Articles | Volume 25, issue 23
https://doi.org/10.5194/acp-25-17747-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-17747-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: High contribution of N2O5 uptake to particulate nitrate formation in NO2-limited urban areas
Ziyi Lin
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
Chuanyou Ying
Fuzhou Research Academy of Environmental Sciences, Fuzhou 350013, China
Lingling Xu
CORRESPONDING AUTHOR
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Xiaoting Ji
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
Keran Zhang
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Feng Zhang
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Gaojie Chen
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
Lingjun Li
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
Chen Yang
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
Yuping Chen
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
Ziying Chen
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Related authors
Yuping Chen, Lingling Xu, Xiaolong Fan, Ziyi Lin, Chen Yang, Gaojie Chen, Ronghua Zheng, Youwei Hong, Mengren Li, Yanru Zhang, and Jinsheng Chen
Atmos. Chem. Phys., 25, 16315–16330, https://doi.org/10.5194/acp-25-16315-2025, https://doi.org/10.5194/acp-25-16315-2025, 2025
Short summary
Short summary
This study investigates the molecular characteristics and chemical evolution of organic aerosol (OA) in contrasting urban and seaside environments by offline Chemical Ionization Mass Spectrometry. Urban OA was enriched in aromatic species, while seaside OA featured aliphatic and highly oxidized compounds. Marine-derived humid air masses promoted aqueous/heterogeneous phase OA formation, leading to a higher oxidation state.
Gaojie Chen, Xiaolong Fan, Haichao Wang, Yee Jun Tham, Ziyi Lin, Xiaoting Ji, Lingling Xu, Baoye Hu, and Jinsheng Chen
Atmos. Chem. Phys., 25, 7815–7828, https://doi.org/10.5194/acp-25-7815-2025, https://doi.org/10.5194/acp-25-7815-2025, 2025
Short summary
Short summary
Our study revealed that the nighttime heterogeneous dinitrogen pentoxide (N2O5) uptake process was the major contributor of nitryl chloride (ClNO2) sources, while nitrate photolysis may promote the elevation of daytime ClNO2 concentrations. The rates of alkane oxidation by chlorine (Cl) radical in the early morning exceeded those by OH radical, significantly promoted the formation of ROx and ozone (O3), and further enhanced the atmospheric oxidation capacity levels.
Lingjun Li, Mengren Li, Xiaolong Fan, Yuping Chen, Ziyi Lin, Anqi Hou, Siqing Zhang, Ronghua Zheng, and Jinsheng Chen
Atmos. Chem. Phys., 25, 3669–3685, https://doi.org/10.5194/acp-25-3669-2025, https://doi.org/10.5194/acp-25-3669-2025, 2025
Short summary
Short summary
Here, we show differences and variations in the aerosol scattering hygroscopic growth factor (f(RH)) between new particle formation (NPF) and non-NPF days and the effect of aerosol chemical compositions on f(RH) in Xiamen with in situ observations. The findings are helpful for the further understanding of aerosol hygroscopicity in a coastal city and the use of hygroscopic growth factors in models of air quality and climate change.
Taotao Liu, Yiling Lin, Jinsheng Chen, Gaojie Chen, Chen Yang, Lingling Xu, Mengren Li, Xiaolong Fan, Yanting Chen, Liqian Yin, Yuping Chen, Xiaoting Ji, Ziyi Lin, Fuwang Zhang, Hong Wang, and Youwei Hong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-292, https://doi.org/10.5194/acp-2022-292, 2022
Revised manuscript not accepted
Short summary
Short summary
Field observations and models analysis were carried out in a coastal city to study HCHO formation mechanism and its impacts on photochemistry. HCHO contributed to atmospheric oxidation by around 10 %, reflecting its significance in photochemistry. Disabling HCHO mechanism made net O3 production rates decrease by 31 %, which were dominated by the reductions of pathways relating to radical reactions, indicating the HCHO affected O3 mainly by controlling the efficiencies of radical propagation.
Yuping Chen, Lingling Xu, Xiaolong Fan, Ziyi Lin, Chen Yang, Gaojie Chen, Ronghua Zheng, Youwei Hong, Mengren Li, Yanru Zhang, and Jinsheng Chen
Atmos. Chem. Phys., 25, 16315–16330, https://doi.org/10.5194/acp-25-16315-2025, https://doi.org/10.5194/acp-25-16315-2025, 2025
Short summary
Short summary
This study investigates the molecular characteristics and chemical evolution of organic aerosol (OA) in contrasting urban and seaside environments by offline Chemical Ionization Mass Spectrometry. Urban OA was enriched in aromatic species, while seaside OA featured aliphatic and highly oxidized compounds. Marine-derived humid air masses promoted aqueous/heterogeneous phase OA formation, leading to a higher oxidation state.
