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Abstract. Aerosol–cloud interactions (ACIs) are a leading source of uncertainty in estimates of the historical
effective radiative forcing (ERF). One reason for this uncertainty is the difficulty in estimating the ERF from
aerosol–cloud interactions (ERFaci) in climate models, which typically requires multiple calls to the radiation
code. Most commonly used methods also cannot disentangle the contributions from different processes to ER-
Faci. Here, we develop a new, computationally efficient method for estimating the shortwave (SW) ERFaci from
liquid clouds using histograms of monthly averaged cloud fraction partitioned by cloud droplet effective radius
(re) and liquid water path (LWP). Multiplying the histograms with SW cloud radiative kernels gives the total
SW ERFaci from liquid clouds, which can be decomposed into contributions from the Twomey effect, LWP
adjustments, and cloud fraction (CF) adjustments. We test the method with data from five CMIP6-era models,
using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument simulator to generate
the histograms. Our method gives similar total SW ERFaci estimates to other established methods in regions of
prevalent liquid cloud and indicates that the Twomey effect, LWP adjustments, and CF adjustments have con-
tributed −0.34± 0.23, −0.22± 0.13, and −0.09± 0.11 W m−2, respectively, to the effective radiative forcing
of the climate since 1850 in the ensemble mean (95 % confidence). These results demonstrate that widespread
adoption of a MODIS re–LWP joint histogram diagnostic would allow the SW ERFaci and its components to
be quickly and accurately diagnosed from climate model outputs, a crucial step for reducing uncertainty in the
historical ERF.

1 Introduction

Uncertainty in the historical effective radiative forcing
from aerosol–cloud interactions (ERFaci) has remained
stubbornly large across multiple generations of com-
munity assessments. The Sixth Assessment Report of
the IPCC estimated ERFaci between 1750 and 2019
to be −0.84± 0.61 W m−2, compared to an estimate of
+2.16± 0.26 W m−2 for the CO2 radiative forcing over this

period (90 % confidence) (Forster et al., 2021). Better con-
straints on the historical ERFaci are crucial for projecting fu-
ture warming under different emission scenarios (Bellouin et
al., 2020; Watson-Parris and Smith, 2022; Wang et al., 2021),
as well as for estimating the current level of committed an-
thropogenic warming (Mauritsen and Pincus, 2017; Dvorak
et al., 2022). The large uncertainty of ERFaci means that it is
equally likely that either aerosol effects have masked the ma-
jority of historical CO2-induced warming and future warm-
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ing will accelerate as aerosol emissions decrease or ERFaci
has played a small role in Earth’s radiation balance over the
historical period and future warming will be relatively weak
(Andreae et al., 2005).

Reducing uncertainty in the historical ERFaci requires us
to better understand the different processes that contribute to
ERFaci. Aerosols affect liquid clouds by serving as a source
of additional cloud condensation nuclei (CCN), leading to
an increase in cloud droplet number concentration (Nd) and
a decrease in cloud droplet effective radius (re) for a given
cloud liquid water path (LWP). This effect is known as the
Twomey effect (Twomey, 1977) and enhances cloud albedo
because distributing a fixed amount of cloud liquid across
a larger number of smaller droplets increases the total sur-
face area of the droplets. The Twomey effect cools the cli-
mate system by increasing the amount of reflected shortwave
(SW) radiation and is distinguished from the macrophysi-
cal cloud adjustments, which occur on longer timescales of
hours in response to the elevated Nd / reduced re cloud state
(Gryspeerdt et al., 2021). These adjustments are commonly
separated into the LWP and cloud fraction (CF) adjustments,
representing changes in cloud thickness and cloud amount,
respectively.

Both the LWP and CF adjustments are the net effect of
competing processes which can act to either increase or de-
crease the ERFaci, with precipitation suppression (Albrecht,
1989) and enhanced evaporation and entrainment (Acker-
man et al., 2004; Wang et al., 2003) hypothesized to be the
relevant adjustment mechanisms. A shift to smaller cloud
droplets results in slower droplet fall speeds and/or less
droplet coalescence and growth into precipitation, suppress-
ing precipitation and prolonging the lifetime of clouds. This
lifetime effect can lead to an increase in cloud fraction and
cloud LWP, hence higher cloud albedo, amplifying the forc-
ing associated with the Twomey effect. Separately, decreased
sedimentation fluxes and stronger entrainment and evapora-
tion rates in response to reduced droplet size tend to diminish
cloud LWP (Ackerman et al., 2004; Jiang et al., 2006; Xue
and Feingold, 2006; Bretherton et al., 2007). The timescale
of these mechanisms exceeds that of the Twomey effect, tak-
ing up to tens of hours to produce changes in LWP (Glass-
meier et al., 2021; Gryspeerdt et al., 2021).

Many estimates of the Twomey effect and the cloud ad-
justments have been made in observational and global cli-
mate model (GCM) studies, but uncertainties in these com-
ponents of ERFaci remain large. The latest World Cli-
mate Research Programme assessment gives 90 % confi-
dence ranges of −1.46 to −0.22 W m−2 for the Twomey
effect, −0.06 to 0.88 W m−2 for the LWP adjustment, and
−1.88 to 0.16 W m−2 for the CF adjustment over the histori-
cal period (Bellouin et al., 2020), while the Sixth Assessment
Report (AR6) of the IPCC gave similar but narrower esti-
mates, especially for the adjustment contribution to ERFaci.
These estimates show that all three components of the SW
ERFaci contribute substantial uncertainty, though the sum of

the three terms’ uncertainty ranges is much larger than the
range of the total SW ERFaci, indicating correlation between
individual terms. Narrowing uncertainty in the total ERFaci
requires improved understanding of the Twomey effect and
the cloud adjustments, as well as the relationships between
them.

A key reason for the uncertainties in the components of
ERFaci is the difficulty in quantifying them in GCMs and
observations. Several methods have been developed for esti-
mating ERFaci in GCMs, but these are either prohibitively
expensive or cannot decompose the total ERFaci into its
components. The Ghan (2013) method performs additional
calls to the radiation code that neglect absorption and scat-
tering by aerosols and clouds, so comparing the aerosol-
free and aerosol- and cloud-free output allows the ERFaci
to be directly estimated. However, by making multiple calls
to the radiation code and requiring a separate set of aerosol-
and cloud-free diagnostics that are not included in standard
model output, this method is difficult to implement in a large
ensemble of models. Grosvenor and Carslaw (2020) devel-
oped a method to decompose the SW ERFaci at the surface
into components from changes in cloud droplet number con-
centration, LWP, and CF. However, their method requires
high-frequency output and specialized diagnostics that are
not widely available, and to our knowledge the method has
only been applied to one GCM. Similarly, Gryspeerdt et al.
(2020) presented an approach to break down the SW ERFaci
into the Twomey effect, LWP, and CF adjustments; never-
theless, it also relies on aerosol-free diagnostics and high-
frequency model output and decomposes the Twomey effect
as a residual term. A more accessible method for comput-
ing ERFaci is the approximate partial radiative perturbation
(APRP) method proposed by Taylor et al. (2007) as a mod-
ification to the partial radiative perturbation (PRP) method
(Colman and McAvaney, 1997; Wetherald and Manabe,
1988). PRP relies on high-frequency (3-hourly) output and
requires making extra calls to the radiation scheme (Mülmen-
städt et al., 2019), so APRP has become a widely adopted
alternative thanks to (i) its reliance on standard model out-
put at monthly frequency, (ii) the lack of aerosol-free diag-
nostics required, and (iii) relatively strong agreement with
the more accurate but expensive PRP technique (Taylor et
al., 2007). APRP further distinguishes itself from the Ghan
(2013) method because it can decompose the aerosol di-
rect effect into absorption and scattering components and
the aerosol indirect effect into absorption, scattering, and
amount components (Zelinka et al., 2023). However, it has
been shown to be biased relative to more exact techniques
due to some of its assumptions, and it cannot separately de-
termine the contributions from the Twomey effect and the
LWP adjustment (Zelinka et al., 2014). Under APRP, these
distinct effects are combined into a cloud scattering compo-
nent, prohibiting an assessment of their relative contributions
to the total SW ERFaci (Smith et al., 2020), as well as pre-
venting a systematic comparison of these estimates to those
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derived from other methods. The ISCCP cloud radiative ker-
nel (CRK) method shares similar strengths and limitations to
APRP but relies on output from the ISCCP satellite simula-
tor (Klein and Jakob, 1999; Webb et al., 2001). None of these
methods can decompose ERFaci into contributions from the
Twomey effect, LWP adjustment, and CF adjustment, pre-
venting an assessment of their relative contributions to the
historical ERF.

There is thus a clear need for an inexpensive method of
computing SW ERFaci in GCMs that can decompose the to-
tal aerosol forcing into contributions from the Twomey ef-
fect, LWP adjustment, and CF adjustment. Here, we present
a new MODIS-based cloud radiative kernel method for com-
puting SW ERFaci from liquid clouds in GCMs that ad-
dresses these issues. Our new method relies on monthly
joint histograms of cloud fraction generated by the MODIS
satellite instrument simulator, matching APRP in its need
for monthly output. Moreover, using a modified version of
the cloud kernel technique pioneered in the cloud-feedback
literature (Zelinka et al., 2013), our method is capable of
separately calculating the radiative effects induced by the
Twomey effect, LWP, and CF adjustments, allowing us to
estimate their relative contributions to the total SW ERFaci
from liquid clouds.

