed on the synthetic SBUV
control simulation to obtain the envelope of undetectabil-
ity accounting for observational uncertainties. Figure 9 over-
lays this SBUV envelope and that given by the unaltered
model run, that is, the ideal envelope of undetectability (from
Fig. 8). Overall, SBUV envelopes are slightly optimistic (i.e.,
narrower, by a few tenths of a percent per decade) because
the SBUV kernels tend to reduce the true internal variability
(in the latitude-band-average sense; compare to Fig. 3) or af-
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fect its spectrum in a way that artificially decreases the time
of emergence. The differences between the true and SBUV
envelopes (Fig. 9) are most noticeable in the tropical region,
where the SBUV kernels yield errors up to 25 %. Note that
averaging the smallest trends over latitude bands reduces the
SBUV kernel errors – those can be as large as 50 % locally
(not shown). As was concluded from Fig. 6, the detectability
of total column ozone trends is virtually unaffected by the
SBUV kernels.

The SBUV envelope is most relevant to trends estimated
using the SBUV record, and it provides useful context for
comparative studies that include SBUV trends (e.g., Frith
et al., 2014; Harris et al., 2015; Tummon et al., 2015;
Solomon et al., 2016; Chipperfield et al., 2017; Steinbrecht
et al., 2017; Weber et al., 2018; Ball et al., 2018; Brönni-
mann, 2022). We draw a comparison with the LOTUS trends
since LOTUS is subject to the limitations of SBUV, among
those of other datasets. The results are qualitatively similar
to those in Fig. 8: trend estimates above 10 hPa should gen-
erally be distinguishable from internal variability, with the
caveat that errors from the SBUV kernels can yield mod-
erate overconfidence where trend estimates are close to the
smallest detectable trends. Note that the large differences be-
tween SBUV-only and LOTUS trends are likely due to the
heavy reliance of the LOTUS product on limb sounder re-
trievals, which have narrower averaging kernel peaks than
those shown in Fig. 2, resulting in an ∼ 2.5 km intrinsic ver-
tical resolution in the lower stratosphere (compared to 6 to
10 km for SBUV). Below 10 hPa, most trends are predicted
to be indistinguishable from internal variability.

Similar detectability envelopes could be quantified for
other nadir sounders, for instance the Global Ozone Mon-
itoring Experiment (GOME; Burrows et al., 1999), Ozone
Monitoring Instrument (OMI; Levelt et al., 2006), or Tropo-
spheric Emission Spectrometer (TES; Worden et al., 2004).
Limb sounders are subject to similar errors given the ex-
tent that they also rely on averaging kernels, for instance
OMPS-LP (Arosio et al., 2018), the Optical Spectrograph
and Infrared Imager (OSIRIS; von Savigny et al., 2003), At-
mospheric Chemistry Experiment Fourier Transform Spec-
trometer (ACE-FTS; Walker et al., 2005), Michelson Inter-
ferometer for Passive Atmospheric Sounding (MIPAS; Ri-
dolfi et al., 2000), Microwave Limb Sounder (MLS; Livesey
et al., 2006), and Stratospheric Aerosol and Gas Experiment
III (SAGE III; Cisewski et al., 2014). However, since limb
sounders typically achieve a much better vertical resolution
than nadir sounders, kernel errors are likely to affect the de-
tectability of trends to a lesser extent.

The results discussed here raise the following question: if
not now, when will trend estimates eventually become dis-
tinguishable from internal variability? To answer this ques-
tion, Fig. 10 shows the magnitude of the smallest detectable
trends as a function of the length of the record. In the upper
stratosphere (∼ 1 hPa, Fig. 10a) where CCMI-1 trend esti-
mates are 1 % per decade–2 % per decade, the current length

Figure 9. SBUV 2000–2020 ozone trends and the corresponding
envelope of undetectability at the 95 % confidence level, includ-
ing the adjustment for SBUV kernels, which tend to yield slightly
narrower envelopes. Results for total column ozone are shown at
the bottom outside each panel. Observed 2000–2020 trends from
LOTUS are shown in blue for reference. The confidence interval
around SBUV trends comes from linear regression coefficient esti-
mates.

Figure 10. The smallest detectable ESM4.1 pre-industrial trends at
the 95 % confidence level (shaded) and their SBUV kernel-adjusted
counterparts (black contours) given as a function of the length of
the available record for (a) 1.6–1 hPa, (b) 25–16 hPa, and (c) the to-
tal column. Filled and unfilled red stars indicate the emergence of
CCMI-1 2000–2020 trends at a few latitudes based on the ESM4.1
smallest detectable trends and their SBUV kernel-adjusted counter-
parts, respectively.
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of record since 2000 is sufficient to rule out the possibil-
ity that the observed increase in ozone is an artifact of in-
ternal variability, even when accounting for SBUV kernel
errors. This result is in agreement with Fig. 5c and arises
despite the relatively large underestimation of internal vari-
ability shown between 60° S and 60° N in Fig. 3b. Lower
down (25–16 hPa, Fig. 10b), CCMI-1 trends are about a fac-
tor of 2 smaller, and ozone variability is larger; therefore,
much longer records are needed. In the Northern Hemisphere
midlatitudes, 35 to 60 years of record are needed. Over the
southern polar cap, almost 40 years of data are needed, in-
creasing to 50–60 years when accounting for SBUV kernel
errors. In contrast, the SBUV kernels yield overestimated in-
ternal variability near the Equator (Fig. 3b), and accounting
for such errors therefore decreases the length of the record
needed to detect the CCMI-1 trend estimate (the unfilled red
star is shifted toward earlier years than the filled one). For to-
tal column ozone (Fig. 10c), the results suggest that CCMI-
1 trends have emerged or will soon, except in the Northern
Hemisphere midlatitudes and over Antarctica. SBUV kernel
errors have little effect on these estimates, consistent with
previous findings (Kramarova et al., 2013a). We emphasize
that these results are based on the analysis of a single model
(ESM4.1) and that the definition of emergence used here dif-
fers from typical measures of statistical significance based on
the standard error in regression coefficients. These caveats
are important to keep in mind, given that observational stud-
ies have found signs of recovery in some column ozone met-
rics above Antarctica (WMO, 2022, Chap. 4).