Gaojie Chen, Xiaolong Fan, Haichao Wang, Yee Jun Tham, Ziyi Lin, Xiaoting Ji, Lingling Xu, Baoye Hu, and Jinsheng Chen
Atmos. Chem. Phys., 25, 7815–7828, https://doi.org/10.5194/acp-25-7815-2025, https://doi.org/10.5194/acp-25-7815-2025, 2025
Short summary
Short summary
Our study revealed that the nighttime heterogeneous dinitrogen pentoxide (N2O5) uptake process was the major contributor of nitryl chloride (ClNO2) sources, while nitrate photolysis may promote the elevation of daytime ClNO2 concentrations. The rates of alkane oxidation by chlorine (Cl) radical in the early morning exceeded those by OH radical, significantly promoted the formation of ROx and ozone (O3), and further enhanced the atmospheric oxidation capacity levels.
Lingjun Li, Mengren Li, Xiaolong Fan, Yuping Chen, Ziyi Lin, Anqi Hou, Siqing Zhang, Ronghua Zheng, and Jinsheng Chen
Atmos. Chem. Phys., 25, 3669–3685, https://doi.org/10.5194/acp-25-3669-2025, https://doi.org/10.5194/acp-25-3669-2025, 2025
Short summary
Short summary
Here, we show differences and variations in the aerosol scattering hygroscopic growth factor (f(RH)) between new particle formation (NPF) and non-NPF days and the effect of aerosol chemical compositions on f(RH) in Xiamen with in situ observations. The findings are helpful for the further understanding of aerosol hygroscopicity in a coastal city and the use of hygroscopic growth factors in models of air quality and climate change.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
Atmos. Chem. Phys., 25, 905–921, https://doi.org/10.5194/acp-25-905-2025, https://doi.org/10.5194/acp-25-905-2025, 2025
Short summary
Short summary
Box modeling with the Master Chemical Mechanism (MCM) was used to explore summertime peroxyacetyl nitrate (PAN) formation and its link to aerosol pollution under high-ozone conditions. The MCM model is effective in the study of PAN photochemical formation and performed better during the clean period than the haze period. Machine learning analysis identified ammonia, nitrate, and fine particulate matter as the top three factors contributing to simulation bias.
Youwei Hong, Keran Zhang, Dan Liao, Gaojie Chen, Min Zhao, Yiling Lin, Xiaoting Ji, Ke Xu, Yu Wu, Ruilian Yu, Gongren Hu, Sung-Deuk Choi, Likun Xue, and Jinsheng Chen
Atmos. Chem. Phys., 23, 10795–10807, https://doi.org/10.5194/acp-23-10795-2023, https://doi.org/10.5194/acp-23-10795-2023, 2023
Short summary
Short summary
Particle uptakes of HCHO and the impacts on PM2.5 and O3 production remain highly uncertain. Based on the investigation of co-occurring wintertime O3 and PM2.5 pollution in a coastal city of southeast China, we found enhanced heterogeneous formation of hydroxymethanesulfonate (HMS) and increased ROx concentrations and net O3 production rates. The findings of this study are helpful to better explore the mechanisms of key precursors for co-occurring PM2.5 and O3 pollution.
Jiayan Shi, Yuping Chen, Lingling Xu, Youwei Hong, Mengren Li, Xiaolong Fan, Liqian Yin, Yanting Chen, Chen Yang, Gaojie Chen, Taotao Liu, Xiaoting Ji, and Jinsheng Chen
Atmos. Chem. Phys., 22, 11187–11202, https://doi.org/10.5194/acp-22-11187-2022, https://doi.org/10.5194/acp-22-11187-2022, 2022
Short summary
Short summary
Gaseous elemental mercury (GEM) was observed in Southeast China over the period 2012–2020. The observed GEM concentrations showed no distinct inter-annual variation trends. The interpretation rate of transportation and meteorology on GEM variations displayed an increasing trend. In contrast, anthropogenic emissions have shown a decreasing interpretation rate since 2012, indicating the effectiveness of emission mitigation measures in reducing GEM concentrations in the study region.
Youwei Hong, Xinbei Xu, Dan Liao, Taotao Liu, Xiaoting Ji, Ke Xu, Chunyang Liao, Ting Wang, Chunshui Lin, and Jinsheng Chen
Atmos. Chem. Phys., 22, 7827–7841, https://doi.org/10.5194/acp-22-7827-2022, https://doi.org/10.5194/acp-22-7827-2022, 2022
Short summary
Short summary
Secondary organic aerosol (SOA) simulation remains uncertain, due to the unknown SOA formation mechanisms. Aerosol samples with a 4 h time resolution were collected, along with online measurements of aerosol chemical compositions and meteorological parameters. We found that anthropogenic emissions, atmospheric oxidation capacity and halogen chemistry have significant effects on the formation of biogenic SOA (BSOA). The findings of this study are helpful to better explore the missed SOA sources.
