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S1. Variables Selected 1 

Satellite data have been extensively used to derive surface air pollutant concentration1,2. The daily 2 

tropospheric NO2 vertical column densities (VCDs) and O3 total VCDs with a horizontal resolution 3 

of 5.5 × 3.5 km2 were measured by TROPOMI. The daily AOD data and atmospheric properties 4 

with a 1 km resolution were obtained from MODIS Terra and Aqua combined multiangle 5 

implementation of atmospheric correction (MAIAC) land AOD product (MCD19A2)3. In addition, 6 

we used AOD estimates from the Modern-Era Retrospective Analysis for Research and Applications, 7 

version 2 (MERRA-2) as the supplement of MODIS for filling extensively missing values. The 8 

meteorological reanalysis data were obtained from the fifth generation ECMWF reanalysis for the 9 

global climate and weather (ERA5) hourly products4. Ancillary data related to human activity and 10 

geographical information were retrieved and rasterized, including daily dynamic industrial 11 

emissions, moonlight-adjusted nighttime lights (NTL) product, population density, road density, 12 

land use data, the shuttle radar topography mission digital elevation model (DEM), the MOD13Q1 13 

vegetation index (VI) product, and the MOD11A1 land surface temperature (LST) product. 14 

Industrial emissions amount (unit: kg) contains three categories, i.e. sulfur dioxide (SO2), NOx, and 15 

particulate matter (PM), collected from SDEM. Geographic covariates directly related to pollution 16 

emissions, such as industrial emission, and road density were decomposed into magnitude-related 17 

data by using Gaussian convolution kernels to account for the impact of neighboring sources (Text 18 

S2).  19 

S2. Data Extension of Emission Proxies 20 

The procedure of data extension follows from a previous study5, geographic covariates directly 21 

related to pollution emissions like industrial emission, road density, and population density were 22 

decomposed into magnitude-related data by using Gaussian convolution kernels to account for the 23 

impact of neighboring sources. In this study, after rasterizing all spatial data to match with the tarted 24 

grid, the Gaussian convolution with the size of width (ranging from 1.5 to 31.5 km) was used to 25 

consider the impact of nearby sources. For the Gaussian convoluted values with various at each 26 

location, the maximum value () was assigned as the characteristic magnitude of the emission proxy 27 
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map for describing the influence of potential air pollution emission. 28 

S3. Spatiotemporal Proxies 29 

Taking the space-time-variant into consideration, three Euclidean spherical coordinates ("#$	1 −30 

3) and three helix-shape trigonometric sequences ("#$	4 − 6) were calculated as following:6 31 

$! = cos 022 3456789:"360 < cos 022 3=8789:"180 < (1) 32 

$" = cos 022 3456789:"360 < sin 022 3=8789:"180 < (2) 33 

$# = sin 022 3456789:"360 < (3) 34 

cos_sea = cos 022D458ℎ12 < (4)	 35 

sin_sea = sin 022D458ℎ12 < (5) 36 

cos_mon = D458ℎ
360 	 (6) 37 

S4. Data Fusion and Gap filling 38 

Due to the various data sources and types, we bilinearly interpolated predictor variables to the 39 

targeted grid with 500 m resolution to harmonize with other data. The daily Ozone (O3), fine 40 

particulate matter (PM2.5), and nitrogen dioxide (NO2) concentrations were assigned to their overlay 41 

cells by spatial aggregation. 42 

The detection of trace gases information below-cloud was prevented by the shielding of ubiquitous 43 

clouds in optical remote sensing images, causing the existence of gaps in satellite productions. We 44 

utilize the efficient machine-learning model, called Light Gradient Boosting Machine (LightGBM)7, 45 

to fill the gaps in satellite data. LightGBM is designed to be distributed and efficient with the 46 

advantages of faster training speed and higher accuracy. Thus, it can impute a large dataset (1407 × 47 

863 grids in the targeted resolution) with missing data in multiple variables using an iterative way. 48 

For each iteration, available daily satellite-based data are regarded as the observations, and the 49 

missing values are predicted by the LightGBM with meteorological reanalysis and geographical 50 

coordinates. The number of iterations corresponds to the number of satellite products with missing 51 

values. Here, the satellite-based production contains MOIDS AOD, TROPOMI NO2 and O3 column 52 
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density, normalized difference vegetation index (NDVI); enhanced vegetation index (EVI), and land 53 

surface temperature (LST). Applying the model of filling missing values, the predictions of all 54 

variables are reliable, with the average coefficient of determination (R2) values ranging from 0.87 55 

to 0.99 in the validation set. 56 

S5. The Detail of Air Transformer (AiT) 57 

In this study, H, J, K and L are configured to 57, 8, 5 and 5, respectively, according to the number 58 

of chosen variables and the empirical range of time and spatial. The data size remains unchanged 59 

H	 × 	8	 × 	5	 × 	5 for the first AiT encoder blocks, while for the next 3 blocks, 2 blocks, and 1 60 

block, the temporal dimensions and spatial window size are reduced by the convolutional embedded 61 

block, which includes convolution operation with 2	 × 	2	 × 	2 filter with the stride of 2	 × 	1	 × 	1, 62 

and the number of variables’ channels is 64, 96 and 128, resulting in data size of 64	 × 	4	 × 	4	 × 	4, 63 

