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Abstract. Narrowing surface ozone disparities between urban and nonurban areas escalate health risks in
densely populated urban zones. A comprehensive understanding of the impact of ozone photochemistry on this
transition remains constrained by current knowledge of aerosol effects and the availability of surface monitor-
ing. Here we reconstructed spatiotemporal gapless air quality concentrations using a novel transformer deep
learning (DL) framework capable of perceiving spatiotemporal dynamics to analyze ozone urban–nonurban dif-
ferences. Subsequently, the photochemical effect on these discrepancies was analyzed by elucidating shifts in
ozone regimes inferred from an interpretable machine learning method. The evaluations of the model exhibited
an average out-of-sample cross-validation coefficient of determination of 0.96, 0.92, and 0.95 for ozone, nitrogen
dioxide, and fine particulate matter (PM2.5), respectively. The ozone sensitivity in nonurban areas, dominated by
a nitrogen-oxide-limited (NOx-limited) regime, was observed to shift towards increased sensitivity to volatile
organic compounds (VOCs) when extended to urban areas. A third “aerosol-inhibited” regime was identified in
the Jiaodong Peninsula, where the uptake of hydroperoxyl radicals onto aerosols suppressed ozone production
under low NOx levels during summertime. The reduction of PM2.5 could increase the sensitivity of ozone to
VOCs, necessitating more stringent VOC emission abatement for urban ozone mitigation. In 2020, urban ozone
levels in Shandong surpassed those in nonurban areas, primarily due to a more pronounced decrease in the latter
resulting from stronger aerosol suppression effects and less reduction in PM2.5. This case study demonstrates
the critical need for advanced spatially resolved models and interpretable analysis in tackling ozone pollution
challenges.

1 Introduction

Surface ozone (O3), fine particulate matter (PM2.5), and ni-
trogen dioxide (NO2) are among the most important trace
gases in the atmosphere that significantly impact the ecolog-
ical environment and public health (Han and Naeher, 2006;
Yue et al., 2017). During the Action Plan on the Preven-
tion and Control of Air Pollution (denoted as the Clean Air
Action, 2013–2017) (Action Plan on Air Pollution Preven-

tion and Control (in Chinese), 2023), PM2.5 and nitrogen
oxide (NOx = nitric oxide (NO)+NO2) emissions across
China decreased by 33 % and 21 %, respectively (Zheng et
al., 2018), while surface O3 exhibited an increasing trend
(Lu et al., 2018). The increase in O3 could be partially at-
tributed to the “aerosol-inhibited” effect, where the reduction
in PM2.5 results in a diminished reactive uptake of hydroper-
oxyl radicals (HO2) onto aerosols (Ivatt et al., 2022; Li et
al., 2019). The societal benefits of reducing premature deaths
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and economic losses from PM2.5 reductions have been di-
minished by the rising O3 (Liu et al., 2022). Thus, achieving
the joint attainment objectives for PM2.5 and O3 has been set
as the top priority for China’s long-term air pollution control
policies.

The complexity of O3 formation is partly reflected by the
nonlinear response to changes in precursors (i.e., volatile or-
ganic compounds – VOCs; NOx), as well as the presence
of heterogeneous reactions in aerosols. Understanding these
dynamics is crucial to investigating currently narrowing dif-
ferences in O3 concentrations between urban and nonurban
areas, which have traditionally shown higher levels in ru-
ral areas (Han et al., 2023). The formaldehyde-to-NO2 ra-
tio (HCHO / NO2 or FNR) serves as a theoretical gauge of
the relative abundance of total organic reactivity to hydroxyl
radicals (OH) and NOx (W. Wei et al., 2022; Sillman, 1995),
and as such, it can function as a useful indicator of O3 sensi-
tivity. Previous studies have utilized HCHO/NO2 from satel-
lite remote sensing to infer O3 production regimes for guid-
ing O3 control policies (Jin et al., 2023, 2020; D. Li et al.,
2021). However, the changes in the HCHO/NO2 threshold
in O3 regime classification modulated by meteorology and
localized atmospheric chemistry in space and time, as well
as uncertainties relating columns to the surface, preclude ro-
bust applications over larger spatial scales (Lee et al., 2023;
Jin et al., 2017; Souri et al., 2023). While the observation-
based model method alleviates some of these limitations,
constraints remain including computational demands and
prior chemical mechanisms (K. Song et al., 2022; Chu et al.,
2023). The advent of interpretable machine learning models
affords new opportunities to unravel intricate dependencies
governing O3 formation purely from actual observational
data. However, sparse ground-based monitoring stations, es-
pecially in rural areas, pose great challenges to the full
spatial coverage of studies. Thus, the high-spatiotemporal-
resolution estimations of surface air pollutants are urgently
needed to improve our understanding of how these pollutants
are changing and interacting.

Recent studies have utilized spatially resolved remote
sensing data to estimate the continuous distribution of air
pollutants in space by diverse machine learning (ML) mod-
els (Lyapustin and Wang, 2022; Lamsal et al., 2022; Huang et
al., 2021; Li and Wu, 2021; X. Ren et al., 2022), such as ran-
dom forest (RF), full residual deep learning, and Bayesian
ensemble modeling. These attempts have demonstrated the
tremendous potential of machine learning as an alternative to
atmospheric chemical models (Jung et al., 2022). Neverthe-
less, there are still several aspects that have not been fully
considered. For instance, coarse-resolution maps limit the
ability to characterize the fine-scale variation of air pollution
within urban areas, which has significant implications for en-
vironmental justice disparities of disadvantaged communi-
ties (Jerrett et al., 2005; X. Ren et al., 2022; Dias and Tche-
pel, 2018). Additionally, existing ML models may not fully
account for the complex atmospheric chemistry and physics

processes that influence pollutant concentrations due to the
single-pixel-based processing mode (Huang et al., 2021; Re-
quia et al., 2020; Thongthammachart et al., 2022; M. Li et al.,
2022; Geng et al., 2021). Although several efforts have been
made using a neural network with convolutional layers (Di
et al., 2016) and explicitly incorporating spatiotemporally
weighted information into machine learning models (Wei et
al., 2022b), the global spatiotemporal self-correlation of mul-
tidimensional features in the input array has remained un-
addressed. Meanwhile, convolutional operations extract fea-
tures from all neighboring grids of the target, ignoring the
fact that the environmental knowledge of the target grid it-
self is the most significant, with the adjacent features being
secondary.