Taotao Liu, Yiling Lin, Jinsheng Chen, Gaojie Chen, Chen Yang, Lingling Xu, Mengren Li, Xiaolong Fan, Yanting Chen, Liqian Yin, Yuping Chen, Xiaoting Ji, Ziyi Lin, Fuwang Zhang, Hong Wang, and Youwei Hong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-292, https://doi.org/10.5194/acp-2022-292, 2022
Revised manuscript not accepted
Short summary
Short summary
Field observations and models analysis were carried out in a coastal city to study HCHO formation mechanism and its impacts on photochemistry. HCHO contributed to atmospheric oxidation by around 10 %, reflecting its significance in photochemistry. Disabling HCHO mechanism made net O3 production rates decrease by 31 %, which were dominated by the reductions of pathways relating to radical reactions, indicating the HCHO affected O3 mainly by controlling the efficiencies of radical propagation.
Taotao Liu, Gaojie Chen, Jinsheng Chen, Lingling Xu, Mengren Li, Youwei Hong, Yanting Chen, Xiaoting Ji, Chen Yang, Yuping Chen, Weiguo Huang, Quanjia Huang, and Hong Wang
Atmos. Chem. Phys., 22, 4339–4353, https://doi.org/10.5194/acp-22-4339-2022, https://doi.org/10.5194/acp-22-4339-2022, 2022
Short summary
Short summary
We clarified the seasonal variations of PAN pollution, influencing factors, its mechanisms, and impacts on O3 based on OBM and GAM models. PAN presented inhibition and promotion effects on O3 under low and high ROx levels. Monitoring of PAN and its precursors, and the quantification of its impacts on O3 formation, significantly guide photochemical pollution control. The analysis methods used in this study provide a reference for study of the formation mechanisms of PAN and O3 in other regions.
Taotao Liu, Youwei Hong, Mengren Li, Lingling Xu, Jinsheng Chen, Yahui Bian, Chen Yang, Yangbin Dan, Yingnan Zhang, Likun Xue, Min Zhao, Zhi Huang, and Hong Wang
Atmos. Chem. Phys., 22, 2173–2190, https://doi.org/10.5194/acp-22-2173-2022, https://doi.org/10.5194/acp-22-2173-2022, 2022
Short summary
Short summary
Based on the OBM-MCM model analyses, the study aims to clarify (1) the pollution characteristics of O3 and its precursors, (2) the atmospheric oxidation capacity and radical chemistry, and (3) the O3 formation mechanism and sensitivity analysis. The results are expected to enhance the understanding of the O3 formation mechanism with low O3 precursor levels and provide scientific evidence for O3 pollution control in coastal cities.
Baoye Hu, Jun Duan, Youwei Hong, Lingling Xu, Mengren Li, Yahui Bian, Min Qin, Wu Fang, Pinhua Xie, and Jinsheng Chen
Atmos. Chem. Phys., 22, 371–393, https://doi.org/10.5194/acp-22-371-2022, https://doi.org/10.5194/acp-22-371-2022, 2022
Short summary
Short summary
There has been a lack of research into HONO in coastal cities with low concentrations of PM2.5, but strong sunlight and high humidity. Insufficient research on coastal cities with good air quality has resulted in certain obstacles to assessing the photochemical processes in these areas. Furthermore, HONO contributes to the atmospheric photochemistry depending on the season. Therefore, observations of HONO across four seasons in the southeastern coastal area of China are urgently needed.
Lingling Xu, Jiayan Shi, Yuping Chen, Yanru Zhang, Mengrong Yang, Yanting Chen, Liqian Yin, Lei Tong, Hang Xiao, and Jinsheng Chen
Atmos. Chem. Phys., 21, 18543–18555, https://doi.org/10.5194/acp-21-18543-2021, https://doi.org/10.5194/acp-21-18543-2021, 2021
Short summary
Short summary
Mercury (Hg) isotopic compositions in aerosols are the mixed results of emission sources and atmospheric processes. This study presents Hg isotopic compositions in PM2.5 from different types of locations and total Hg from offshore surface seawater. The results indicate that atmospheric transformations induce significant mass independent fractionation of Hg isotopes, which obscures Hg isotopic signatures of initial emissions.
Cited articles
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem. Soc. Rev., 41, 6405–6447, https://doi.org/10.1039/c2cs35181a, 2012.
Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5, J. Geophys. Res.-Atmos., 108, 4539, https://doi.org/10.1029/2003jd003407, 2003.
Chen, X., Wang, H., and Lu, K.: Interpretation of NO3−N2O5 observation via steady state in high-aerosol air mass: the impact of equilibrium coefficient in ambient conditions, Atmos. Chem. Phys., 22, 3525–3533, https://doi.org/10.5194/acp-22-3525-2022, 2022.