Below, we first describe the MODIS joint histograms of
cloud fraction that form the core of our method, outline
the steps for calculating the associated cloud radiative ker-
nels, and describe the decomposition of SW ERFaci using
our MODIS cloud radiative kernel (MODIS CRK) method
in Sect. 2. In Sect. 3, we apply the method to an ensemble
of five CMIP6-era models and compare our results to exist-
ing approaches for estimating SW ERFaci. Next, in Sect. 4
we leverage a set of nudged historical simulations to eval-
uate how accurately GCMs simulate liquid cloud fraction
compared to observations and discuss how mean state bi-
ases in models imprint onto our estimates of SW ERFaci.
Direct comparison with MODIS observations enables us to
construct potential emergent constraints (Williamson et al.,
2021) on both the Twomey effect and the LWP adjustment
and highlights potential insights that could be obtained with
a larger ensemble. We finish with conclusions in Sect. 5.

2 Data and methods

2.1 GCM simulations

Data are taken from simulations with four CMIP6-generation
GCMs: the Energy Exascale Earth System Model v. 2
(E3SMv2; Golaz et al., 2022), the Norwegian Earth System
Model v. 2.1 (NorESM2; Seland et al., 2020), the Model for
Interdisciplinary Research on Climate v. 6 (MIROC6; Tatebe
et al., 2019), and the Community Earth System Model v. 2
(CESM2; Danabasoglu et al., 2020). Two distinct sets of sim-
ulations were performed with MIROC6: one with the stan-
dard diagnostic precipitation scheme and a second with a

prognostic precipitation scheme described in Michibata et al.
(2019). These will be labeled as MIROC6-DP and MIROC6-
PP, respectively. E3SMv2 and NorESM2 use cloud schemes
that have been modified from their CMIP6 counterparts as
part of model development efforts for CMIP7 (Golaz et al.,
2022; Debolskiy, 2024; Olivié, 2024). E3SMv2 featured up-
dates to the Cloud Layers Unified by Binormals (CLUBB)
parameterization (Golaz et al., 2002; Larson, 2022) and in-
corporated parameter changes proposed in Ma et al. (2022)
that reduced the magnitude of the shortwave and longwave
components of the effective aerosol radiative forcing (ER-
Faer). NorESMv2.1 included both bug fixes and code im-
provements to its CMIP6 counterpart, with minor changes
that affected dry deposition and the number of ice particles,
among others.

Our analysis uses pairs of atmosphere-only simulations
with the same prescribed climatological annual cycles of
sea surface temperature and sea ice fraction but different
aerosol concentrations. Atmospheric CO2 concentrations are
prescribed at preindustrial levels (284 ppmv), and the sea sur-
face temperature and sea ice concentrations are obtained by
calculating the average annual cycles from the final 100 years
of a 4600-year fully coupled preindustrial control simula-
tion with the Geophysical Fluid Dynamics Laboratory CM3
GCM (Donner et al., 2011; Griffies et al., 2011). Using this
lower boundary condition, we run one simulation with each
model with preindustrial (1850) aerosol emissions and one
with present-day (2000) aerosol emissions. We refer to these
as CTL and PDaer, respectively. Each simulation is run for
10 years, with the first year discarded as spinup and monthly
averaged output saved. All model data are regridded to a
common 1°× 1° resolution to match the equal-angle grid
of MODIS observations (King et al., 2003). We also make
use of nudged historical simulations (HIST) over part of the
MODIS observational period; the details of the nudging pro-
cedures employed for the simulations differ across the GCMs
and are summarized in Table A1.

We analyze joint histograms that represent liquid-topped
clouds partitioned by re and LWP (Fig. 1a). The histograms
are produced by the MODIS satellite instrument simula-
tor, which is part of the COSP satellite simulator package
(Bodas-Salcedo et al., 2011; Swales et al., 2018) and em-
ulates what the satellite would observe if it were orbiting
above the model atmosphere. The MODIS simulator esti-
mates re at a pixel scale using a simplified pseudoinversion
that relies on two lookup tables, one for liquid clouds and
one for ice clouds, each summarizing the optical properties
of cloud particle size distributions as a function of effective
radius (for details see Sect. 4b in Pincus et al., 2012). LWP
is then estimated from re and optical depth τ at each pixel,
assuming a vertically uniform cloud. The re–LWP joint his-
tograms produced by the MODIS simulator are intended to
mirror their observational counterparts, detailed in Pincus et
al. (2023). Recently, Wall et al. (2023) used the observed
joint histograms to estimate aerosol indirect effects from ma-
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rine liquid clouds. The present work features the first uses of
the new MODIS re–LWP joint histograms in GCMs, and we
hope to motivate more widespread adoption of this diagnos-
tic.

The MODIS joint histograms are similar to the broadly
utilized histograms from the International Satellite Cloud
Climatology Project (ISCCP) (Webb et al., 2001) but with
the added benefit that they can be further partitioned by the
cloud-top phase. Moreover, the MODIS histograms have di-
mensions of re and LWP, whereas the ISCCP histograms
have dimensions of cloud-top pressure and optical depth.
Phase discrimination by the MODIS satellite is derived from
several tests in the visible, near-infrared, and infrared por-
tions of the spectrum (King et al., 2010). The MODIS satel-
lite simulator attempts to mimic the results of these algorith-
mic tests from observations by assessing how much liquid
and ice separately contribute to the optical thickness between
the top of the highest cloud and one optical depth unit be-
low. When visible extinction over this interval is at least 70 %
from liquid droplets, the cloud is classified as liquid and vice
versa. When over 70 % of visible extinction over this interval
cannot be attributed to a single phase, the cloud is classified
as an “undetermined” phase. This label includes both true
mixed-phase clouds and cases where an ice cloud with an
optical thickness between 0.3 and 0.7 occurs above a liquid
cloud. We focus here on joint histograms of liquid-topped
clouds.

2.2 MODIS observations

We compare MODIS simulator output to satellite observa-
tions from the latest global dataset of cloud properties ob-
served by MODIS. The raw data are passed through the Col-
lection 6.1 data-processing stream to produce a dataset that
facilitates a like-for-like comparison between observations
and satellite simulator-derived output from GCMs. Pixel-
scale observations of cloud occurrence, cloud-top pressure,
and cloud optical properties from Terra (MOD06_L2) and
Aqua (MYD06_L2) are directly combined on both daily and
monthly timescales to generate the MCD06COSP Level-3
data product (Pincus et al., 2023). Although this new dataset
spanned the period of 2002 to 2023 at the time of writing,
in our analysis we focus on a common time period of 2003–
2014, across which all five GCMs were run in the nudged
configuration. We primarily focus on global observations of
liquid-topped clouds partitioned by re and LWP for fully
cloudy pixels.

2.3 Shortwave cloud radiative kernel

We compute SW cloud radiative kernels for the MODIS re–
LWP joint histograms using the RRTMG radiative transfer
model (Clough et al., 2005). The kernels represent the SW ra-
diative flux anomaly at the top of the atmosphere that would
occur given a unit increase in liquid cloud fraction in a given

histogram bin, holding all non-cloud factors fixed to their av-
erage annual cycle. The re and LWP bin edges are 4.0, 8.0,
10.0, 12.5, 15.0, 20.0, and 30.0 µm and 0, 10, 30, 60, 100,
150, 250, and 20 000 g m−2, respectively. For the cloudy-
sky radiative transfer calculations, the cloud top is placed at
the 850 hPa pressure level. This pressure level is chosen to
match the modal value for liquid-topped clouds in the global
MODIS observations over ocean, as in Wall et al. (2023), and
the SW cloud radiative kernel was found to be insensitive to
minor changes in the chosen pressure level.

Let R represent the SW radiative flux at the top of the at-
mosphere, and let Cpl represent the liquid cloud fraction in
the re bin p and the LWP bin l. For a specific latitude, sur-
face albedo, and calendar month, the kernelK measures how
anomalies of Cpl change R while holding all non-cloud fac-
tors fixed:

K ≡
∂R

∂Cpl
. (1)

In practice, for each re–LWP bin, top-of-atmosphere fluxes
are computed for four synthetic clouds with properties spec-
ified by each corner of the bin. The four cloudy-sky flux val-
ues are averaged to produce a single value for each bin, which
is then subtracted from the bin’s clear-sky flux to yield the
cloud radiative effect for an overcast sky. We note that for
the bottom row of histogram bins, with LWP edges of 0 and
10 g m−2, the cloudy-sky flux calculated for the bottom two
bin corners with no liquid water takes on the same value as
the clear-sky flux such that the overcast-sky cloud radiative
effect is zero.