In this study, we aim to analyze the evolving dynam-
ics of urban–nonurban O3 differences between 2019 and
2020. The roles of emission discrepancies and nonlinearity
of O3–NOx–VOC–aerosol photochemical processes in shap-
ing these O3 variations were deeply dissected. To achieve a
comprehensive analysis, we employed a new spatiotemporal
transformer framework that paid special attention to air mass
transport and dispersion affected by spatial–temporal corre-
lations to reconstruct spatially gapless air quality datasets
based on satellite data, ground-level observations, and me-
teorological reanalysis. The estimations are particularly vital
for regions lacking dense ground-based monitors, ensuring
that our understanding of O3 dynamics in urban–nonurban
areas and formation regimes is not limited by geograph-
ical constraints in data availability. Surface O3 formation
regimes in Shandong province were inferred by the classic
XGBoost model (Chen and Guestrin, 2016) coupled with
Shapley Additive exPlanations (SHAP) (Lundberg and Lee,
2017), which identifies the impact of meteorological condi-
tions and photochemical indicators (i.e., PM2.5 as a proxy
for aerosols, NO2 as a proxy for NOx , and HCHO as a proxy
for VOCs) on O3. The innovative transformer-based model-
ing and interpretable machine learning analysis approaches
are expected to enable new applications such as those of air
quality simulation and O3 formation regime studies.

2 Materials and methods

2.1 Predictor variables

The study domain covered the Shandong province of China,
which has a high mortality burden of air pollution (Liu et
al., 2017). The surface PM2.5, O3, and NO2 concentration
measurements were collected from the regulatory air qual-
ity stations of the China National Environmental Monitor-
ing Center (CNEMC, with a total of 179 locations) and the
Shandong Provincial Eco-environmental Monitoring Center
(SDEM, with a total of 166 locations) (Fig. S1 in the Supple-
ment). The SDEM stations were included to fill the spatial
gaps in the county and rural areas where CNEMC stations
were lacking. The study area was divided into 1.22 million
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grid cells with a spatial resolution of 500 m. We utilized a
range of predictor data, including tropospheric NO2 verti-
cal column densities (VCDs) and O3 total VCDs measured
by the TROPOspheric Monitoring Instrument (TROPOMI)
(Lamsal et al., 2022; Copernicus Sentinel-5P (processed by
ESA), 2020), aerosol optical depth (AOD) data and atmo-
spheric properties obtained from the Moderate Resolution
Imaging Spectroradiometer (MODIS) Multi-Angle Imple-
mentation of Atmospheric Correction products (Lyapustin
and Wang, 2022), AOD estimates from Modern-Era Ret-
rospective Analysis for Research and Applications as the
supplement to MODIS (Global Modeling and Assimilation
Office (GMAO), 2015), meteorological reanalysis obtained
from the fifth-generation atmospheric reanalysis dataset of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) (ERA5) (Hersbach et al., 2023, p. 5), daily dy-
namic industrial emissions, moonlight-adjusted nighttime
light products (Román et al., 2018), vegetation index (Di-
dan, 2021), population density (WorldPop, 2018), road den-
sity, land use data (Jun et al., 2014), and the Shuttle Radar
Topography Mission digital elevation model. The detailed
information for all predictive variables is listed in Table S1
and discussed in Sects. S1–S2. Taking space-variant and sea-
sonal patterns into consideration, several spatiotemporal in-
dicators such as geographical coordinates, Euclidean spheri-
cal coordinates, year, Julian date, and helix-shaped trigono-
metric sequences were also included as predictor variables
(Sect. S3) (Sun et al., 2022). Geographic information sys-
tem techniques, including reprojection and resampling, were
used to consolidate all the data obtained for consistent pro-
jection and spatial scale. Finally, the Light Gradient Boosting
Machine was used to fill satellite data gaps (Sect. S4) (Ke et
al., 2017).

2.2 Air Transformer

AiT is an individual transformer model that adopts an
encoder–decoder architecture with multidimensional self-
attention computation to dynamically capture the spatiotem-
poral autocorrelation of atmospheric pollution changes from
the sequences of pixels and variables for more reliable spa-
tial maps of estimation. Compared with existing image and
video recognition transformers, such as ViT (Dosovitskiy et
al., 2021), Timesformer (Bertasius et al., 2021), and Uni-
former (K. Li et al., 2021), AiT is innovative in incorporat-
ing self-attention across channels after the pixel-based self-
attention and taking advantage of the decoder. The former
can capture the correlations between predictor variables. The
decoder was employed to enable interaction between the pri-
mary target grid and neighboring grids. Predictor variables
with eight time steps within 1000 m of the target grid cell
were fed into the model to learn spatiotemporally disparities
among atmospheric pollutants for predicting O3, NO2, and
PM2.5 within the target grid point.

The overall architecture of the proposed AiT model and
the dimensions of input data are illustrated in Fig. 1. The en-
coder maps an input sequence with neighborhood spatiotem-
poral data to a sequence with high-dimensional spatiotem-
poral characteristics, and the decoder generates an estima-
tion by computing self-attention representations between the
target grid and outputs of the encoder. The encoder of AiT
takes as input a clip X ∈ RV×T×H×W consisting of T multi-
variable frames of size H ×W sampled from the original
dataset, where V is the number of variables and the target
grid cell is located at (

⌈
H
2

⌉
,
⌈

W
2

⌉
). The decoder takes as in-

put a clip X ∈ RV×1×1×1 consisting of V variables from the
target grid. Several transformer blocks with modified self-
attention computation (AiT blocks) are applied to the en-
coder. The AiT encoder block is similar to the standard vi-
sion transformer block but specifically designed for atmo-
spheric estimation (Dosovitskiy et al., 2021). It is a stack
of two self-attention schemes, including global spatiotempo-
ral self-attention on the pixels and channel self-attention on
variable predictors. The former contains N =HW effective
input sequence length for the self-attention to extract spa-
tiotemporal information. The latter computes self-attention
based on V effective input sequence length to capture hidden
information on variables. The decoder part is symmetric to
the encoder part, but it only has a block with the spatiotem-
poral self-attention mechanism. We compute the matrix of
self-attention outputs as

Attention (Q, K, V )= softmax
(

QKT

√
dk

+B

)
V, (1)

where Q, K , and V are the queries, keys, and values in the in-
puts of the particular attention, respectively. dk is the feature
dimensionality of K , and B is the geographic positional bias
term. Another difference is that the attention function of the
decoder is computed on Q from the estimated grid data and
(K,V ) from the outputs of encoder blocks under the same
stage, resulting in the outputs of the last decoder block be-
ing sized 1×128. The description of the data transformation
and design details in the process of training can be found in
Sect. S5 in the Supplement. The multi-task learning strategy
was also applied for learning representation across multiple
pollutant estimation tasks (Sect. S6). The aggregated feature
data from June 2019 to June 2021 were utilized to train and
validate the model through cross-validation (CV), where the
optimal model, trained based on out-of-sample CV, was used
to estimate multiple pollutant concentrations during the study
period, which was then employed for subsequent analysis.