Chen, X., Ma, W., Zheng, F. X., Wang, Z. C., Hua, C. J., Li, Y. R., Wu, J., Li, B. D., Jiang, J. K., Yan, C., Petäjä, T., Bianchi, F., Kerminen, V. M., Worsnop, D. R., Liu, Y. C., Xia, M., and Kulmala, M.: Identifying Driving Factors of Atmospheric N2O5 with Machine Learning, Environ. Sci. Technol., https://doi.org/10.1021/acs.est.4c00651, 2024.
Chen, X. R., Wang, H. C., Lu, K. D., Li, C. M., Zhai, T. Y., Tan, Z. F., Ma, X. F., Yang, X. P., Liu, Y. H., Chen, S. Y., Dong, H. B., Li, X., Wu, Z. J., Hu, M., Zeng, L. M., and Zhang, Y. H.: Field Determination of Nitrate Formation Pathway in Winter Beijing, Environ. Sci. Technol., 54, 9243–9253, https://doi.org/10.1021/acs.est.0c00972, 2020.
Cheng, C. L., Yang, S. X., Yuan, B., Pei, C. L., Zhou, Z. H., Mao, L. Y., Liu, S. L., Chen, D. Y., Cheng, X. Y., Li, M., Shao, M., and Zhou, Z.: The significant contribution of nitrate to a severe haze event in the winter of Guangzhou, China, Sci. Total Environ., 909, https://doi.org/10.1016/j.scitotenv.2023.168582, 2024.
Ehhalt, D. H. and Rohrer, F.: Dependence of the OH concentration on solar UV, J. Geophys. Res.-Atmos., 105, 3565–3571, https://doi.org/10.1029/1999jd901070, 2000.
Fu, X. X., Wang, X. M., Liu, T. Y., He, Q. F., Zhang, Z., Zhang, Y. L., Song, W., Dai, Q. W., Chen, S., and Dong, F. Q.: Secondary inorganic aerosols and aerosol acidity at different PM2.5 pollution levels during winter haze episodes in the Sichuan Basin, China, Sci. Total Environ., 918, https://doi.org/10.1016/j.scitotenv.2024.170512, 2024.
Gui, K., Che, H. Z., Zeng, Z. L., Wang, Y. Q., Zhai, S. X., Wang, Z. M., Luo, M., Zhang, L., Liao, T. T., Zhao, H. J., Li, L., Zheng, Y., and Zhang, X. Y.: Construction of a virtual PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient Boosting model, Environ. Int., 141, https://doi.org/10.1016/j.envint.2020.105801, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hu, H., Wang, H., Lu, K., Wang, J., Zheng, Z., Xu, X., Zhai, T., Chen, X., Lu, X., Fu, W., Li, X., Zeng, L., Hu, M., Zhang, Y., and Fan, S.: Variation and trend of nitrate radical reactivity towards volatile organic compounds in Beijing, China, Atmos. Chem. Phys., 23, 8211–8223, https://doi.org/10.5194/acp-23-8211-2023, 2023.
Huang, X., Ding, A. J., Wang, Z. L., Ding, K., Gao, J., Chai, F. H., and Fu, C. B.: Amplified transboundary transport of haze by aerosol-boundary layer interaction in China, Nat. Geosci., 13, 428–434, https://doi.org/10.1038/s41561-020-0583-4, 2020.
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature. 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Li, F. B., Huang, D. D., Nie, W., Tham, Y. J., Lou, S. R., Li, Y. Y., Tian, L. H., Liu, Y. L., Zhou, M., Wang, H. C., Qiao, L. P., Wang, H. L., Wang, Z., Huang, C., and Li, Y. J.: Observation of nitrogen oxide-influenced chlorine chemistry and source analysis of Cl2 in the Yangtze River Delta, China, Atmos. Environ., 306, https://doi.org/10.1016/j.atmosenv.2023.119829, 2023.
Li, M., Zhang, Z., Yao, Q., Wang, T., Xie, M., Li, S., Zhuang, B., and Han, Y.: Nonlinear responses of particulate nitrate to NOx emission controls in the megalopolises of China, Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, 2021.
Lin, Z., Xu, L., Yang, C., Chen, G., Ji, X., Li, L., Zhang, K., Hong, Y., Li, M., Fan, X., Hu, B., Zhang, F., and Chen, J.: Trends of peroxyacetyl nitrate and its impact on ozone over 2018–2022 in urban atmosphere, npj Clim. Atmos. Sci., 7, 192, https://doi.org/10.1038/s41612-024-00746-7, 2024.