5 Conclusions

We examined the statistical significance of long-term trends
in stratospheric ozone. Statistical significance was tested
against the null hypothesis of no forced change rather than
the null hypothesis of no change, in order to include infor-
mation about the magnitude of trends that arise purely as
a result of internal variability in the climate system. Using
the concept of time of emergence, we showed the potential
for large errors in the statistical significance of trends esti-
mated from satellite records: trends may appear to emerge
from internal variability when in fact they are not robust and
will require several more years to decades of observations to
emerge. Two factors explain these results: (1) the averaging
kernels inherent to the optimal estimation retrieval technique
consistently misrepresent decadal to multidecadal variability
in nadir-viewing satellite observations, and (2) known modes
of variability (ENSO, QBO) interact with averaging kernels,
and their removal from the observed record is therefore prone
to residual errors.

Further, our analysis showed that by vertically redistribut-
ing information, averaging kernels can alter trend magni-
tudes, in addition to their uncertainties. This result contrasts
with the assumption of Petropavlovskikh et al. (2019), who

stated that kernels do not affect trends since kernel errors are
constant in time. We find instead that the shape of the verti-
cal trend profile is subject to large errors: hypothetical sce-
narios of ozone recovery at a rate of 2 % per decade in the
mid-to-upper stratosphere yield errors up to 1 % per decade,
with possible vertical displacements in the altitude of local
maxima of up to 6 km, consistent with Fig. 3-10 in WMO
(2022). We also find errors in the sign of trends, with lo-
cation and magnitude depending on the hypothetical profile
used. Our analysis uses SBUV as an example, but other nadir
sounders (e.g., GOME, OMI, TES) are in principle subject
to similar effects, with magnitude dependent on their verti-
cal resolution and the location of their vertical levels relative
to vertical gradients in ozone concentrations and variability.
Limb sounders (e.g., MLS, OMPS-LP, OSIRIS, ACE-FTS,
MIPAS, SAGE III) may also be affected, albeit to a lesser
extent.

We note a few caveats to our study. Time of emergence
estimates are subject to the realism of the model we used
(ESM4.1), although the relative adjustment to the time of
emergence remains accurate. The reference simulation we
used excludes the influence of volcanoes, which can be
large. Additionally, the effects of non-uniform sampling and
record-merging procedures are also excluded. The time of
emergence estimates presented here should therefore be con-
strued as lower bounds (as far as linear trends are concerned).
Our time of emergence values may be further underestimated
if the internal variability in the climate system is increasing
under forced change (as discussed by Rodgers et al., 2021).
In addition, we used an arbitrary 95 % threshold for statisti-
cal significance, and quantitative results are of course sensi-
tive to this choice. Lastly, in this study we did not explore
derived metrics related to ozone recovery (e.g., size and tim-
ing of the ozone hole; WMO, 2022, Chap. 4, Sect. 4.4.2.1),
which may confer different detection power with respect to
long-term trends.

Our results should be interpreted with these caveats in
mind, but nonetheless, they provide useful context in light
of the varying degrees of confidence placed in trends in the
recent literature; notably, adding just a few years to the his-
torical record can change the magnitude and even the sign
of trends in some locations. Based on our results, we rec-
ommend systematically accounting for the effects of aver-
aging kernels when calculating long-term trends using verti-
cally resolved ozone records, particularly those from nadir-
viewing instruments. We further recommend testing the sta-
tistical significance of trends against the null hypothesis of
no forced change rather than no change at all. Future work in
this direction would benefit from long reference simulations
of chemistry–climate models with perpetual year-2000 con-
ditions, to better characterize the variability relevant to the
recovery of the ozone layer since then.
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Appendix A: Representation of the QBO in the
pre-industrial simulation

Figure A1 highlights differences between the QBO generated
internally by the ESM4.1 pre-industrial model run and the
observed QBO (see discussion in Sect. 3.1.3).

Figure A1. Sample time series of the simulated (a) and observed (b) de-seasonalized monthly zonal mean zonal wind. Positive values denote
westerly wind anomalies.

Data availability. The SBUV merged ozone record is avail-
able at https://acd-ext.gsfc.nasa.gov/Data_services/merged/
(NASA Goddard Space Flight Center, 2025). The climate
simulations from the Geophysical Fluid Dynamics Labora-
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