2.3 Diagnosing O3 formation sensitivity

Interpretability can provide insight into how a model may
be improved, bolster the understanding of the process be-
ing modeled, and engender appropriate confidence among
researchers. SHAP is a coalitional game-theoretic approach
based on Shapley values (Shapley, 1988) that assigns each
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Figure 1. Schematic diagram of the AiT model. The white box of multi-dimension inputs presents each pixel of raster data. The AiT block
is a transformer block based on self-attention across space, time, and variables. GeoPE, Norm, MLP, ST-MSA, and C-MSA respectively
indicate positional embedding, layer normalization, multi-layer perceptron, spatial–temporal multi-head self-attention, and multi-channel
(multi-variables) multi-head self-attention.

variable an importance value for a particular estimation.
Deep SHAP, a high-speed approximation algorithm that
builds on the connection between Shapley values and
DeepLIFT (Shrikumar et al., 2019), is employed to compute
the feature importance of AiT from all data with monitoring
labels for interpreting the prediction. The sensitivity of the
O3 formation regime was deduced using a combination of
the XGBoost model and SHAP interpretability method, em-
ploying the GPUTreeShap algorithm (Mitchell et al., 2020),
which simulated the response of surface O3 to meteorolog-
ical conditions, HCHO, NO2, and PM2.5, by utilizing the
continuous estimations from ERA5, AiT, and TROPOMI be-
tween 2019 and 2020. The incorporation of meteorology in
the model ameliorated the inadequacies in the conventional
method (HCHO to NO2 ratio), where its thresholds for iden-
tifying O3 regimes vary temporally and spatially. The pos-
itive or negative contributions of three atmospheric pollu-
tants were used to identify their promoting or inhibitory ef-
fects on O3 variability. Given the unbiased property of SHAP
values regarding directionality, the normalized relative mag-
nitudes of SHAP values were calculated for HCHO, NO2,

and PM2.5. This allowed the differentiation of the O3 for-
mation regimes based on the locally maximal proportions of
the SHAP values for each species. The ground-level monthly
HCHO concentrations were derived using a combination of
the column-to-surface conversion factor (CF) simulated from
the ECMWF Atmospheric Composition Reanalysis 4 and
the tropospheric HCHO VCDs obtained from TROPOMI
(Cooper et al., 2022; Su et al., 2022; Inness et al., 2019).
A detailed description of the CF method as used here is dis-

cussed in Sect. S7. To ensure consistency in resolution be-
tween TROPOMI and AiT, we employed the oversampling
method to downscale the TROPOMI VCDs to the resolution
of AiT estimation, which has been proven effective in achiev-
ing finer resolution (Su et al., 2022; Cooper et al., 2022; van
Donkelaar et al., 2015).

3 Results and discussion

3.1 Performance evaluation for the AiT

3.1.1 Cross-validation metrics

We evaluated the AiT performance using the 10-fold CV ap-
proach (Sect. S8), with the correlation coefficient (R2) mea-
suring the extent to which model simulations explain vari-
ability in atmospheric pollutants and root mean square error
(RMSE) and mean absolute error (MAE) evaluating the bias
and error of the estimates. As shown in Fig. 2, out-of-sample
CV daily ground-level O3, NO2, and PM2.5 estimations are
highly consistent with ground observations (R2

= 0.96, 0.92,
0.95), indicating low uncertainties, with RMSE of 10.1, 4.7,
and 8.5 µg m−3 and MAE of 7.2, 3.5, and 5.3 µg m−3 for the
2018–2021 period. The linear regression comparing the O3
predictions versus observations yields a slope of 0.98 and an
intercept of 2.39, which demonstrates that there is no system-
atic bias in the estimations. Meanwhile, as shown in Fig. S3,
our AiT model performs well at the individual site scale
with high CV RMSE for O3, NO2, and PM2.5 (10.5± 8.6,
4.7± 1.1, and 8.3± 2.8 µg m−3). In general, the AiT model
is robust for multi-pollutant simultaneous estimations.
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Figure 2. Out-of-sample cross-validation (a–c) and out-of-site cross-validation (d–f) of daily ground-level O3, NO2, and PM2.5 concentra-
tion in the validation set.

Figure 3. Spatial distribution of the annual mean (a–e) O3, (k–o) NO2, and (u–y) PM2.5 concentrations from observations, Air Transformer
(AiT), CNEMC-trained AiT, random forest (RF), and ChinaHighAirPollutants (CHAP), respectively, in 2019. The region enclosed by the red
rectangular box corresponds to the zoomed-in maps of the satellite (©Tianditu: https://www.tianditu.gov.cn/, last access: 23 January 2024)
and pollutant concentrations at a city scale for the capital city of Shandong province, Jinan.

The spatial generalization ability of the AiT is then exam-
ined by the out-of-site CV evaluation method (Fig. 2). The
daily spatial variations of O3, NO2, and PM2.5 at locations
without ground measurements can be well estimated by our
model (i.e., CV R2

= 0.91, 0.75, 0.91), representing a core
contribution of such studies. We also probe the model per-

formance for each site separately based on spatial CV es-
timations (Fig. S4). This general model yields an RMSE of
15.2±8.8, 8.1±2.7, and 11.1±2.8 µg m−3, respectively. Fur-
thermore, we trained the AiT model using data exclusively
from CNEMC and assessed its generalizability by validat-
ing it with data from SDEM. The model demonstrates strong
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performance with high our-of-sample CV R2 values in the
validation dataset of CNEMC (Fig. S5), and when evaluated
with SDEM data, it exhibits only an acceptable degradation
in predictive accuracy (Fig. S6, R2 for O3, NO2, and PM2.5:
0.90, 0.73, 0.79). Meanwhile, our framework utilizes multi-
task learning to enhance computational efficiency through a
single iteration and leverages the interactions among multiple
pollutants to optimize the performance at individual pollutant
levels (Table S2). In summary, AiT provides relatively sta-
ble estimations in areas without available ground-level mon-
itoring and reliably extends ground monitoring from the site
scale to the full-coverage spatial scale with high spatial reso-
lution.