Lin, Z., Ying, C., Xu, L., Ji, X., Zhang, K., Zhang, F., Chen, G., Li, L., Yang, C., Chen, Y., Chen, Z., Chen, J. Data availability about the measurement report titled “Measurement report: High contribution of N2O5 uptake to particulate nitrate formation in NO2-limited urban areas”, figshare [data set], https://doi.org/10.6084/m9.figshare.29670629.v2, 2025.
Liu, M. X., Huang, X., Song, Y., Tang, J., Cao, J. J., Zhang, X. Y., Zhang, Q., Wang, S. X., Xu, T. T., Kang, L., Cai, X. H., Zhang, H. S., Yang, F. M., Wang, H. B., Yu, J. Z., Lau, A. K. H., He, L. Y., Huang, X. F., Duan, L., Ding, A. J., Xue, L. K., Gao, J., Liu, B., and Zhu, T.: Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain, P. Natl. Acad. Sci. USA, 116, 7760–7765, https://doi.org/10.1073/pnas.1814880116, 2019.
Liu, T., Hong, Y., Li, M., Xu, L., Chen, J., Bian, Y., Yang, C., Dan, Y., Zhang, Y., Xue, L., Zhao, M., Huang, Z., and Wang, H.: Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: analysis of a typical photochemical episode by an observation-based model, Atmos. Chem. Phys., 22, 2173–2190, https://doi.org/10.5194/acp-22-2173-2022, 2022.
Liu, Y., Wang, Y., Ma, P., Ma, Y., Pan, Y., Ma, W., Li, S., Liu, P., Liao, Z., Liu, Z., Chu, B., Ma, Q., Quan, J., and He, H.: Formation of Nitrate in the Residual Layer of Beijing: Pathways Evaluation and Contributions to the Ground Level, Environ. Sci. Technol., 59, 9699–9708, https://doi.org/10.1021/acs.est.5c02981, 2025.
Ma, P. K., Quan, J. N., Dou, Y. J., Pan, Y. B., Liao, Z. H., Cheng, Z. G., Jia, X. C., Wang, Q. Q., Zhan, J. L., Ma, W., Zheng, F. X., Wang, Y. Z., Zhang, Y. S., Hua, C. J., Yan, C., Kulmala, M., Liu, Y. A., Huang, X., Yuan, B., Brown, S. S., and Liu, Y. C.: Regime-Dependence of Nocturnal Nitrate Formation via N2O5 Hydrolysis and Its Implication for Mitigating Nitrate Pollution, Geophys. Res. Lett., 50, https://doi.org/10.1029/2023gl106183, 2023.
Mao, J. Y., Yan, F. H., Zheng, L. M., You, Y. C., Wang, W. W., Jia, S. G., Liao, W. H., Wang, X. M., and Chen, W. H.: Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China, Sci. Total Environ., 813, https://doi.org/10.1016/j.scitotenv.2021.151883, 2022.
McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Hilfiker, F. L., Lee, B. H., Jaeglé, L., Guo, H. Y., Weber, R. J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Campos, T., Hall, S. R., Ullmann, K., Roberts, J. M., Thornton, J. A., and Brown, S. S.: ClNO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization, J. Geophys. Res.-Atmos., 123, 12994–13015, https://doi.org/10.1029/2018jd029358, 2018a.
McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., Shah, V., Jaeglé, L., Guo, H. Y., Weber, R. J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Hornbrook, R. S., Apel, E. C., Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations, J. Geophys. Res.-Atmos., 123, 4345–4372, https://doi.org/10.1002/2018jd028336, 2018b.
McDuffie, E. E., Womack, C. C., Fibiger, D. L., Dube, W. P., Franchin, A., Middlebrook, A. M., Goldberger, L., Lee, B. H., Thornton, J. A., Moravek, A., Murphy, J. G., Baasandorj, M., and Brown, S. S.: On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah, Atmos. Chem. Phys., 19, 9287–9308, https://doi.org/10.5194/acp-19-9287-2019, 2019.
Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of aerosol chemical composition on N2O5 uptake: airborne regional measurements in northwestern Europe, Atmos. Chem. Phys., 15, 973–990, https://doi.org/10.5194/acp-15-973-2015, 2015.
Niu, Y. B., Zhu, B., He, L. Y., Wang, Z., Lin, X. Y., Tang, M. X., and Huang, X. F.: Fast Nocturnal Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime Photochemistry, J. Geophys. Res.-Atmos., 127, https://doi.org/10.1029/2022jd036716, 2022.
Requia, W. J., Di, Q., Silvern, R., Kelly, J. T., Koutrakis, P., Mickley, L. J., Sulprizio, M. P., Amini, H., Shi, L. H., and Schwartz, J.: An Ensemble Learning Approach for Estimating High Spatiotemporal Resolution of Ground-Level Ozone in the Contiguous United States, Environ. Sci. Technol., 54, 11037–11047, https://doi.org/10.1021/acs.est.0c01791, 2020.