The kernel methodology is derived from Zelinka et al.
(2012a) with minor adjustments, following the procedure de-
scribed in Wall et al. (2023). Here we highlight key differ-
ences that distinguish our approach from both of these meth-
ods.

i. Cloud phase and kernel dimensions. Our cloud radiative
kernel solely represents liquid-topped clouds and is par-
titioned by re and LWP, to align with the MODIS joint
histograms. The kernels in Zelinka et al. (2012a) rep-
resent clouds of all phases and are partitioned by cloud
optical thickness and cloud-top pressure.

ii. RRTMG input. Inputs to the model are derived from
the climatological seasonal cycles of humidity, tempera-
ture, and surface skin temperature derived from the CTL
simulations. These variables are first zonally averaged
and then averaged across the five GCM configurations
before being input to the radiative transfer model. Wall
et al. (2023) use temperature and humidity profiles from
reanalysis data as inputs.

iii. Kernel interpolation. We utilize the climatological sea-
sonal cycle of clear-sky surface albedo from the CTL
simulation for each individual GCM to linearly interpo-
late K from latitude–surface-albedo space to latitude–
longitude space (Fig. 1b). This produces a distinct
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Figure 1. Example of the global-mean MODIS cloud fraction histogram and radiative kernel. (a) Difference in cloud histograms between
the PDaer and CTL simulations for liquid-topped clouds in E3SMv2. (b) SW cloud radiative kernel for liquid-topped clouds for E3SMv2.
The cloud histograms and radiative kernels are functions of LWP, re, calendar month, latitude, and longitude but have been spatially and
temporally averaged in the example above for presentation.

transformed cloud radiative kernel for each individ-
ual model which is a function of calendar month,
latitude, longitude, re, and LWP and has units of
W m−2 %−1 (watts per square meter per percentage
of cloud fraction). In Wall et al. (2023), the inter-
polation is performed using clear-sky surface albedo
from observations. The cloud radiative kernel is avail-
able at https://doi.org/10.5281/zenodo.13839356 (Du-
ran, 2024).

2.4 SW ERFaci decomposition

Once the SW cloud radiative kernel for the MODIS re–
LWP joint histogram is linearly interpolated into latitude–
longitude space for each GCM, we modify the cloud feed-
back framework developed by Zelinka et al. (2013) to de-
compose the SW radiative flux anomaly at the top of the
atmosphere induced by changes in liquid-topped clouds be-
tween CTL and PDaer into contributions from different
cloud properties. For a given latitude, longitude, and calen-
dar month, the total liquid-cloud-induced SW radiative flux
anomaly at the top of atmosphere, R′, is generated by mul-
tiplying the cloud radiative kernel K by the change in cloud
fraction histogramC′ and summing over all re and LWP bins:

R′ =

6∑
p=1

7∑
l=1

(
KplC

′

pl

)
, (2)

where C′ represents the change in liquid cloud fraction be-
tween PDaer and CTL. R′ gives an estimate of the con-
tribution of liquid-topped clouds to the change in top-of-
atmosphere (TOA) radiation associated with a perturbation,
in this case from aerosols. The calculation of R′ is performed
separately for each calendar month and then averaged over
the seasonal cycle.

We decompose the right-hand side of Eq. (2) to estimate
how much re, LWP, and cloud amount anomalies contribute
to R′, closely following the methodology outlined in Ap-
pendix B of Zelinka et al. (2013) but with different terms
in the decomposition due to the distinct dimensions of the
MODIS joint histogram. First, we decompose the cloud frac-
tion anomaly into two terms. Let Ctot represent the total liq-
uid cloud fraction summed over all histogram bins:

Ctot =

6∑
p=1

7∑
l=1

Cpl . (3)

We express the cloud fraction anomaly as

C′pl =
Cpl

Ctot
C′tot+C

∗

pl, (4)

where overbars indicate values from the local climatologi-
cal seasonal cycle. The first term on the right-hand side of
Eq. (4) represents the contribution to C′pl from a change in
cloud cover if C′tot were distributed across the re–LWP bins
such that the normalized cloud distribution in the joint his-
togram space remains the same as climatology. Put differ-
ently, this term accounts for the change in total liquid cloud
fraction, proportioned according to the climatological distri-
bution. The second term on the right-hand side captures any
anomalies of Cpl that remain after removing (Cpl/Ctot)C′tot;
i.e., it shifts in the cloud distribution across re and LWP, hold-
ing total liquid cloud fraction fixed. C∗pl vanishes when it is
summed over all re–LWP bins by design.

Next, we decompose the radiative kernel into two terms:

Kpl =K0+ K̂pl . (5)
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K0 is the average of Kpl weighted by the climatological
cloud fraction,

K0 ≡

6∑
p=1

7∑
l=1

(
Cpl

Ctot
Kpl

)
, (6)

and K̂pl ≡Kpl −K0. Combining the relationships from
Eqs. (2)–(6), the total liquid-cloud-induced SW flux anomaly
at TOA is given by

R′ ≡

6∑
p=1

7∑
l=1

(
KplC

′

pl

)
=K0C

′
tot+

6∑
p=1

7∑
l=1

(
K̂plC

∗

pl

)
, (7)

where K0C
′
tot represents the liquid-cloud-induced SW flux

anomaly at TOA that would occur given a change in total liq-
uid cloud fraction, distributed across the climatological dis-
tribution of clouds in the re–LWP joint histogram space. This
term is the cloud fraction adjustment or the “proportionate
change in cloud fraction” described in Zelinka et al. (2012b).

Next, we further decompose K̂pl into three terms:

K̂pl = K̂p + K̂l + K̂res , (8)

where

K̂p =

7∑
l=1

(
K̂pl

6∑
p=1

Cpl

Ctot

)
, (9)

K̂l =

6∑
p=1

(
K̂pl

7∑
l=1

Cpl

Ctot

)
, (10)

and

K̂res = K̂pl − K̂p − K̂l . (11)

We can then express R′ as

R′ =K0C
′
tot+

6∑
p=1

(
K̂p

7∑
l=1

C∗pl

)

+

7∑
l=1

(
K̂l

6∑
p=1

C∗pl

)
+

6∑
p=1

7∑
l=1

(
K̂resC

∗

pl

)
(12)

or

R′ = R′CF+R
′
re
+R′LWP+R

′
res . (13)

The first term on the right-hand side of Eqs. (12) and (13),
R′CF, represents the contribution of changes in the total liq-
uid cloud fraction to the SW flux anomaly R′. The second
term is generated by multiplying an effective kernel that ac-
counts for variations in re by the change in cloud fraction at
each re bin and represents the contribution of re anomalies
to the SW flux anomaly R′ with LWP and total liquid cloud

fraction held fixed. The third term on the right-hand side of
Eqs. (12) and (13) is similar to the second, but it represents
the contribution of LWP anomalies toR′ with re and total liq-
uid cloud fraction held fixed. These terms are computed from
the differences between PDaer and CTL, where sea surface
temperatures (SSTs) are identical, but aerosol emissions dif-
fer; hence they represent the CF adjustment, Twomey effect,
and LWP adjustment, respectively. Each term is computed
with the other properties held fixed, and the last term on the
right-hand side (R′res) is the residual of the decomposition. In
this way, we are able to capture the distinct roles of changes
in different cloud properties to the overall SW ERFaci.

The last step of the decomposition is to perform a cor-
rection to account for obscuration effects from non-liquid
clouds. MODIS reports the cloud-top pressure and cloud
phase of the highest cloud in each column. If an increase
in non-liquid cloud occurs, MODIS may report a decrease
in liquid cloud fraction due to greater obscuration by non-
liquid cloud and vice versa, even if there is no change in liq-
uid cloud (see Fig. 1 in Zelinka et al., 2025). To control for
obscuration effects, we perform a change of variable, replac-
ing Ctot with

[
Ctot/ (100%− Itot)

]′ (100%− I tot
)
, where Itot

is the non-liquid cloud fraction reported by MODIS. Utiliz-
ing the non-liquid cloud fraction in conjunction with the to-
tal cloud fraction enables us to verify that the cloud frac-
tion changes seen by the MODIS simulator are not contami-
nated by free-tropospheric cloud changes (Scott et al., 2020;
Zelinka et al., 2025). In the analysis that follows, we report
the SW ERFaci from liquid clouds as

ERFaci= R′CF,adjusted+R
′
re
+R′LWP+R

′
res , (14)

where R′CF,adjusted represents the obscuration-corrected
CF adjustment. Code to perform the SW ER-
Faci decomposition is available to download at
https://doi.org/10.5281/zenodo.13839356 (Duran, 2024).

3 Results

3.1 SW ERFaci diagnosed using the MODIS cloud
radiative kernel method

Here we present estimates of the total SW ERFaci, the
Twomey effect, and the cloud adjustments for the five GCMs
using our new method. Figure 2a shows the ensemble-mean
total SW ERFaci from liquid clouds. Figure 2b–d show the
three terms of the SW ERFaci decomposition. Table 1 con-
tains the global-mean values for the total SW ERFaci and
each of the three components for the individual models, as
well as the residual of the decomposition. Figure A1 shows
the MODIS CRK decomposition for the individual GCMs.