3.1.2 Compared with other ML models

Since ground-level air quality measurements across the tar-
get regions are extremely limited at a 500 m spatial resolu-
tion, representing only roughly 2 / 1000 of the total grid cells,
we seek implicit approaches to validate our estimated near-
surface pollutant concentrations. We compared the model
performance with previous studies that applied different ML
methods to estimate these three air pollutants individually
and found that our cross-validation results are comparable to
or even better than those (Table S3). We also created a new
dataset in our study by applying the classic RF algorithm,
which is the most common ML model for estimating atmo-
spheric pollution in recent years (Wei et al., 2022a; Requia
et al., 2020; Xiao et al., 2018; Geng et al., 2021; Lu et al.,
2021) with the same variables as AiT. The statistical com-
parisons between AiT and RF are also shown in Table S3.
We then compared the spatial distribution of our results with
estimations from CHAP, AiT-CNEMC, and RF.

Figure 3 shows the spatial maps of near-surface air pol-
lutants with partially zoomed satellite images for monitor-
ing sites, AiT, CNEMC-trained AiT, RF, and CHAP in 2019
(see Fig. S7 for 2020). We found that the estimated NO2 and
PM2.5 from the AiT share a similar spatial distribution to
those estimated by RF and CHAP. However, enlarged city-
level urban regions in Fig. 3 reveal that AiT estimates fine
structures and intra-urban disparities in near-surface multi-
pollutant concentrations, which cannot be captured by either
RF or CHAP products. This spatial gradient is also captured
by AiT trained with CNEMC data, revealing the reliability
of the deep learning model structure. In general, while RF
and CHAP can only identify the hotspots of air pollutants at
a regional scale, the spatial distribution of air pollutants esti-
mated by AiT shows much more detailed differences with
high spatial and temporal variability across the city scale.
The differences of near-surface annual averaged pollutants
between 2019 and 2020 for measured and multi-estimated
data are presented in Fig. S8. The reductions or increases in
O3, NO2, and PM2.5 in distinct locations can be simulated by
our model, which is relatively consistent with the changes in
measurements. The zoomed maps in Fig. S8 show the differ-

ences in three pollutant concentrations at the city scale of the
capital of Shandong province, Jinan. It can be found that the
change in pollutant levels in 2020 compared to 2019 exhibits
substantial regional variations and intra-urban heterogeneity,
with some areas experiencing an increase and others a de-
crease. Compared to the estimations of RF and CHAP, our
results successfully capture the complex distribution of air
pollution in reality and reveal that the decline in PM2.5 is
primarily concentrated in suburban areas, while an increase
is pronounced in some urban regions during 2020. Notably,
this spatial trend may be consistent with underlying emission
patterns and meteorological conditions.

3.1.3 Typical event study

The typical example of the spatial distribution of multi-
pollutant observations and estimations of AiT is compared
for validating the predictive capability of the model during
a particular pollution episode, i.e., 13–16 March 2021. Dur-
ing this period, an early-season dust storm, which was called
the largest and strongest such storm in a decade, hit northern
China (Myers, 2021). As shown in Fig. 4, our model can cap-
ture the spatial distribution of surface O3, NO2, and PM2.5
at the time of severe atmospheric pollution. In addition, our
estimations are in high concordance with measurements in
terms of magnitudes and spatial variability over the entire re-
search region. The model trained solely on CNEMC data is
also capable of effectively capturing the drastic changes in
air quality during the pollution episode (Fig. S9). Combining
wind fields to analyze PM2.5 distribution on the day of the
dust storm, it can be found that surface wind carries a massive
amount of particulate matter from Beijing, which suffered a
severe dust storm, to northern Shandong. The influence was
gradually diminishing in southern Shandong due to the ob-
struction of Mount Tai. Spatial heterogeneity within intra-
urban areas was further investigated to identify the hotspots
of pollution sources. The satellite images in even-numbered
rows of Fig. 4 illustrate the spatial disparities of three pol-
lutants around four typical emission sources: thermal power
plants, industrial parks, overpasses, and parks. As depicted,
these anthropogenic emission sources contribute to higher
pollution levels, while the mountain in the park mitigates pri-
mary pollution but also increases O3 concentrations. Indus-
trial sources emit a large amount of NOx and PM2.5, leading
to increased pollution of these species compared with other
urban microenvironments, which in turn promotes O3 for-
mation, particularly in downwind areas (Miller et al., 1978;
Tang et al., 2020). Although the spatial gradients of pollu-
tants on the street are not as apparent as in the dataset with
100 m resolution (Huang et al., 2021), the predicted spatial
variation between various geographical scenes is in satisfac-
tory agreement given the 500 m scale of the model. Urban
areas affected by diverse dust pollution exhibit lower PM2.5
concentrations compared to rural areas due to the obstructive
and filtering effects of artificial structures, such as buildings
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Figure 4. The spatial distribution of ground-level O3 (a–d), NO2 (i–l), and PM2.5 (q–t) concentrations from AiT and monitoring stations
during 13–16 March 2021 in Shandong, China. The black arrows are the 10 m wind speed and wind direction. The even-numbered rows
correspond to the concentration distribution maps of typical emission sources for the respective pollutants, accompanied by satellite images
(©Tianditu: https://www.tianditu.gov.cn/, last access: 23 January 2024). The upper right area of (e), (m), and (u) is a thermal power plant in
Weifang (119°250′–119°280′E, 36°658′–36°673′N). The center area of (f), (n), and (v) is an industrial park in Zibo (117°725′–117°845′E,
36° 880′–36°940′N). The center and upper right area of (g), (o), and (w) represent an overpass and Wanling Mountain in Jinan (116°977′–
117°009′E, 36°590′–36°606′N). The center area of (h), (p), and (x) is another overpass in Jinan (116°970′–117°030′E, 36°580′–36°610′N).

and urban greenery (Fig. S10), which cannot be effectively
captured solely by ground-based observations. Notably, the
elevated PM2.5 inhibits the formation of O3 by diminishing
solar radiation flux and absorbing the HO2 radical on the
aerosol surface, even in conditions characterized by similar
NO2 levels. As for the mapping, AiT accurately grasps the
spatial characteristics of air pollutants and delivers a coher-
ent spatial–temporal distribution that is consistent with the
prior knowledge of atmospheric transport.