Seinfeld, J. H.: Urban air-pollution – state of the science, Science, 243, 745–752, https://doi.org/10.1126/science.243.4892.745, 1989.
Sun, J., Qin, M., Xie, X., Fu, W., Qin, Y., Sheng, L., Li, L., Li, J., Sulaymon, I. D., Jiang, L., Huang, L., Yu, X., and Hu, J.: Seasonal modeling analysis of nitrate formation pathways in Yangtze River Delta region, China, Atmos. Chem. Phys., 22, 12629–12646, https://doi.org/10.5194/acp-22-12629-2022, 2022.
Thaler, R. D., Mielke, L. H., and Osthoff, H. D.: Quantification of Nitryl Chloride at Part Per Trillion Mixing Ratios by Thermal Dissociation Cavity Ring-Down Spectroscopy, Anal. Chem., 83, 2761–2766, https://doi.org/10.1021/ac200055z, 2011.
Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmos. Chem. Phys., 16, 14959–14977, https://doi.org/10.5194/acp-16-14959-2016, 2016.
Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A., Zhang, Y., and Wang, T.: Heterogeneous N2O5 uptake coefficient and production yield of ClNO2 in polluted northern China: roles of aerosol water content and chemical composition, Atmos. Chem. Phys., 18, 13155–13171, https://doi.org/10.5194/acp-18-13155-2018, 2018.
Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dubé, W. P., Kim, S., Middlebrook, A. M., Öztürk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N2O5 uptake coefficients and nocturnal NO2 removal rates determined from ambient wintertime measurements, J. Geophys. Res.-Atmos., 118, 9331–9350, https://doi.org/10.1002/jgrd.50653, 2013.
Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Lou, S., Tang, M., Wu, Y., Zhu, W., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N2O5 uptake and NO3 oxidation in the outflow of urban Beijing, Atmos. Chem. Phys., 18, 9705–9721, https://doi.org/10.5194/acp-18-9705-2018, 2018.
Wang, H., Peng, C., Wang, X., Lou, S., Lu, K., Gan, G., Jia, X., Chen, X., Chen, J., Wang, H., Fan, S., Wang, X., and Tang, M.: N2O5 uptake onto saline mineral dust: a potential missing source of tropospheric ClNO2 in inland China, Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, 2022a.
Wang, H., Yuan, B., Zheng, E., Zhang, X., Wang, J., Lu, K., Ye, C., Yang, L., Huang, S., Hu, W., Yang, S., Peng, Y., Qi, J., Wang, S., He, X., Chen, Y., Li, T., Wang, W., Huangfu, Y., Li, X., Cai, M., Wang, X., and Shao, M.: Formation and impacts of nitryl chloride in Pearl River Delta, Atmos. Chem. Phys., 22, 14837–14858, https://doi.org/10.5194/acp-22-14837-2022, 2022b.
Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D. J., Tan, Z. F., Wu, Y. S., Wu, Z. J., Zou, Q., Zheng, Y., Zeng, L. M., Zhu, T., Hu, M., and Zhang, Y. H.: High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway, Environ. Sci. Technol. Letters. 4, 416–420, https://doi.org/10.1021/acs.estlett.7b00341, 2017.
Wang, H. C., Lu, K. D., Chen, S. Y., Li, X., Zeng, L. M., Hu, M., and Zhang, Y. H.: Characterizing nitrate radical budget trends in Beijing during 2013–2019, Sci. Total Environ., 795, https://doi.org/10.1016/j.scitotenv.2021.148869, 2021.
Wang, W. J., Li, X., Cheng, Y. F., Parrish, D. D., Ni, R. J., Tan, Z. F., Liu, Y., Lu, S. H., Wu, Y. S., Chen, S. Y., Lu, K. D., Hu, M., Zeng, L. M., Shao, M., Huang, C., Tian, X. D., Leung, K. M., Chen, L. F., Fan, M., Zhang, Q., Rohrer, F., Wahner, A., Pöschl, U., Su, H., and Zhang, Y. H.: Ozone pollution mitigation strategy informed by long-term trends of atmospheric oxidation capacity, Nat. Geosci., 16, 1080–1081, https://doi.org/10.1038/s41561-023-01334-9, 2023a.
Wang, Y. H., Gao, W. K., Wang, S., Song, T., Gong, Z. Y., Ji, D. S., Wang, L. L., Liu, Z. R., Tang, G. Q., Huo, Y. F., Tian, S. L., Li, J. Y., Li, M. G., Yang, Y., Chu, B. W., Petäjä, T., Kerminen, V. M., He, H., Hao, J. M., Kulmala, M., Wang, Y. S., and Zhang, Y. H.: Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017, Natl. Sci. Rev., 7, 1331–1339, https://doi.org/10.1093/nsr/nwaa032, 2020.