Our method gives an ensemble- and global-mean total SW
ERFaci of−0.70 W m−2, close to the mean value in the IPCC
Sixth Assessment Report, though that estimate is for clouds
of all phases and includes longwave (LW) ERFaci (Forster
et al., 2021). There is a large intermodel spread across the
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Figure 2. SW ERFaci and its components averaged over the five GCMs. (a) Total SW ERFaci. Contribution to SW ERFaci from the
(b) Twomey effect, (c) LWP adjustment, and (d) CF adjustment. Global-mean values of each component are indicated in parentheses.
Stippling indicates regions where the five models disagree on the sign of SW ERFaci.

Table 1. SW ERFaci, Twomey effect, and adjustments by component (W m−2) for each of the five GCM configurations. LWP adj. and CF
adj. are the LWP and CF adjustments, respectively. CF adj. (unobscured) is the obscuration-corrected adjustment. Ensemble-mean values are
reported with their 95 % confidence interval (±2σ range).

Model ERFaci Twomey LWP adj. CF adj. CF adj. Residual
(unobscured)

E3SMv2 −1.081 −0.612 −0.315 −0.150 −0.071 −0.083
CESM2 −1.042 −0.426 −0.328 −0.387 −0.233 −0.060
NorESM2 −0.852 −0.387 −0.261 −0.228 −0.157 −0.047
MIROC6-DP −0.352 −0.174 −0.145 0.004 −0.017 −0.015
MIROC6-PP −0.157 −0.107 −0.046 0.031 0.009 −0.006

Mean −0.695± 0.468 −0.341± 0.226 −0.219± 0.134 −0.146± 0.192 −0.095± 0.111 −0.041± 0.035

ensemble, but all models agree on a negative total SW ER-
Faci from liquid clouds (Fig. 2a, Table 1). CESM2 exhibits
the most negative SW ERFaci, consistent with Zelinka et
al. (2023), where it had the second-strongest SW ERFaci of
all CMIP6 models assessed. The two versions of MIROC6
have the weakest SW ERFaci because they have less liq-
uid cloud in the control state so fewer clouds susceptible to
aerosol perturbations and weaker aerosol forcing. These sys-
tematic differences are discussed further in Sect. 3.2.3. The
ensemble-mean aerosol forcing is hemispherically asymmet-
ric (Fig. 2a), with Northern Hemisphere (NH) SW ERFaci
nearly 3 times larger than Southern Hemisphere (SH) SW
ERFaci. The strongest negative forcing is over highly indus-
trialized regions and their outflows – East Asia, the eastern
United States, and Europe – and in the stratocumulus regions
off the coasts of western South America, Africa, and Aus-
tralia.

The Twomey effect is negative in all models (Fig. 2b).
Most of the NH is cooled by the Twomey effect with the
strongest brightening again over and downstream of indus-
trial regions in East Asia and parts of Europe and North
America. The forcing is weaker in the SH, consistent with
the lower aerosol burden compared to the NH. An excep-
tion is seen in the subtropical stratocumulus regions off the
western coasts of South America and Africa, where exten-
sive low cloud cover and relatively clean background states
result in strong Twomey-induced cooling despite relatively
small changes in emissions between CTL and PDaer in these
regions. The ensemble-mean spatial pattern of the Twomey
effect broadly agrees with estimates from observational (Jia
et al., 2021; McCoy et al., 2017; Wall et al., 2023) and GCM
studies (Gryspeerdt et al., 2020; Mülmenstädt et al., 2019),
though McCoy et al. (2017) and Gryspeerdt et al. (2020)
report stronger cooling in the Northeast Pacific (NEP) stra-
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tocumulus region. With the exception of land regions near
anthropogenic aerosol sources, the MODIS CRK decompo-
sition also captures the strong land–ocean forcing contrast
found in observational estimates (McCoy et al., 2017; Di-
amond et al., 2020), as cleaner background conditions and
high cloud droplet number (Nd) susceptibility to aerosol per-
turbation typically produce larger aerosol forcing over the
ocean.

The LWP adjustment is generally negative and consistent
with the tendency of GCMs to predict uniform LWP in-
creases in response to aerosol perturbations (Bellouin et al.,
2020). The spatial pattern of the LWP adjustment is more
similar to the total SW ERFaci (r = 0.72 ensemble-mean pat-
tern correlation between LWP adjustment and SW ERFaci)
than the Twomey effect is (r = 0.57), but the LWP response
is generally weaker than the cooling induced by the Twomey
effect. We note that GCMs typically suggest a positive LWP
response (i.e., an increase in LWP), but observational stud-
ies are more equivocal, with some finding a decrease in LWP
in response to aerosol perturbations (Chen et al., 2014; Sato
et al., 2018; Wall et al., 2022), others finding bidirectional
LWP responses (Ackerman et al., 2004; Michibata et al.,
2016; Toll et al., 2019; Possner et al., 2020; Zhang et al.,
2022), and still others seeing little change in LWP (Malavelle
et al., 2017; Toll et al., 2017). The conflicting evidence be-
tween GCMs and observations may be related to the asym-
metric representation of positive and negative LWP processes
in GCMs. While evaporation and entrainment can both con-
tribute to reduced cloudiness in response to smaller, more
numerous cloud droplets, large-scale models have disparate
representations of them, with the representation of cloud-
top entrainment especially variable. By parameterizing pre-
cipitation suppression but not enhanced evaporation and en-
trainment feedbacks, models may not capture the full range
of physics that govern LWP responses to aerosol perturba-
tions, producing incomplete estimates of the cloud adjust-
ments (Zhou and Penner, 2017; Mülmenstädt et al., 2019).
However, recent work by Mülmenstädt et al. (2024) suggests
that even in models that exhibit entrainment-like behavior,
negative LWP responses due to cloud-top entrainment en-
hancement may only play a small role in the global-mean
LWP adjustment. So more refined representations of entrain-
ment in GCMs may not resolve the disagreement between
GCMs and observations. We highlight this discrepancy to in-
dicate that the results of our technique fall along the existing
divide of GCM and observational results.

Finally, the CF adjustment is generally smaller than
the other adjustments, though CESM2 and NorESM2 both
have substantial global-mean adjustments of −0.233 and
−0.157 W m−2, respectively. The spatial pattern of the CF
adjustment is also more heterogeneous, with regions of both
positive and negative forcing, and shows little agreement
across the models. The diversity of spatial structures across
the ensemble may be due to differences in the mean state
distributions of liquid cloud fraction and ice cloud fraction

in CTL, as well as differences in circulation changes, which
will impact the changes in cloud fraction. Using MODIS ob-
servations, Gryspeerdt et al. (2016) found an enhanced CF
adjustment at the edges of stratocumulus regions in observa-
tions, where they hypothesize aerosols play a dominant role
in modulating the stratocumulus-to-cumulus transition (see
also Gryspeerdt et al., 2020, who found a similar effect in
model data), but we do not see evidence of such systematic
behavior in our decomposition. Instead, the relatively small,
heterogeneous contribution of the CF adjustment to the total
SW ERFaci found here agrees with the analysis of CMIP5
and CMIP6 models by Zelinka et al. (2023). In four of the
five models, the residual term accounts for roughly 5 % of
the total SW ERFaci (in the global mean), with the exception
of E3SMv2 (7 %), indicating that ERFaci can be decomposed
linearly.

3.2 Comparison to existing methods

3.2.1 Total SW ERFaci comparison

In this section, we seek to build confidence in our method
by comparing with existing methods for diagnosing SW ER-
Faci: APRP and the ISCCP cloud radiative kernel technique.
We do not compare with the double-call method of Ghan
(2013) due to its need for aerosol-free and aerosol- and
cloud-free output; however, prior work (Zelinka et al., 2023)
has shown that the APRP method yields aerosol ERF values
that agree closely, both in the global mean and spatially, with
the double-call method. While benchmarking our method is
important to establish its validity, direct comparisons with
existing methods are not possible because our method only
considers aerosol impacts on liquid-topped clouds, while
other methods diagnose aerosol forcing on clouds of all
phases. We address this complication by focusing our com-
parison on regions dominated by liquid clouds, defined as
grid points with an annual-mean non-liquid cloud fraction of
less than 10 %. The points sampled by this threshold can be
seen in Fig. A2 and include large swaths of the eastern sub-
tropical ocean basins, as well as desert regions and sections
of the eastern tropical Pacific.

Figure 3 shows point-by-point comparisons over these re-
gions of the total SW ERFaci from liquid clouds computed
using MODIS cloud radiative kernels and the total SW ER-
Faci from all clouds computed using the APRP (top row)
and ISCCP CRK (bottom row) methods.1 Our estimates for
CESM2 and NorESM2 show strong agreement with both
methods, with r2 values of 0.8 and higher and slopes ap-
proaching 1. The agreements are weaker for E3SMv2 (r2

of 0.55 and 0.53, respectively), despite sharing similar non-
liquid cloud fractions with NorESM2 and CESM2 in the val-

1Figure A3 demonstrates the strong point-by-point agreement
between total SW ERFaci as calculated by the APRP and ISCCP
CRK methods, confirming that these existing methods have been
implemented correctly.
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idation regions. Finally, our estimates for the two MIROC6
models are well correlated with the estimates from the other
methods, but they have large deviations from the one-to-one
line.

