the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models
Casey J. Wall
Nicholas J. Lutsko
Takuro Michibata
Po-Lun Ma
Margaret L. Duffy
Brian Medeiros
Matvey Debolskiy
Related authors
No articles found.
Exascale Earth System Model (E3SMv2) to document model performance and understand what updates in E3SMv2 have caused changes in clouds from E3SMv1 to E3SMv2. We find that stratocumulus clouds along the subtropical west coast of continents are dramatically improved, primarily due to the retuning done in CLUBB. This study offers additional insights into clouds simulated in E3SMv2 and will benefit future E3SM developments.
Related subject area
Atmospheric delays affect global navigation satellite system (GNSS) signals. This study analyses the wet delay, a variable component caused by atmospheric water vapor, using a novel filtering method to examine small-scale turbulent variations. Case studies at five global stations revealed daily and seasonal turbulence patterns. This research will improve water vapour and cloud models, enhance nowcasting, and refine stochastic modelling for GNSS and very long baseline interferometry.
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.