Wang, Y. R., Yang, X. Y., Wu, K., Mei, H., De Smedt, I., Wang, S. G., Fan, J., Lyu, S., and He, C.: Long-term trends of ozone and precursors from 2013 to 2020 in a megacity (Chengdu), China: Evidence of changing emissions and chemistry, Atmos. Res., 278, https://doi.org/10.1016/j.atmosres.2022.106309, 2022c.
Wang, Y. T., Zhao, Y., Liu, Y. M., Jiang, Y. Q., Zheng, B., Xing, J., Liu, Y., Wang, S., and Nielsen, C. P.: Sustained emission reductions have restrained the ozone pollution over China, Nat. Geosci., 16, 967–974, https://doi.org/10.1038/s41561-023-01284-2, 2023b.
Wen, L., Xue, L., Wang, X., Xu, C., Chen, T., Yang, L., Wang, T., Zhang, Q., and Wang, W.: Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy, Atmos. Chem. Phys., 18, 11261–11275, https://doi.org/10.5194/acp-18-11261-2018, 2018.
Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D Atmospheric Modeling (F0AM) v3.1, Geosci. Model Dev., 9, 3309–3319, https://doi.org/10.5194/gmd-9-3309-2016, 2016.
Xie, X. D., Hu, J. L., Qin, M. M., Guo, S., Hu, M., Wang, H. L., Lou, S. R., Li, J. Y., Sun, J. J., Li, X., Sheng, L., Zhu, J. L., Chen, G. Y., Yin, J. J., Fu, W. X., Huang, C., and Zhang, Y. H.: Modeling particulate nitrate in China: Current findings and future directions, Environ. Int., 166, https://doi.org/10.1016/j.envint.2022.107369, 2022.
Xing, J., Ding, D., Wang, S., Zhao, B., Jang, C., Wu, W., Zhang, F., Zhu, Y., and Hao, J.: Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and NH3 for reducing air pollution in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 18, 7799–7814, https://doi.org/10.5194/acp-18-7799-2018, 2018.
Yan, C., Tham, Y. J., Nie, W., Xia, M., Wang, H. C., Guo, Y. S., Ma, W., Zhan, J. L., Hua, C. J., Li, Y. Y., Deng, C. J., Li, Y. R., Zheng, F. X., Chen, X., Li, Q. Y., Zhang, G., Mahajan, A. S., Cuevas, C. A., Huang, D. D., Wang, Z., Sun, Y. L., Saiz-Lopez, A., Bianchi, F., Kerminen, V. M., Worsnop, D. R., Donahue, N. M., Jiang, J. K., Liu, Y. C., Ding, A. J., and Kulmala, M.: Increasing contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns, Nat. Geosci., 16, 975–981, https://doi.org/10.1038/s41561-023-01285-1, 2023.
Yang, C., Dong, H. S., Chen, Y. P., Xu, L. L., Chen, G. J., Fan, X. L., Wang, Y. H., Tham, Y. J., Lin, Z. Y., Li, M. R., Hong, Y. W., and Chen, J. S.: New Insights on the Formation of Nucleation Mode Particles in a Coastal City Based on a Machine Learning Approach, Environ. Sci. Technol., 58, 1187–1198, https://doi.org/10.1021/acs.est.3c07042, 2023.
Yang, S., Yuan, B., Peng, Y., Huang, S., Chen, W., Hu, W., Pei, C., Zhou, J., Parrish, D. D., Wang, W., He, X., Cheng, C., Li, X.-B., Yang, X., Song, Y., Wang, H., Qi, J., Wang, B., Wang, C., Wang, C., Wang, Z., Li, T., Zheng, E., Wang, S., Wu, C., Cai, M., Ye, C., Song, W., Cheng, P., Chen, D., Wang, X., Zhang, Z., Wang, X., Zheng, J., and Shao, M.: The formation and mitigation of nitrate pollution: comparison between urban and suburban environments, Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, 2022.
Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W., Tham, Y. J., Chen, T., Zheng, P., Li, H., Shan, Y., Wang, X., Xue, L., Zhou, Y., Yue, D., Ou, Y., Gao, J., Lu, K., Brown, S. S., Zhang, Y., and Wang, T.: Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters, Atmos. Chem. Phys., 20, 4367–4378, https://doi.org/10.5194/acp-20-4367-2020, 2020.
Yun, H., Wang, W., Wang, T., Xia, M., Yu, C., Wang, Z., Poon, S. C. N., Yue, D., and Zhou, Y.: Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China, Atmos. Chem. Phys., 18, 17515–17527, https://doi.org/10.5194/acp-18-17515-2018, 2018.