The deviations from the one-to-one line for MIROC6-DP
(Fig. 3d, i) and MIROC6-PP (Fig. 3e, j) can be explained by
the small liquid cloud fractions in these models. While we
find that the other three GCMs are successful in identifying
cloud phase for more than 95 % of clouds, in MIROC6 the
MODIS simulator fails to classify over 50 % of the clouds it
observes into a distinct thermodynamic phase (Fig. A4). So
applying a threshold based on only non-liquid CF (which in-
cludes both ice and undetermined clouds) constrains our val-
idation in these models to the Sahara and parts of the North
Atlantic (Fig. A2). Typical regions where liquid clouds are
prevalent, such as the stratocumulus decks, are not included
because of the undetermined cloud bias in these regions. The
remaining regions, while characterized by low amounts of
non-liquid cloud, also lack a substantial amount of liquid
clouds. Therefore, the majority of grid points evaluated in
this comparison show a SW ERFaci from liquid clouds of
approximately zero. In contrast, total SW ERFaci computed
using the APRP and ISCCP CRK methods includes clouds of
all phases, potentially giving large values of SW ERFaci. A
more restrictive threshold (i.e., low non-liquid CF and high
liquid CF) could serve to fine-tune our comparison; however,
this would exclude both MIROC6 models by default, and
thus we do not pursue it further. We discuss other implica-
tions of the cloud-top phase identification bias in Sect. 4.1.
Overall, our MODIS CRK method compares well with es-
tablished methods in regions where liquid clouds are domi-
nant, except in MIROC6 where it is strongly influenced by
the cloud-top phase identification bias. We note that we have
verified that the MODIS simulator is implemented correctly
in MIROC6 using model-native and ISCCP-simulated cloud
properties. We compared model-derived, ISCCP-simulated,
and MODIS-simulated metrics of total cloud fraction, and we
analyzed climatological differences between the ISCCP and
MODIS simulator using Sect. 5 in Pincus et al. (2012) as a
reference to show that prior expectations of model-native and
satellite simulator differences are reproduced in MIROC6, as
in the other three GCMs in this study (not shown).

3.2.2 Comparison of the three adjustments

One of the principal advantages of our approach is the ability
to separately diagnose the Twomey effect and cloud adjust-
ments using only monthly output and no additional calls to
the radiation code. APRP is widely used due to similar bene-
fits (monthly output, only eight fields that are routinely diag-
nosed in models required) but combines the Twomey effect
and LWP adjustment into one term. Smith et al. (2020) pro-
posed a procedure for separating the APRP cloud-scattering
term into these distinct contributions based on the strong
linear relationship between global-mean in-cloud LWP and

the strength of the global-mean LWP adjustment found in
Gryspeerdt et al. (2020), as models with the greatest change
in in-cloud LWP between their respective CTL and PDaer
simulations produced the strongest/most negative LWP ad-
justment. Then after estimating the LWP adjustment (ALWP),
the Twomey effect (Are ) can be calculated as a residual of
the APRP-calculated total SW ERFaci and the sum of the CF
adjustment (AAMT) and ALWP:

Are = ERFaci−ALWP−AAMT . (15)

We implement this approximation in our APRP decompo-
sition to compare with the Twomey effect and LWP adjust-
ment diagnosed by our new MODIS CRK method, finding
that the two methods give quite different results. While the
LWP adjustment explicitly diagnosed by the MODIS CRK
methodology is non-negligible and at least 25 % of the to-
tal SW ERFaci from liquid clouds across all five models,
the APRP regression-estimated LWP adjustment is at most
10 % of the total SW ERFaci (Table A2). As a result, since
it is calculated as a residual in the Smith et al. (2020) APRP
approximation, the Twomey effect appears as the dominant
driver, ranging from 80 %–90 % of the APRP total SW ER-
Faci. Conversely, when diagnosed directly with our method,
the Twomey effect is greater than the LWP adjustment in all
cases but not as dominant, ranging from 68 % of the total SW
ERFaci in MIROC6-PP to only 41 % in CESM2. Not only is
there disagreement in the global-mean quantities, but also a
point-by-point comparison of the two approaches indicates
weak correlation between the two approaches for calculating
the LWP adjustment (not shown), regardless of whether we
try to control for the amount of non-liquid clouds.

The strong disagreement with our method indicates draw-
backs to relying on APRP for calculating the three compo-
nents of SW ERFaci and suggests APRP may underestimate
the LWP adjustment and overestimate the Twomey effect.
One reason for this discrepancy may be that the estimate
from Smith et al. (2020) uses total grid-box-averaged cloud
water path and cloud ice water path: this difference may in-
clude scenarios where LWP changes in deep clouds that con-
tain ice at higher levels. It may also be the case that LWP
adjustment plays a larger role relative to the Twomey ef-
fect when considering liquid clouds only, but this is unlikely
to fully explain the differences in the estimates. Under the
Smith et al. (2020) approximation, errors and uncertainties in
the LWP and CF adjustments will cause errors in the estimate
of the Twomey effect, since it is calculated as a residual term.
Considering that both the Twomey effect and the LWP ad-
justment separately contribute substantial uncertainty to es-
timates of SW ERFaci, we note these contrasting results to
stress the importance of isolating each of the three compo-
nents of SW ERFaci and directly quantifying the Twomey
effect rather than inferring it as a residual.
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Figure 3. Point-by-point comparison of total SW ERFaci computed with the MODIS CRK method presented in this work, the ISCCP CRK
method (Zelinka et al., 2012a), and APRP. (a–e) Scatterplot of total SW ERFaci diagnosed from the MODIS CRK method and APRP in
E3SMv2, CESM2, NorESM2, MIROC6-DP, and MIROC6-PP, respectively. The diagonal line is the one-to-one line. The upper left corner
of each panel gives the squared coefficient of determination for the ordinary least-squares linear-regression fit (r2) and the slope of the fit
(m). The bottom right corner indicates the number of grid points (n) that fall under the threshold of < 10 % annual-mean non-liquid CF and
are included in the comparison. (f–j) Identical to panels (a)–(e), except comparing the total SW ERFaci diagnosed from the MODIS CRK
method with that from the ISCCP CRK method.

3.2.3 Impact of prognostic precipitation on ACIs in
MIROC6

The MIROC6 simulations enable us to qualitatively validate
our decomposition with previous studies that have investi-
gated the impact of prognostic precipitation schemes on ER-
Faci (Michibata et al., 2019, 2020). Our ensemble features
two versions of MIROC6: one with a diagnostic precipita-
tion scheme that assumes that all diagnosed rainwater pre-
cipitates to the surface within a single-model time step and
a second with a prognostic precipitation scheme in which
precipitating hydrometeors can stay suspended in the atmo-
sphere across multiple model time steps. Previous studies
(e.g., Gettelman et al., 2015; Michibata et al., 2019) have
documented how prognostic precipitation schemes can im-
prove representation of the microphysics and hydrometeor
distribution due to enhanced accretion. Strengthening of the
accretion-to-autoconversion ratio has been shown to dimin-
ish the excessive cloud water susceptibility to aerosols found
in diagnostic precipitation schemes and hence weaken ACIs,
as the autoconversion rate is directly linked to ACIs due to
its dependence on Nd (Posselt and Lohmann, 2008, 2009).
The enhanced accretion and longer residence times of pre-
cipitation in a prognostic treatment lead to decreased Nd and
strengthened wet scavenging of aerosols, with both effects
decreasing cloud lifetimes (Michibata and Suzuki, 2020).
The prognostic scheme also influences cold-rain processes:
due to the explicit representation of the riming process in
MIROC6-PP, positive LWP responses to aerosol perturba-
tions, which can be buffered by strengthened accretion, may

be further damped by falling snow originating higher in the
atmosphere that remains in the atmosphere across several
time steps. This mechanism was dubbed the “snow-induced
buffering” of ACIs in Michibata et al. (2020).

These effects of precipitation schemes on ACIs can be
interpreted through the lens of changes to re and LWP.
With the prognostic precipitation scheme, re decreases less
between CTL and PDaer, and the LWP increase is also
muted (not shown here). As a result, MIROC6-PP has a
nearly 3-fold reduction in the total SW ERFaci from liquid
clouds (−0.33 to−0.128 W m−2) and in the LWP adjustment
(−0.145 to −0.046 W m−2) compared to MIROC6-DP (see
also Fig. A5). The SW ERFaci from liquid clouds weakens
more when using a prognostic precipitation scheme than esti-
mates in Gettelman et al. (2015) and Michibata et al. (2019),
but our results are supported by similarly strong reductions
in total SW ERFaci of about ∼ 50 %, demonstrating that the
larger ERFaci reductions in this study are not a reflection
of our methodology and instead are a feature of the simu-
lations. Spatially, the weakened ERFaci in MIROC6-PP is
dominated by a large reduction over the NH midlatitudes,
where LWP responses to anthropogenic aerosols are strong
but susceptible to damping. We take the qualitative agree-
ment with prior studies as further evidence of the skill of our
new method.
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4 Understanding model spread in SW ERFaci
components

4.1 Mean state biases in subtropical stratocumulus
regions

The SW ERFaci decomposition from our new MODIS CRK
method demonstrates substantial intermodel spread in the
components of SW ERFaci, especially the cloud adjust-
ments. The structural differences between models complicate
the process of identifying causes of ensemble spread, but one
source of this spread will be due to differences in climatolog-
ical states across the models. To address this issue, we ana-
lyze nudged historical simulations that keep the large-scale
circulation close to the observed state of the atmosphere, re-
ducing differences in model state and removing one source
contributing to the ensemble spread in the components of SW
ERFaci.