3.2 Urban–nonurban difference

Full-coverage pollutant estimates provide a foundational ba-
sis for assessing urban–nonurban disparities, addressing the
critical issue of imbalanced site numbers between urban and
rural locations. Table S4 shows the concentrations of O3,
NO2, PM2.5, and HCHO over the urban and nonurban re-
gions, delineated from an annual urban extent dataset (Zhao

et al., 2022). The urban extents in Shandong province in 2019
are depicted in Fig. S11. From 2019 to 2020, surface air pol-
lutant levels declined significantly in Shandong. The aver-
aged concentration discrepancies of these pollutants between
urban and nonurban areas over February to March (lockdown
during COVID-19) and June to October (summertime) are
shown in Fig. 5. Surface concentrations of NO2 and HCHO
are higher in urban than nonurban areas, and the differences
narrowed from February to October, while PM2.5 is the op-
posite in both. Ground-level O3 levels exhibited unexpected
urban–nonurban disparity variations from the lockdown pe-
riod through the summer as well as from 2019 to 2020. Com-
pared to nonurban areas, the urban areas, which previously
had lower O3 levels, began to experience higher concentra-
tions, attributed to a more rapid decline of ozone in nonurban
regions. Figure 6 reveals that urban–nonurban differences in
O3 and PM2.5 varied across various cities during the lock-
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Figure 5. The discrepancies of O3, NO2, and PM2.5 between ur-
ban and nonurban areas from 2019 to 2020 for the lockdown period
(a) and the summertime (b) averaged concentration.

down period in 2019, while the higher NO2 pollution in ur-
ban areas remained consistent. In summer, only a handful
of urban areas exhibit lower levels of ozone concentration,
where NO2 and PM2.5 levels surpass those in nonurban re-
gions, attributable to a more pronounced titration effect of
NO and a slower rate of photochemistry reactions (Fig. S12)
(Sicard et al., 2016, 2020; Zhang et al., 2004). Comparative
urban–nonurban differences from 2019 to 2020 indicate an
accelerated reduction of ozone and HCHO in nonurban ar-
eas, while NO2 and PM2.5 levels in urban areas saw a more
significant decrease due to the decline in anthropogenic ac-
tivities, particularly the suspension of emissions from pol-
lution sources located in urban areas. Upon comparing the
results of urban–nonurban disparities of our data with moni-
toring data and the CHAP dataset, we have identified poten-
tial overestimations or underestimations across various cities
in monitoring data, likely resulting from the limited num-
ber of nonurban sites (Figs. 6m and S13). The notable dis-
parity between the number of urban and nonurban sites in
cities such as JNA, LC, LY, QD, and YT results in a pattern
of urban–nonurban differences that contrasts markedly with
that observed in AiT (Table S5). The urban–nonurban differ-
ence calculated by CHAP generally aligns with our findings
(Fig. S14). Nevertheless, it is worth noting that the coarse
resolution of O3 (10 km) has led to a significant overestima-
tion. These results highlight the value of high-resolution and
gapless data for studying urban–nonurban disparities.

3.3 Photochemical regimes

3.3.1 Ozone–NOx–VOC–aerosol sensitivity

Figure S15 shows the seasonal maps of O3, PM2.5, and NO2
estimations from AiT and satellite-derived surface HCHO.
Based on these data, we first capture the well-established
nonlinearities in O3–VOC–NOx chemistry with a conceptual
framework similar to classic O3 isopleths typically gener-
ated with models (Pusede et al., 2015; J. Ren et al., 2022).
Figure 7a depicts O3 concentration as a function of HCHO
and NO2, which was derived solely from ground-level es-
timation. The result indicates that the O3 regimes can be

qualitatively identified based on the nonlinear interaction be-
tween surface O3, HCHO, and NO2. In the regime charac-
terized by high NO2 and low HCHO, the elevated consump-
tion of HOx , predominantly driven by the OH + NO2 ter-
mination reaction, results in the suppression of NOx on O3,
indicating the prevalence of VOC-limited chemistry. Con-
versely, when HCHO levels are high and NO2 levels are
relatively low, O3 increases with NO2 and exhibits insen-
sitivity to HCHO due to abundant peroxyl radical (HO2+

organic peroxy (RO2) radicals, ROx) self-reactions, suggest-
ing NOx-limited (VOC-saturated) chemistry. In cases where
high HCHO and NO2, the O3 increases with both HCHO
and NO2, reaching a peak. While Fig. 7a resembles this
overall O3–VOC–NOx relationship, the blurry transition be-
tween two different regimes and the role of PM2.5 are uncer-
tain, which may be influenced by meteorological conditions,
chemical and depositional loss of O3, errors of estimations,
and aerosol-inhibited regimes. Increasing PM2.5 levels could
suppress O3 formation even under high HCHO and NO2 con-
ditions (Fig. 7b), which could be induced by enhanced reac-
tive uptake of HO2 onto aerosol particles and weaker photo-
chemical reaction resulting from the scattering and absorp-
tion of solar radiation by anthropogenic aerosols. The rela-
tionship between PM2.5 and O3 in Shandong demonstrates
the distinct stages of O3 chemistry, as depicted in Fig. 7c.
When PM2.5 was below the maximum turning point (MTP1,
35 µg m−3), a linear and positive correlation between O3 and
PM2.5 was observed due to the common dependence on pre-
cursors in the initial stage (Zhang et al., 2022). As PM2.5
increased beyond the MTP1, a sharp reduction in HCHO
and O3 was observed, accompanied by a decline in sur-
face shortwave radiation, reflecting their formation as photo-
oxidation products of OVOCs and NOx . When PM2.5 ex-
ceeded the minimum transition point (MTP2, 45 µg m−3), a
phase was observed with stagnant radiation intensity and rel-
atively higher NO2 levels compared to HCHO. This is typ-
ically associated with a VOC-limited regime, where an in-
crease in HCHO and a decrease in NO2 concentration could
promote O3 production. However, our findings demonstrated
an opposite impact of HCHO and NO2 on O3 when PM2.5 ex-
ceeded MTP2. Figure 7d shows the changes in the quantita-
tive relationships between HCHO/NO2 (FNR) and O3 by ar-
tificially changing PM2.5 and precursor levels for XGBoost,
in which the peak of curves marks the transitional thresh-
old of O3 regimes from VOC- to NOx-sensitive. It can be
seen that attenuated PM2.5 pollution could increase the sen-
sitivity of O3 to VOCs and decrease the sensitivity to NOx ,
which causes the shift in O3 regimes from NOx-limited to
VOC-limited. With the recent reduction in NOx emissions in
China, the anticipated transition of the O3 production regime
in urban areas towards being more NOx-limited has been
impeded by the heightened VOC sensitivity resulting from
decreased PM2.5 levels. Our results are consistent with the
findings of Li et al. regarding the Ox–NOx relationship in
response to changing PM2.5 (C. Li et al., 2022) and with
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Figure 6. The urban–nonurban disparities of O3, NO2, PM2.5, and HCHO calculated by AiT across cities with administrative divisions in
Shandong, China, during lockdown periods in 2019 (a, d, g, j) and 2020 (b, e, h, k), as well as the changes in differences between 2019
and 2020 (c, f, i, l). Panel (m) is the comparison between the results of monitoring station data and the AiT dataset in 2019. Red represents
a greater decline in air pollutants in nonurban areas, while blue indicates a more significant reduction in urban areas in the third column of
the figure (YT: Yantai, BZ: Binzhou, DY: Dongying, WH: Weihai, DZ: Dezhou, JNA: Jinan, QD: Qingdao, WF: Weifang, ZB: Zibo, LC:
Liaocheng, LW: Laiwu, TA: Taian, LY: Linyi, RZ: Rizhao, JNI: Jining, HZ: Hezhe, ZZ: Zaozhuang).