Zhai, S. X., Jacob, D. J., Wang, X., Liu, Z. R., Wen, T. X., Shah, V., Li, K., Moch, J. M., Bates, K. H., Song, S. J., Shen, L., Zhang, Y. Z., Luo, G., Yu, F. Q., Sun, Y. L., Wang, L. T., Qi, M. Y., Tao, J., Gui, K., Xu, H. H., Zhang, Q., Zhao, T. L., Wang, Y. S., Lee, H. C., Choi, H., and Liao, H.: Control of particulate nitrate air pollution in China, Nat. Geosci., 14, 389–395, https://doi.org/10.1038/s41561-021-00726-z, 2021.
Zhai, T., Lu, K., Wang, H., Lou, S., Chen, X., Hu, R., and Zhang, Y.: Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019, Atmos. Chem. Phys., 23, 2379–2391, https://doi.org/10.5194/acp-23-2379-2023, 2023.
Zhang, R., Han, Y. H., Shi, A. J., Sun, X. S., Yan, X., Huang, Y. H., and Wang, Y.: Characteristics of ambient ammonia and its effects on particulate ammonium in winter of urban Beijing, China, Environ. Sci. Pollut. R., 28, 62828–62838, https://doi.org/10.1007/s11356-021-14108-w, 2021.
Zhang, X., Ma, Q., Chu, W. H., Ning, M., Liu, X. Q., Xiao, F. J., Cai, N. N., Wu, Z. J., and Yan, G.: Identify the key emission sources for mitigating ozone pollution: A case study of urban area in the Yangtze River Delta region, China, Sci. Total Environ., 892, https://doi.org/10.1016/j.scitotenv.2023.164703, 2023a.
Zhang, Y., Lei, R., Cui, S., Wang, H., Chen, M., and Ge, X.: Spatiotemporal trends and impact factors of PM2.5 and O3 pollution in major cities in China during 2015–2020, Chinese Sci. Bull., 67, 2029–2042, 2022.
Zhang, Y. N., Wang, H. L., Huang, L. B., Qiao, L. P., Zhou, M., Mu, J. S., Wu, C., Zhu, Y. J., Shen, H. Q., Huang, C., Wang, G. H., Wang, T., Wang, W. X., and Xue, L. K.: Double-Edged Role of VOCs Reduction in Nitrate Formation: Insights from Observations during the China International Import Expo 2018, Environ. Sci. Technol., 57, 15979–15989, https://doi.org/10.1021/acs.est.3c04629, 2023b.
Zhao, S. P., Yin, D. Y., Yu, Y., Kang, S. C., Qin, D. H., and Dong, L. X.: PM2.5 and O3 pollution during 2015–2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts, Environ. Pollut., 264, https://doi.org/10.1016/j.envpol.2020.114694, 2020.
Zhao, X. X., Zhao, X. J., Liu, P. F., Chen, D., Zhang, C. L., Xue, C. Y., Liu, J. F., Xu, J., and Mu, Y. J.: Transport Pathways of Nitrate Formed from Nocturnal N2O5 Hydrolysis Aloft to the Ground Level in Winter North China Plain, Environ. Sci. Technol., https://doi.org/10.1021/acs.est.3c00086, 2023.
Zhou, M., Nie, W., Qiao, L. P., Huang, D. D., Zhu, S. H., Lou, S. R., Wang, H. L., Wang, Q., Tao, S. K., Sun, P., Liu, Y. W., Xu, Z., An, J. Y., Yan, R. S., Su, H., Huang, C., Ding, A. J., and Chen, C. H.: Elevated Formation of Particulate Nitrate From N2O5 Hydrolysis in the Yangtze River Delta Region From 2011 to 2019, Geophys. Res. Lett., 49, https://doi.org/10.1029/2021gl097393, 2022.
Zong, Z., Tian, C. G., Sun, Z. Y., Tan, Y., Shi, Y. J., Liu, X. H., Li, J., Fang, Y. T., Chen, Y. J., Ma, Y. H., Gao, H. W., Zhang, G., and Wang, T.: Long-Term Evolution of Particulate Nitrate Pollution in North China: Isotopic Evidence From 10 Offshore Cruises in the Bohai Sea From 2014 to 2019, J. Geophys. Res.-Atmos., 127, https://doi.org/10.1029/2022jd036567, 2022.
Short summary
Based on field observations of N2O5, we found extremely high nighttime concentrations of N2O5, with a maximum value of 2.52 ppb. Further multiphase box model analysis revealed that the heterogeneous uptake of N2O5 is the most significant nitrate formation pathway in NO2-limited urban areas. Additionally, we further analyzed the reasons for this high N2O5 uptake contribution, and discussed the synergistic reduction of nitrates and O3.
Based on field observations of N2O5, we found extremely high nighttime concentrations of N2O5,...
Altmetrics
Final-revised paper
Preprint