We begin by comparing cloud distributions as functions of
LWP and re in subtropical stratocumulus regions. We use the
same 20°× 20° boxes as Zhang and Feingold (2023) to de-
fine the five stratocumulus regions (Fig. A6). These regions
are characterized by strong negative SW ERFaci, high sus-
ceptibility to aerosol perturbations, and largely absent high
cloud cover. Therefore, they exert a disproportionate influ-
ence on the diagnosed SW ERFaci, and mean state biases in
these regions could translate into large biases in our global-
mean estimates of SW ERFaci from liquid clouds. Figure 4
shows liquid cloud fraction (LCF) histograms from MODIS
observations (leftmost columns) and from the nudged histor-
ical simulations with the five GCMs in the five stratocumulus
regions. Note that we take averages over a common time pe-
riod (2003–2014).

In observations, stratocumulus regions are dominated by
low-LWP (< 100 g m−2), small-re (< 12.5 µm) clouds, which
we take to be non-precipitating (leftmost panels in Fig. 4).
Each of the five regions varies in the amount of clouds at
the opposite end of the re–LWP spectrum (high LWP, large
re), which we take to be precipitating. Zhang and Fein-
gold (2023) also find that cloud states of re< 12.5 µm and
cloud states with LWP< 50 g m−2 are persistent across the
five regions in observations, while denser, larger-radii cloud
states vary between basins. The Northeast Pacific (NEP),
the Southeast Pacific (SEP), and the Australian (AUS) cloud
decks feature relatively high amounts of high-LWP, large-
re clouds; in contrast, the Northeast and Southeast Atlantic
(NATL, SEA) regions are more strongly skewed in the re–
LWP space, with abundant non-precipitating clouds. The
NEP, SEP, and SEA regions are characterized by large to-
tal liquid cloud fractions (> 50 %), whereas cloud fractions
are lower in the AUS and NATL regions.

The models exhibit a large spread in their ability to re-
produce these observed liquid cloud fractions and distribu-
tions. We normalize the LCF by the re–LWP bin with the
largest liquid cloud fraction in each stratocumulus region and

in each model (Fig. 4) to compare the distribution of cloud
fraction in the re–LWP phase space separately from cloud
fraction biases. E3SMv2 most closely captures the LCF es-
timated by MODIS as well as the cloud distribution in re–
LWP space, in some instances even simulating too many liq-
uid clouds in the stratocumulus regions, whereas most mod-
els simulate too few clouds. E3SMv2 also tends to most ac-
curately simulate the predominance of low-LWP, small-re
clouds seen in observations. NorESM2 and CESM2 perform
similarly to each other, consistently capturing around 80 %
of the total observed MODIS LCF, though they tend to be
more skewed towards the high-LWP, large-re regime. They
exhibit similar cloud fractions to each other, with the excep-
tion of the SEP for which NorESM2 simulates a substantially
larger LCF. Finally, the two versions of MIROC6 have large
LCF deficits compared to observations and highly skewed
re–LWP cloud distributions, simulating a negligible amount
of clouds with re< 15 µm. This may reflect an inability to
simulate a sufficient amount of non-precipitating clouds, but
we do not have direct evidence of precipitation state to con-
firm this. MIROC6 is known to suffer from the “too few, too
bright” cloud problem (Nam et al., 2012), even when switch-
ing to a prognostic precipitation scheme (Michibata et al.,
2019).

Mean state biases in the distribution of clouds in re–LWP
space appear to be related to the SW ERFaci from liquid
clouds. The three GCMs analyzed here that simulate the most
negative SW ERFaci (E3SMv2, CESM2, NorESM2) accu-
rately reproduce observed liquid cloud fractions and distri-
butions, suggesting that estimates of aerosol forcing from
these models may be more realistic. Conversely, MIROC6-
DP and MIROC6-PP simulate weak SW ERFaci and have
too few liquid clouds in their mean states. Their cloud frac-
tion distributions are also strongly biased compared to obser-
vations, though it is difficult to assess whether these distribu-
tional biases are linked to a bias in MODIS cloud-top phase
classification (i.e., clouds that may be classified as liquid by
MODIS, and therefore would be accounted for in our decom-
position, are instead identified as an “undetermined” phase)
or reflect more fundamental issues with how the model sim-
ulates cloud coverage in stratocumulus regions.

4.2 Potential emergent constraints on components of
SW ERFaci

The relationship between mean state biases and the historical
SW ERFaci identified in the previous section suggests the po-
tential to use our MODIS CRK method to develop emergent
constraints on the total SW ERFaci and its components. Here
we present an example of how our method, paired with cor-
responding nudged historical simulations, might be used to
form emergent constraints on SW ERFaci. We hypothesize
that mean state liquid cloud fraction serves as a first-order
control on the strength of SW ERFaci, as greater simulated
LCF implies the presence of more liquid clouds susceptible
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Figure 4. Annual-mean liquid cloud fraction in MODIS satellite observations and MODIS instrument-simulator output from the nudged
historical runs from the five GCMs. The LCF in re–LWP phase space, spatially and temporally averaged over the (a) Southeast Pacific (SEP;
30–10° S, 90–70° W), (b) Southeast Atlantic (SEA; 25–5° S, 10° W–10° E), (c) Northeast Atlantic (10–30° N, 40–20° W), (d) Australian
(35–15° S, 90–110° E), and (e) Northeast Pacific (15–35° N, 140–120° W) regions. Data are temporally averaged over an 11-year period
(2003–2014) to ensure overlap. The normalized LCF is calculated by dividing the LCF in each re–LWP bin by the annual- and global-mean
maximum LCF across all of the histograms bins. The vertical black line separates the observational data (OBS, to the left) and the GCM
output (to the right). The top right corner of each histogram indicates the total LCF over the region.

to aerosol perturbations and more negative SW ERFaci (Zhao
et al., 2024). Given the small number of models in our en-
semble, it is difficult to establish robust emergent constraints;
nevertheless, we assess whether this hypothesis holds true
in our ensemble, as well as the ability of each model to re-
produce the global-mean LCF retrieved from MODIS ob-
servations. We do this by comparing the mean states of the
models in the historical simulations with the SW ERFaci di-
agnosed from the CTL and PDaer simulations. Although a
true emergent constraint would require comparing the SW

ERFaci from historical runs, the LCF characteristics within
models are well correlated between the CTL and nudged his-
torical simulations (not shown).

We find strong relationships between the mean state LCF
in HIST and two of the SW ERFaci components: the global-
mean Twomey effect and LWP adjustment (Fig. 5). Across
our five models, the Twomey effect becomes increasingly
negative as the mean LCF in HIST increases, ranging from
−0.013 W m−2 for MIROC6-PP (19.3 % LCF in HIST) to
−0.61 W m−2 for E3SMv2 (27.2 %). The same is largely
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Figure 5. Potential emergent constraints on the global-mean
Twomey effect and LWP adjustment. Each marker represents the
estimate of the Twomey effect (purple) and the LWP adjustment
(orange) for a specific GCM. The vertical black line indicates the
MODIS-reported global annual-mean liquid cloud fraction over the
2003–2014 period. The grey shading represents the 68 % confidence
interval (±1σ range) for the MODIS global-mean LCF. The values
in the top-middle section of the plot give the squared coefficient
of determination for the ordinary least-squares linear-regression fit
(r2) for each respective fit.

true for the LWP adjustment, except that CESM2 simulates
a slightly stronger adjustment than E3SMv2 (∼ 0.01 W m−2)
despite having a slightly lower LCF in the base state. These
results confirm that our hypothesis holds for the models ana-
lyzed, though much of the model spread comes from the out-
lier MIROC6 models. Despite the large undetermined phase
bias in MIROC6 and our relatively small sample size, our po-
tential emergent constraint possesses a solid physical basis
and is presented here to motivate future tests of its robust-
ness.

MODIS observations can be used in conjunction with the
above relationships to give estimates of the Twomey ef-
fect and the LWP adjustment. From 2003–2014, the global-
mean LCF reported by the MODIS satellite is 27.1± 1.2 %
(1σ range), which is very close to the base state LCF of
E3SMv2 and CESM2 and indicates that the strength of the
aerosol forcing in these models is more realistic. Using our
potential emergent constraints, we estimate the historical
Twomey effect and LWP adjustment to be −0.55± 0.21 and
−0.34± 0.13 W m−2, respectively (95 % confidence inter-
val, CI). Both of these estimates are substantially weaker than
the observational estimates from Wall et al. (2023), which we
discuss further in the conclusion.

