Articles | Volume 24, issue 7
https://doi.org/10.5194/acp-24-4177-2024
https://doi.org/10.5194/acp-24-4177-2024
Research article
 | 
08 Apr 2024
Research article |  | 08 Apr 2024

Diagnosing ozone–NOx–VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations

Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, and Wenxing Wang

Related authors

Tropospheric ozone trends and attributions over East and Southeast Asia in 1995–2019: An integrated assessment using statistical methods, machine learning models, and multiple chemical transport models
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
EGUsphere, https://doi.org/10.5194/egusphere-2024-3702,https://doi.org/10.5194/egusphere-2024-3702, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The impact of COVID-19 lockdown on surface air quality changes in major African countries
Zizhen Han, Yuqiang Zhang, Zhou Liu, Kexin Zhang, Zhuyi Wang, Bin Luo, Likun Xue, and Xinfeng Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2951,https://doi.org/10.5194/egusphere-2024-2951, 2024
Short summary
High-resolution mapping of on-road vehicle emissions with real-time traffic datasets based on big data
Yujia Wang, Hongbin Wang, Bo Zhang, Peng Liu, Xinfeng Wang, Shuchun Si, Likun Xue, Qingzhu Zhang, and Qiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2791,https://doi.org/10.5194/egusphere-2024-2791, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Spatial-temporal patterns of anthropogenic and biomass burning contributions on air pollution and mortality burden changes in India from 1995 to 2014
Bin Luo, Yuqiang Zhang, Tao Tang, Hongliang Zhang, Jianlin Hu, Jiangshan Mu, Wenxing Wang, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2024-974,https://doi.org/10.5194/egusphere-2024-974, 2024
Short summary
Measurement report: Atmospheric ice nuclei in the Changbai Mountains (2623 m a.s.l.) in northeastern Asia
Yue Sun, Yujiao Zhu, Yanbin Qi, Lanxiadi Chen, Jiangshan Mu, Ye Shan, Yu Yang, Yanqiu Nie, Ping Liu, Can Cui, Ji Zhang, Mingxuan Liu, Lingli Zhang, Yufei Wang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 24, 3241–3256, https://doi.org/10.5194/acp-24-3241-2024,https://doi.org/10.5194/acp-24-3241-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Machine Learning | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Technical note: Towards atmospheric compound identification in chemical ionization mass spectrometry with machine learning
Federica Bortolussi, Hilda Sandström, Fariba Partovi, Joona Mikkilä, Patrick Rinke, and Matti Rissanen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1846,https://doi.org/10.5194/egusphere-2024-1846, 2024
Short summary
A machine learning approach to downscale EMEP4UK: analysis of UK ozone variability and trends
Lily Gouldsbrough, Ryan Hossaini, Emma Eastoe, Paul J. Young, and Massimo Vieno
Atmos. Chem. Phys., 24, 3163–3196, https://doi.org/10.5194/acp-24-3163-2024,https://doi.org/10.5194/acp-24-3163-2024, 2024
Short summary
Automated detection and monitoring of methane super-emitters using satellite data
Berend J. Schuit, Joannes D. Maasakkers, Pieter Bijl, Gourav Mahapatra, Anne-Wil van den Berg, Sudhanshu Pandey, Alba Lorente, Tobias Borsdorff, Sander Houweling, Daniel J. Varon, Jason McKeever, Dylan Jervis, Marianne Girard, Itziar Irakulis-Loitxate, Javier Gorroño, Luis Guanter, Daniel H. Cusworth, and Ilse Aben
Atmos. Chem. Phys., 23, 9071–9098, https://doi.org/10.5194/acp-23-9071-2023,https://doi.org/10.5194/acp-23-9071-2023, 2023
Short summary
Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning
Vigneshkumar Balamurugan, Jia Chen, Adrian Wenzel, and Frank N. Keutsch
Atmos. Chem. Phys., 23, 10267–10285, https://doi.org/10.5194/acp-23-10267-2023,https://doi.org/10.5194/acp-23-10267-2023, 2023
Short summary
Estimating nitrogen and sulfur deposition across China during 2005 to 2020 based on multiple statistical models
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023,https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary

Cited articles

Action Plan on Air Pollution Prevention and Control (in Chinese): http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (last access: 1 February 2023), 2023. 
Bertasius, G., Wang, H., and Torresani, L.: Is Space-Time Attention All You Need for Video Understanding?, arXiv [preprint], https://doi.org/10.48550/arXiv.2102.05095, 9 June 2021. 
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA, 785–794, https://doi.org/10/gdp84q, 2016. 
Chu, W., Li, H., Ji, Y., Zhang, X., Xue, L., Gao, J., and An, C.: Research on ozone formation sensitivity based on observational methods: Development history, methodology, and application and prospects in China, J. Environ. Sci., 138, 543–560, https://doi.org/10/gr4qzk, 2023. 
Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., Krotkov, N. A., Brook, J. R., and McLinden, C. A.: Global fine-scale changes in ambient NO2 during COVID-19 lockdowns, Nature, 601, 380–387, https://doi.org/10.1038/s41586-021-04229-0, 2022. 
Download
Short summary
We developed a novel transformer framework to bridge the sparse surface monitoring for inferring ozone–NOx–VOC–aerosol sensitivity and their urban–nonurban discrepancies at a finer scale with implications for improving our understanding of ozone variations. The change in urban–rural disparities in ozone was dominated by PM2.5 from 2019 to 2020. An aerosol-inhibited regime on top of the two traditional NOx- and VOC-limited regimes was identified in Jiaodong Peninsula, Shandong, China.
Altmetrics
Final-revised paper
Preprint