the findings of Dyson et al. (2023) on the impact of HO2
aerosol uptake on O3 production (Dyson et al., 2023). The
SHAP interaction plots in Fig. 7e and f illustrate that the
influence of NO2 and HCHO on O3 formation is not con-
stant and is influenced by the levels of PM2.5. Typically, at
a certain level of PM2.5, a lower NO concentration results
in a stronger inhibitory effect on O3 production. This could
be due to aerosols exerting stronger suppression through the
HO2 sink at lower NOx levels. As the concentration of PM2.5
increases, often accompanied by a concurrent increase in
NO2 as a key precursor, there is a greater need for higher
levels of NO2 to be converted into nitrous acid (HONO)
through the heterogeneous uptake by aerosols. This process
produces more OH radicals, which facilitate photochemical
O3 formation, thereby offsetting the increased inhibitory ef-
fect of the HO2 sink. Under high PM2.5 concentrations, an
increase in NO2 along with a decrease in HCHO enhances
their effect on promoting O3 formation. Meanwhile, the im-
pact of HCHO shifts from promoting to suppressing as PM2.5
pollution intensifies. It further illustrates that the scaveng-
ing of HO2 on aerosols can cause the shift in O3 regimes
from being VOC-limited to NOx-limited and the threshold

approach is restricted by aerosols and meteorology for deter-
mining the constantly changing O3 formation regimes over
time and space.

Unraveling the intricate interplay of O3 with meteorology,
aerosols, and precursors that govern O3 formation over ex-
tensive spatial domains has long confounded robust interpre-
tation. These multiscale processes were elucidated using an
interpretable ML model, which can quantify the positive or
negative contributions of individual processes. As depicted in
Fig. S16, the performance of the XGBoost model is robust,
evidenced by a high R2 value of 0.99 coupled with a low
RMSE of 3.24 µg m−3 and MAE of 2.33 µg m−3. Figure S17
shows that meteorological variations, chiefly surface short-
wave radiation flux modulating photochemical reaction ki-
netics, primarily dictate the heterogeneous geographic distri-
bution of O3 at the regional scale, with lower levels over the
Jiaodong Peninsula. Meanwhile, local atmospheric chemi-
cal processes predominate the city-scale variability of O3.
HCHO facilitated O3 formation in urban areas yet suppressed
it in rural regions across areas with high ozone, where most
NO2 promoted O3 production overall, indicating VOC–NOx

synergistic control on O3 in cities and a NOx-limited regime
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Figure 7. (a) O3 concentrations as a function of surface HCHO and NO2. (b) O3 concentrations as a function of surface HCHO, NO2,
and PM2.5. Both (a) and (b) utilize a shared color bar to indicate O3 concentrations, enhancing comparability. (c) Relationship between O3,
and NO2, HCHO, and surface shortwave radiation flux. The paired O3, HCHO, NO2, and solar radiation are divided into 100 bins based
on PM2.5, and then the averaged concentrations (y axis) are calculated for each PM2.5 bin (x axis). (d) Changes in the HCHO/NO2–O3
relationship in response to changing PM2.5 by the XGBoost model. The solid lines are fitted with fourth-order polynomial curves, and the
shading indicates 95 % confidence intervals. (e–f) The interaction between SHAP values reveal an interesting hidden relationship between
pairwise variables (PM2.5, NO2, HCHO) and O3.

Figure 8. Comparison of geographical distribution for ozone formation regimes between 2019 and 2020 in the summertime. All surface
daily O3, PM2.5, and NO2 estimations from Air Transformer (AiT) are averaged over each month from May to October 2019–2020 for
matching monthly HCHO derived from TROPOMI (500 · 500 m). (a, b) Geographical distribution of the fractional contribution of chemical
factors representing O3 formation regimes. The ternary phase diagram in the legend depicts the normalized fraction of SHAP values for
O3 attributed to HCHO, NO2, and PM2.5 at the surface, representing VOC-limited (red), aerosol-inhibited (green), and NOx -limited (blue)
regimes, respectively. (c) Statistical changes in the fractional contribution of chemical factors. (d, e) Geographical distribution of O3 chemical
regimes. (f) Proportion of three O3 chemical regimes across urban and nonurban areas in 2019 in Shandong (SD) and individual cities (BZ:
Binzhou, ZB: Zibo, LC: Liaocheng, LY: Linyi, JNI: Jining).

in rural areas during summertime. The contribution of NO2
and PM2.5 exhibits analogous seasonal variability, promoting
O3 formation under low pollution conditions while inhibit-
ing O3 when pollution levels are high (Figs. S15 and 18).
The elevated NO2 levels in autumn led to a negative contri-
bution to O3, whereas the facilitating effect of PM2.5 was en-
hanced. This stems from the relatively moderate PM2.5 con-

centrations slightly affecting photochemical reaction rates,
while the increased NO2 amplified the reactive uptake of
NO2 by PM2.5, generating more OH radicals that promote
O3 formation (Lin et al., 2023; Tan et al., 2022). In winter,
PM2.5 pollution exceeding 75 µg m−3 suppressed O3 forma-
tion through scattering and absorbing solar radiation that ac-
tivates atmospheric chemical processes, which counteracted
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the promoting effect of high PM2.5 through the conversion of
NO2 to HONO.