These results suggest that the mean state LCF could act as
a powerful emergent constraint on both the Twomey effect
and the LWP adjustment. However, there are two caveats to
the analysis presented here. First, a larger ensemble is re-
quired to establish the robustness of the relationships identi-
fied in our analysis. Our analysis should serve as an exam-

ple of how the new MODIS CRK method can be leveraged
to derive robust emergent constraints with larger ensembles.
Fortunately, the low computational expense of our method,
coupled with its ease of implementation and reliance on pre-
existing fixed-SST simulations, means that it should be pos-
sible to use larger ensembles in the near future. We also note
that Fig. 6 demonstrates that the models in our ensemble lie
towards the higher end of the CMIP6 range for SW ERFaci
(compare ensemble means of Fig. 6a and c). Direct compar-
ison of our estimates with those in Zelinka et al. (2023) is
complicated by differing definitions of present-day aerosols
in the PDaer simulations (2000 for the simulations used here;
2014 for CMIP6 models in Zelinka et al., 2023) and different
prescribed SSTs and sea ice concentrations, but it would be
interesting to include CMIP6 models with weaker total SW
ERFaci estimates to test the robustness of our finding.

Second, the regression for the Twomey effect predicts a
positive forcing for models with LCF< 17 % even though
our understanding of the Twomey effect says that it should
still produce a cooling effect for small LCF. However, the
slope of the regression line for the Twomey effect is strongly
influenced by the two MIROC6 models, which are also the
furthest from reality. So a larger ensemble might reveal that
MIROC6-DP and MIROC6-PP bias the regression in an un-
physical direction.

These results are promising and are supported by a strong
physical rationale: more mean state LCF should be associ-
ated with a stronger/more negative Twomey effect and LWP
adjustment since there are more clouds for aerosols to per-
turb. However, while our rationale for more mean state LCF
being associated with a stronger/more negative LWP ad-
justment is consistent with the GCM results, observational
studies suggest there may be disagreement between GCMs
and observations over the sign of the LWP adjustment (see
Sect. 3.1). As such, any emergent constraint on LWP should
be interpreted with caution until the causes of the model–
observation discrepancy have been identified.

5 Conclusions

We have presented a new method of diagnosing the liquid
SW ERFaci in models that output-simulated MODIS cloud
fractions as functions of cloud droplet effective radius and
cloud water path, partitioned by the cloud-top phase. This
method allows us to efficiently estimate the total liquid SW
ERFaci from monthly data and to separately quantify the
contributions of the Twomey effect, the LWP adjustment,
and the CF adjustments to the total forcing. We tested the
method using sets of simulations with five models, including
two variants of MIROC6: one with diagnostic precipitation
and one with prognostic precipitation. Our ensemble-mean
estimate of liquid SW ERFaci (−0.70 W m−2) is close to the
central total ERFaci estimate (−1.0 W m−2) from the IPCC
AR6 that includes a small positive offsetting effect of LW
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Figure 6. A comparison of global-mean SW ERFaci estimates calculated in our study. (a) Total SW ERFaci computed using APRP across
our ensemble. Total SW ERFaci computed using APRP across an ensemble of (b) CMIP5 and (c) CMIP6 models from Zelinka et al. (2023).
A selection of the models analyzed in this paper (CESM2, MIROC6, NorESM2) are included in the CMIP6 ensemble. Present-day aerosols
are defined as year 2000 in our results and year 2014 for CMIP6.

ERFaci (Forster et al., 2021). Our decomposition results in-
dicate that the Twomey effect (−0.34 W m−2) and the LWP
adjustment (−0.22 W m−2) produce the majority of the cool-
ing ERFaci. While the CF adjustment is the smallest of the
three components of SW ERFaci for each GCM, two models
simulate substantial cooling (CESM2 and NorESM2, with
−0.233 and −0.157 W m−2, respectively).

Our estimates for the components of SW ERFaci differ
from the observational estimates in Wall et al. (2023), de-
spite relying on the same MODIS CRK method. The GCM
estimates of the Twomey effect (−0.34± 0.24 W m−2) and
total cloud adjustment (−0.32± 0.29 W m−2) averaged over
ocean between 55° S and 55° N are only 44 % and 31 % as
strong as the observational estimates from Wall et al. (2023)
(−0.77± 0.25 and −1.02± 0.43 W m−2, respectively), but
both approaches are similar in diagnosing comparable con-
tributions from the Twomey effect and the cloud adjustments
to the overall SW ERFaci (95 % confidence intervals). Even
when excluding the two MIROC6 models, the GCM esti-
mates of the Twomey effect (−0.47± 0.32) and cloud adjust-
ments (−0.50± 0.29) averaged over ocean are only 61 % and
49 % as strong as the observational estimates. The weaker
cloud adjustments in this study also obscure disagreement
over the respective contributions of the LWP and CF adjust-
ments: while Wall et al. (2023) find a significantly negative
CF adjustment and near-zero or positive LWP adjustment
from observations, we find opposing results more in line with
prior GCM results (see Fig. 5 in Wall et al., 2023). A strong
cooling effect from the Twomey effect and LWP adjustment,
as well as a near-zero contribution to SW ERFaci from the
CF adjustment, is a consistent feature of CMIP5 and CMIP6
models (Zelinka et al., 2023), suggesting that our method

captures this broad characteristic of GCMs whilst also of-
fering insight into the connections between the components
of SW ERFaci to various physical processes and their repre-
sentations in climate models.

We have compared our ERFaci estimates to two existing
methods: the widely used APRP method and another method
relying on the same cloud radiative kernel approach used
here (Zelinka et al., 2012a) but with output from the IS-
CCP satellite simulator that cannot partition by the cloud-
top phase and does not separate out cloud droplet effective
radius and cloud water path. In liquid cloud-dominated re-
gions where we would expect the total diagnosed forcing to
be similar, the models show strong agreement on a point-by-
point basis, though the agreement is somewhat worse for the
E3SMv2 model. Neither existing method is able to separate
out the three components of the total SW ERFaci, but Smith
et al. (2020) proposed an approximation for the LWP adjust-
ment in the APRP method. Our results disagree with this ap-
proximation, as we find a larger and more realistic contribu-
tion of the LWP adjustment to historical SW ERFaci.

We examine mean state biases within the models to in-
vestigate whether they help to explain the substantial ensem-
ble spread in the components of SW ERFaci. Using a set of
nudged historical runs, we find that in the subtropical stra-
tocumulus regions, E3SMv2 simulates liquid cloud amount
and distribution in re–LWP variable space which are very
comparable to MODIS observations. CESM2 and NorESM2
perform similarly to each other, lacking the low-LWP, small-
re liquid cloud maxima seen in MODIS but capturing close
to 80 % of the observed LCF. Both versions of MIROC6 sim-
ulate insufficient liquid clouds and negligible cloud cover
with re< 15 µm. The effective radius bias is stronger with
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the prognostic precipitation scheme, and we also note that
both variants of MIROC6 may overestimate the frequency of
mixed-phase clouds. The cloud-top phase identification bias
found in MIROC6 occurs uniformly in space. Whereas the
other three GCMs feature enhanced levels of “undetermined”
phase classification in areas where mixed-phase clouds are
prevalent, including the NH extratropical storm track and the
Southern Ocean (Zhang et al., 2010), no such spatial variabil-
ity is found in MIROC6: areas like the stratocumulus regions,
where liquid clouds should be dominant and ice clouds rare,
show very similar biases compared to mixed-phase cloud-
rich regions. The new MODIS re–LWP joint histogram di-
agnostic enables novel opportunities for model evaluation
that can inform our interpretation of ERFaci estimates from
GCMs.

Finally, we find that models with a greater mean-state
LCF simulate more negative SW ERFaci, which we expand
upon further to investigate potential emergent constraints
between the mean-state LCF and the Twomey effect and
the LWP adjustment. Using these constraints in conjunction
with MODIS observations, we obtain estimates of the his-
torical Twomey effect (−0.55± 0.21 W m−2) and the LWP
adjustment (−0.34± 0.13 W m−2) (95 % CIs). Models with
global-mean liquid cloud fractions closest to MODIS ob-
servations (E3SMv2, CESM2) simulate the most cooling
from the Twomey effect (−0.612 and −0.426 W m−2, re-
spectively) and provide estimates that approach the magni-
tude of the observational estimate (−0.77 W m−2) from Wall
et al. (2023). The low liquid cloud fractions in both MIROC6
versions influence the historical Twomey effect and LWP
adjustment estimates and suggest that GCMs that simulate
insufficient amounts of liquid clouds will tend to underesti-
mate the magnitude of the Twomey effect and the LWP ad-
justment. The constraint on the LWP adjustment disagrees
in sign with observational estimates, undercutting its robust-
ness, and this constraint should be considered cautiously un-
til the sources of the model–observation disparity have been
discovered.

These results demonstrate the promise of our new tech-
nique for diagnosing SW ERFaci quickly and efficiently in
GCMs, though our analysis is limited to an ensemble of
five GCMs. Furthermore, while our approach produces good
agreement with two existing methods for computing SW ER-
Faci, the comparison is narrow in scope because we cal-
culate aerosol forcing on liquid clouds only. A more like-
for-like comparison that can be applied globally to bench-
mark against other methods would build confidence in our
approach. Ongoing work shows that the new MODIS CRK
method, computed in cloud-top pressure and cloud optical
depth space, agrees well with APRP when calculating cloud
feedbacks, providing additional support to the comparison
conducted here.