Figure 8a–c show surface distribution and changes in
the relative proportions of SHAP values on three pollutants
for inferring O3 photochemical regimes. Moving along an
urban-to-rural gradient, reactions dominated by ROx radi-
cal self-reactions are continuously enhanced with increas-
ing NOx SHAP values, resulting in the majority of rural
Shandong being situated in NOx-limited regimes. Further-
more, the overall ozone production regimes in Shandong
exhibited a transition toward more NOx-limited from 2019
to 2020, with regions dominated by NOx-limited shifting
toward being aerosol-inhibited in the Jiaodong Peninsula.
The aerosol-inhibited regime differs from the two classi-
cally applied tropospheric O3 policy-control regimes. It is at-
tributed to the predominant heterogeneous HO2 uptake by
aqueous aerosols, despite comparatively low PM2.5 levels
during summertime. The marine environment produces liq-
uid aerosol particles with HO2 uptake coefficients exceed-
ing those of dry aerosols by orders of magnitude (H. Song
et al., 2022). Concurrently, lower ambient NOx levels min-
imize the promotive effects of aerosols on ozone formation
(Tan et al., 2022; Kohno et al., 2022). This result is consistent
with the findings of Dyson et al. (Dyson et al., 2023), which
concluded that the contribution of HO2 sinks onto aerosols
on total HO2 could increase for areas with low NO levels.
The attenuated responsiveness of O3 formation to VOCs in-
duced by the uptake of HO2 results in enhanced sensitivity
of NOx at the northwestern boundary region of the Jiaodong
Peninsula. Collectively, these processes delineate an aerosol-
inhibited ozone production regime in this coastal region, re-
flecting the sensitivity of O3 photochemistry to the HO2 sink.
In several cities, including Binzhou, Zibo, Liaocheng, Linyi,
and Jining, a greater proportion of urban areas compared to
their nonurban counterparts exhibited a VOC-limited regime
in 2019, as indicated by the prevalence of red regions in
Fig. 8d. The percentage of urban areas in these cities under
a VOC-limited regime ranges from 15 % to 43 %, in stark
contrast to nonurban areas where such a regime is typically
rare (Fig. 8f). The comparison of O3 sensitivities from 2019
to 2020 shows a regional shift towards increased sensitivity
to aerosol and NOx , along with a decreased VOC sensitiv-
ity as a result of NOx reduction (Fig. 8a–c). This shift led
to the majority of areas in Shandong being dominated by
a NOx-limited regime in 2020, with an expanded aerosol-
inhibited regime region in the Jiaodong Peninsula (Fig. 8e).
Additionally, the discrepancy in O3 formation sensitivity be-
tween urban and nonurban areas was diminished during this
period (Fig. 8c). As illustrated in Fig. 9, while the ozone
regime transitions towards NOx-limited, there is a marked
shift towards greater aerosol sensitivity across nearly 90 %
of areas, leading to a 1.6 % increase in aerosol-inhibited
grids. Compared to nonurban regions, a higher number of
grids in urban areas demonstrate a shift towards NOx sen-
sitivity. Conversely, urban areas that were predominantly

Figure 9. Geographical distribution of changes in ozone sensitivity
from 2019 to 2020 in summertime (a). Comparison of ozone sensi-
tivity changes across areas dominated by different chemical regimes
in 2019 between urban and nonurban areas (b).

aerosol-inhibited in 2019 showed a lower-sensitivity shift to-
wards NOx .

3.3.2 Impact on urban–nonurban differences

We further explore the reversed O3 differences by sepa-
rating the individual contributions of climate and anthro-
pogenic changes using an interpretable machine learning
model (Fig. 10). The results demonstrate that atmospheric
chemical processes and meteorological conditions com-
monly dominate the discrepancies in O3 levels between ur-
ban and nonurban areas. From 2019 to 2020, meteorological
shifts remained uniform across urban and nonurban regions,
marked by lowered surface pressure, boundary layer height,
and shortwave radiation, alongside heightened precipitation.
This, coupled with decreased precursor levels, contributed to
a decline in O3 pollution. As shown in Figs. 10 and S19,
the diminished reduction in boundary layer height and radi-
ation flux across urban areas, compared to nonurban areas in
2020, decelerated the expected decline of O3 concentrations,
leading to urban O3 levels exceeding those of nonurban ar-
eas. Concurrently, a narrowing difference in temperatures be-
tween urban and nonurban areas, despite an overall cooling
from 2019 to 2020, favored O3 formation in urban regions
during the summertime. Additionally, PM2.5 emerged as the
principal anthropogenic factor inverting the urban–nonurban
O3 disparity over the course of 2019 to 2020. Its contribution
to ozone shifted from being lower in urban areas to exceeding

https://doi.org/10.5194/acp-24-4177-2024 Atmos. Chem. Phys., 24, 4177–4192, 2024



4188 C. Tao et al.: Diagnosing ozone–NOx–VOC–aerosol sensitivity

Figure 10. Comparison of urban–nonurban disparities in meteoro-
logical conditions (a) and mean absolute SHAP values (b) between
2019 and 2020 across Shandong, China, during the summertime.

that in nonurban areas, revealing that the decreased reactive
uptake of HO2 from aerosols induced by a more substantial
reduction in PM2.5 in urban areas made the larger contri-
bution to O3 production (Ivatt et al., 2022; Li et al., 2017).
Moreover, the response of O3 to the changes in its precur-
sors and PM2.5 was determined by the O3 formation regimes.
The variations in O3 sensitivity also corroborate the above
finding. In rural areas, where there was less of a reduction
in PM2.5 concentration, the sensitivity increasingly favored
aerosol suppression across more than 93 % of the assessed
grids (Fig. 9). This enhanced suppression effect of aerosols
in rural areas leads to a more significant O3 reduction com-
pared to urban locales. The reduction of NOx in nonurban
areas demonstrated a more effective reduction in O3 levels,
which predominantly shifted towards a NOx-limited regime
in 2020. Although urban areas also showed a shift towards
being a NOx-limited regime, they exhibited relatively higher
sensitivity to VOCs (Fig. 8). The urban areas, characterized
by elevated NOx emissions, exhibited a higher sensitivity to
VOCs, and the fraction of aerosol-inhibited areas increased
from 2019 to 2020, resulting in the control benefits of urban
O3 pollution in 2020 being partially offset by the nonlinear
response of O3 to a greater reduction in NO2 and PM2.5, as
well as a smaller decrease in HCHO relative to nonurban ar-
eas. Consequently, O3 exhibits a lower reduction in urban
areas as a result of the aforementioned changes.