Despite these limitations, this work showcases the benefits
of our new MODIS CRK method, which relies on monthly
output from a pair of fixed-SST simulations that are stan-

dard parts of the Radiative Forcing Model Intercomparison
Project (RFMIP) experimental protocol (piClim-control and
piClim-aer in CMIP6; Pincus et al., 2016). Additionally, the
code required for the new MODIS re–LWP joint histograms
is already implemented in the latest version of the COSP
master branch (CFMIP, 2024b). The low computational ex-
pense and storage demands required by our approach should
facilitate the generation of a larger model ensemble that
could be used to test the validity of the emergent constraints
highlighted here.

The MODIS CRK method could also be adapted to inves-
tigate aerosol forcing from ice clouds, as well as to better
understand the mechanisms driving ERFaci in GCMs. While
the MODIS ice-cloud fraction histograms were not included
in our simulations, the code required to output them as a diag-
nostic is included in the most recent COSP version (CFMIP,
2024b). Future work implementing the MODIS CRK ap-
proach could be done with GCMs that represent aerosol in-
teractions with ice clouds, which would allow a more com-
prehensive validation of our estimates of SW ERFaci. Our
method could also be used in a targeted analysis of a sin-
gle GCM to yield deeper insights into the individual com-
ponents of SW ERFaci. For example, a perturbed physics
ensemble (PPE) could be used to examine how parameter
uncertainty imprints onto each component of SW ERFaci,
similar to Duffy et al. (2024), who used a CAM6 PPE to ex-
plore the core model processes controlling the large spread
in cloud feedbacks. Similarly, Song et al. (2024) employed
a PPE to investigate the buffering of ERFaci as a result of
the interaction between precipitation efficiency and radiative
susceptibility. Implementing our new method in a PPE would
enable each of the components of SW ERFaci to be quanti-
fied and studied separately and would provide another test of
the emergent constraints proposed in Sect. 4.2.

The global constraints found here motivated us to search
for similar constrains on a regional scale, but we have been
unable to find any robust constraint across the five stratocu-
mulus regions. One reason for this may be that at a lo-
cal scale, large aerosol perturbations can generate nonlin-
ear effects that are masked when averaging over the globe
(Bellouin et al., 2020). Nevertheless, the new MODIS joint
histogram diagnostic provides the ability to assess regional
mean-state biases in liquid clouds across different models.
This could be used to explore differences in model responses
to local forcings, for instance, to evaluate how liquid clouds
respond to aerosol perturbations under marine cloud bright-
ening (MCB) scenarios in GCMs.

Our findings contribute to the ongoing work seeking to
better constrain ERFaci. We provide what we believe are
the first distinct estimates for the Twomey effect and cloud
adjustments for an ensemble of CMIP6 models, which sug-
gests that the LWP adjustment may contribute a comparable
forcing to the Twomey effect. Our method also shows that
differences in mean state liquid cloud fraction drive differ-
ences in the components of SW ERFaci across models, indi-
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cating that some of the spread in SW ERFaci estimates may
be reduced by improving representation of liquid clouds in
global climate models. Applied within a larger ensemble, our
technique offers promise for narrowing the significant uncer-
tainty in our estimates of SW ERFaci and its components,
helping improve our understanding of the historical effective
radiative forcing.

Appendix A

Figure A1. SW ERFaci and its components for each of the five GCMs. (a) Total SW ERFaci. Contribution to SW ERFaci from the
(b) Twomey effect, (c) LWP adjustment, and (d) CF adjustment. (e) Obscuration-corrected CF adjustment and (f) residual of the ERFaci de-
composition. From left to right, MODIS CRK decomposition for E3SMv2, CESM2, NorESM2, MIROC6-DP, and MIROC6-PP, respectively.
Global-mean values of each component are indicated in the top-right corner of each plot.
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Figure A2. Grid points sampled for validation of the new MODIS CRK method with the existing APRP and ISCCP CRK methods for
calculating SW ERFaci. Shaded areas denote regions where the annual-mean non-liquid cloud fraction from CTL is less than 10 %. Note that
the MIROC6-DP and MIROC6-PP masks do not include the main stratocumulus regions captured in the remaining three GCM masks.

Figure A3. Point-by-point comparison of total SW ERFaci computed with the ISCCP CRK method (Zelinka et al., 2012a) and APRP
for all grid points. (a–e) Joint histogram of total SW ERFaci diagnosed from the MODIS CRK method and APRP in E3SMv2, CESM2,
NorESM2, MIROC6-DP, and MIROC6-PP, respectively. Purple shading indicates the number of counts on a logarithmic scale. The diagonal
line is the one-to-one line. The upper left corner of each panel gives the squared coefficient of determination for the ordinary least-squares
linear-regression fit (r2) and the slope of the fit (m).

Figure A4. Annual-mean total cloud fraction in MODIS satellite observations and MODIS instrument-simulator output from the nudged
historical runs from the five GCMs, partitioned by cloud-top phase. The proportion of undetermined clouds is calculated as the difference
between the MODIS total cloud fraction and the sum of the MODIS liquid- and ice-phase cloud fraction. Data are temporally averaged
over an 11-year period (2003–2014) to ensure overlap. The reported values for MODIS include only fully cloudy pixels. The proportion of
undetermined clouds is similar across all simulations for each model.
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Figure A5. Zonal-mean (a) total SW ERFaci and (b) LWP adjustment, from liquid clouds. The effect of the precipitation scheme in MIROC6
is highlighted in the solid and dotted lines in purple. Large reductions in MIROC6-PP are observed, especially between 20 and 50° N,
consistent with results from Michibata et al. (2019, 2020).

Figure A6. Distribution of annual-mean liquid cloud fraction from 11 years (2003–2014) of MODIS observations. Black boxes indicate the
five 20°× 20° marine stratocumulus regions used in this study, following Zhang and Feingold (2023).

Table A1. Details of the HIST simulations. Each modeling center employed a different nudging procedure. Reanalysis products are MERRA-
2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2) (Gelaro et al., 2017) and ERA5 (European Centre for
Medium-Range Weather Forecasts (ECMWF) fifth-generation atmospheric reanalysis) (Hersbach et al., 2020).

Model Variables Timescale Products

E3SMv2 U/V 6-hourly MERRA-2
CESM2 U/V 1-hourly ERA5
NorESM2 U/V/PS 6-hourly ERA5
MIROC6-DP U/V/T 6-hourly ERA5
MIROC6-PP U/V/T 6-hourly ERA5
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Table A2. Comparison of estimates of SW ERFaci (W m−2) for each of the five GCMs. Our MODIS CRK approach estimates the total
SW ERFaci from liquid clouds (ACIMODIS

Liq ), whereas the APRP and ISCCP CRK methods estimate the total SW ERFaci from all clouds

(ACIAPRP
Tot , ACIISCCP

Tot ). ACIMODIS
Liq /ACIXTot is the ratio of the SW ERFaci from liquid clouds (MODIS CRK) and the SW ERFaci from all

clouds, where X is APRP or ISCCP. LWPY /ACIYLiq is the ratio of the LWP adjustment and SW ERFaci, where Y is MODIS CRK or APRP.

Model ACIMODIS
Liq ACIAPRP

Tot ACIISCCP
Tot

ACIMODIS
Liq

ACIAPRP
Tot

ACIMODIS
Liq

ACIISCCP
Tot

LWPMODIS

ACIMODIS
Liq

LWPAPRP

ACIAPRP
Tot

E3SMv2 −1.081 −1.120 −1.219 0.97 0.89 0.29 0.04
CESM2 −1.042 −1.119 −1.019 0.93 1.02 0.31 0.10
NorESM2 −0.852 −1.230 −1.251 0.69 0.68 0.31 0.08
MIROC6-DP −0.352 −0.993 −0.888 0.35 0.40 0.41 0.10
MIROC6-PP −0.157 −0.537 −0.502 0.29 0.31 0.29 0.03

Code and data availability. The SW cloud radiative kernel used
in this study and the code to perform the SW ERFaci decompo-
sition are available at https://doi.org/10.5281/zenodo.13839356
(Duran, 2024). The model output from the five GCMs is publicly
available through the University of California, San Diego (UCSD),
library digital collections (https://doi.org/10.6075/J0P26ZF1,
Duran et al., 2024). The source code modifications to
COSP2 for the new MODIS re–LWP joint histograms can
be found at https://github.com/CFMIP/COSPv2.0/commit/
d252f193137b54adff4cc5b8f40604f1832472fa (Wall et al.,
2024). COSP2 downloading and installation steps can be
found at https://github.com/CFMIP/COSPv2.0 (CFMIP,
2024a). MODIS cloud histograms are available from the
National Aeronautics and Space Administration (NASA)
Level-1 and Atmosphere Archive and Distribution System
(https://doi.org/10.5067/MODIS/MCD06COSP_M3_MODIS.062,
NASA, 2023). The code for computing APRP was adapted from
Zelinka (2023, https://doi.org/10.5281/zenodo.5514141). The code
for computing the ISCCP CRK results was adapted from Zelinka
(2024, https://doi.org/10.5281/zenodo.5514136).
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