4 Conclusions

The purpose of the current study was to diagnose the non-
linearity of O3–NOx–VOC–aerosol chemistry using an in-
terpretable ML model based on spatially resolved multi-
pollutant estimations for determining the causes of changing
differences in O3 levels between urban and nonurban areas.
Our study represents the first attempt to develop an advanced
DL model that reconstructs the concentrations of multi-
ple pollutants and subsequently infers the aerosol-inhibited
regime from observations. This innovative approach pro-
vides further support for investigating the impact of precursor

emissions and aerosol on the urban–nonurban differences in
O3 levels.

Given the nonlinearity of ozone formation and its increas-
ing regional differences, precise estimations of ground-level
O3, NO2, HCHO, and PM2.5 are crucial for deducing the
chemical regimes governing ozone pollution and its urban–
nonurban disparities. The evaluation of the model’s perfor-
mance indicates that it can be readily extended to any other
domain thanks to its unified architecture. Anyone can eas-
ily utilize the model to estimate ground-level pollutants, in-
telligently considering spatial–temporal neighborhood infor-
mation based on their customized input data. The model
further improved spatial resolution to sub-kilometer levels
using TROPOMI and MODIS retrievals via spatiotemporal
autocorrelation downscaling of AiT. The “black box” na-
ture of AiT can be made more physically interpretable by
SHAP, enabling the evaluation of the significance of each in-
put variable (Fig. S20). The season trends show the highest
contribution, followed by emission proxies and meteorolog-
ical conditions. Meanwhile, the results between AiT trained
with all data and that trained exclusively with CNEMC data
across various spatiotemporal scales underscore the promis-
ing prospect for improving the model’s generalization abil-
ity with more ground-level monitoring data and the growing
space of methods.

We conclude that with the effective reduction of PM2.5
pollution, the sensitivity of O3 to VOCs will increase, neces-
sitating further intensification of VOC emission regulation by
government agencies. Three distinct chemical regimes were
assessed by tracking NOx , VOCs, and aerosols with surface
NO2, HCHO, and PM2.5. In the Jiaodong Peninsula of Shan-
dong province, coastal areas with relatively few primary pol-
lutants are widely found to be under an aerosol suppression
regime, illustrating that ozone regime inference based on ma-
chine learning can serve as an alternative to determining the
aerosol suppression regime through the rate of radical ter-
mination in atmospheric chemical models. The O3 regime
in other areas of Shandong generally transitioned from the
NOx-sensitive regime in nonurban to a more VOC-sensitive
regime in urban areas. We estimate that substantial reduc-
tions in anthropogenic emissions of PM2.5 and NO2 are the
main drivers of the reversal of the traditional discrepancy in
O3 levels between urban and nonurban areas. In essence, due
to the lower efforts in reducing PM2.5 in nonurban settings,
the aerosol-mediated suppression of ozone became more pro-
nounced, resulting in lower ozone levels in rural areas rela-
tive to urban centers. This shift underlines the intricate bal-
ance between emission reduction and ozone formation mech-
anisms, suggesting that nuanced understanding and targeted
interventions are necessary to manage and mitigate the health
and environmental impacts of such disparities. To preclude
exacerbated O3 pollution resulting from the shift of many
regions from VOC-limited to NOx-limited regimes and the
decline in heterogeneous HO2 uptake induced by PM2.5 re-
duction in urban areas, emission policies aimed at decreasing
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NOx to reduce O3 levels will only be effective with stringent
VOC emission abatement when PM2.5 is concurrently de-
creased. The integration of high-resolution pollutant estima-
tions with an interpretable machine learning model offers a
promising avenue for advancing our understanding of ozone
pollution dynamics and developing effective air quality man-
agement strategies.

Although our study endeavors to establish O3 formation
regimes involving NOx , VOCs, and aerosols, and the method
identifies an aerosol-inhibited regime from a statistical per-
spective, it is subject to certain uncertainties due to the rela-
tively poor data quality of HCHO and the unsegregated mul-
tiple impacts of aerosols, such as N2O5 uptake, NO2 up-
take, HO2 uptake, and light extinction (Tan et al., 2022).
We have made efforts to integrate all required surface pol-
lutant concentrations into a unified model, while the absence
of ground-level HCHO monitoring data compelled us to tap
into an alternative methodology. The retrieval error of surface
HCHO and the system error between its retrieval approach
and the AiT model degrade the ability of ML to identify
the O3 sensitivity. Meanwhile, the notion of ozone regimes
is only appreciated in photochemically active environments
where the ROx–HOx cycle is active (Souri et al., 2023). The
definition of NOx-limited or VOC-limited regimes is mean-
ingless in nighttime chemistry, where NO–O3–NO2 parti-
tioning is the primary driver. The surface daytime pollutant
estimations with finer resolutions in space and time based on
a unified modeling framework will offer an unprecedented
view to characterize the near-surface O3 formation regimes.
Notwithstanding the relatively limited duration of the study,
this work offers valuable insights into the current state and
causes of urban–nonurban disparities in O3 pollution. Future
efforts should conduct a more detailed long-term evaluation
of urban–nonurban disparities in global O3 levels and the im-
pact of formation mechanisms to further our understanding
of air pollution and its mitigation.

Code and data availability. The Air Transformer
deep learning framework is available on Zenodo
(https://doi.org/10.5281/zenodo.10889597, Tao, 2024), which
provides the scripts for spatiotemporal data extraction, normal-
ization, model training, and estimating of multi-pollutants. The
sources of input data in the Air Transformer can be found in
Table S1. The estimation of the Air Transformer can be down-
loaded from Zenodo: https://doi.org/10.5281/zenodo.10071408
(Tao, 2023).
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