96 × 	2	 × 	3	 × 	3 and 128	 × 	1	 × 	2	 × 	2. The data dimensionality is transformed through a 64 

linear layer in decoder blocks.  65 

We train AiT via backpropagation using an AdamW optimizer with a learning strategy of warmup, 66 

a learning rate of 0.0005 and a batch size of 256, and apply early stopping on the validation loss 67 

using patience of 300 epochs. We combat overfitting by dropout within each layer of linear and self-68 

attention. A GeLU activation function is applied throughout the network. The loss function of mean 69 

squared error was applied to the errors for the computation of gradients in the optimization. The 70 

model is coded and trained using the Pytorch library. Before the data is fed into the model for 71 

training, it is normalized over the entire dataset. The total dataset for training and testing has 72 

262,656 instances. 73 

For sensitivity analysis, we first simply applied the image and video recognition Transformers for 74 

the estimation and also achieved good prediction performance (R2 of 0.96 for O3 in Timesformer). 75 

However, the spatial distribution of estimation exhibits severe “reticular phenomenon” (Figure S2). 76 

We briefly analyze the reasons why original Transformer-based models fell into trouble in terms of 77 

pollutant maps. Firstly, these original Transformer-based image models are purely based on pixel 78 

units for self-attention computation. Air pollution estimation often involves various features 79 

(satellite, meteorological, and emission proxies, etc.) 2,8–10, which is unlike image data with just 80 
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three channels (red, green, and blue). These models overly focus on the correlation between 81 

neighboring grids and lack extraction of deep features, resulting in a discontinuous distribution of 82 

estimation for our study. Secondly, they paid attention to the full domain of pixels and there were 83 

no overlaps between samples, so only the encoder part of Transformer was used. Air quality 84 

estimation could be troubled by the overlearning of neighborhood features and extensive data 85 

duplication of adjacent samples when existing deep learning models are directly applied. 86 

Summarizing the above factors, we believe that it is necessary to build upon a tradeoff between the 87 

spatial distribution of estimations and the performance of the model. 88 

S6. Multi-task Learning Strategy 89 

It not only leverages large amounts of cross-task data but also benefits from a regularization effect 90 

that leads to more general representations to help adapt to estimating multiple pollutants 91 

simultaneously and efficiently,11 and alleviating overfitting to a specific pollutant. As shown in the 92 

bottom right of Figure 1, the encoder and decoder blocks are shared across all predictions, while the 93 

last block is task-specific combining different estimations of PM2.5, O3, and NO2. The shared blocks 94 

can take advantage of the interrelationship between different air pollutants by learning the intrinsic 95 

features of data. The task-specific blocks can capture the relevant information needed for the single 96 

task from extracted potential features of Transformer blocks. 97 

S7. Method: Inferring Surface HCHO  98 

Column-to-surface Conversion Factor 99 

The satellite-derived surface HCHO concentrations (O$ ) from Tropospheric Ozone Monitoring 100 

Instrument (TROPOMI) formaldehyde (HCHO) vertical columns density (VCD) by the simulated 101 

surface-to-column conversion factor method described in literatures12,13:  102 

O$ =	 %&!'	&!
"##$%

&!&'($%
	× 	)!&! 	× 	H$

' (7)103 

where, O$  is the inferred surface level HCHO mixing ratio, O*  and H*  are the surface and 104 

tropospheric HCHO concentration, H*+,-./ is the lower partial column, H*011./ is the upper partial 105 

columns simulated by the CAM-Chem chemical transport model, H$' is the averaged tropospheric 106 

TROPOPMI HCHO VCD within the WRF-model, and Q represents the satellite-observed sub-107 
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model-grid spatial variability calculated as:  108 

Q = 	 &)&)* (8)109 

where H$ is the tropospheric HCHO VCD in the TROPOMI grid. HCHO below the lower layer is 110 

considered to be well mixed in the vertical direction, and a large portion of HCHO (~70%) appears 111 

over the boundary layer, causing a nonhomogeneous distribution of upper partial columns. 112 

Therefore, in this study, the altitude where the HCHO partial column reaches the half maximum of 113 

its profile is regarded as the lower layer, following a previous study12. 114 

ECMWF Atmospheric Composition Reanalysis 4 (EAC4) 115 

To derive the surface HCHO concentration, we used the European Centre for Medium-Range 116 

Weather Forecasts (ECMWF) Atmospheric Composition Reanalysis 4 (EAC4) at 0.75×0.75 117 

horizontal resolution simulation with 25 vertical levels.14 Reanalysis combines model data with 118 

observations from across the world into a globally complete and consistent dataset using a model of 119 

the atmosphere based on the laws of physics and chemistry. The monthly averaged field of EAC4 120 

was used in our study. 121 

S8. Cross Validation 122 

The performance of our AiT model is evaluated through two cross-validation (CV) methods: out-123 

of-sample 10-fold CV and out-of-site 10-fold CV. The out-of-sample CV, where all samples are 124 

randomly divided into 10 folds, saving one-fold for testing, is widely used for comparing 125 

measurements with the predictions of the out-of-bag sample. In addition, the generalization 126 

capability of spatial prediction at the location without monitors is evaluated by out-of-site CV, which 127 

randomly divides all sites into 10 subsets and then trains the model using nine subsets and tests the 128 

model on the remaining subset.  129 

  130 
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 131 

Figure S1. Map of study domain and location of monitoring stations. Purple triangles 132 

show the county-level air quality monitoring stations from SDEM, and red markers 133 

show the city-level air quality monitoring stations from CNEMC. The base map is the 134 

overlay of satellite images (© Google Maps 2023) and Digital Elevation Model (DEM) 135 

data. 136 

  137 
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 138 

Figure S2. The estimated O3 concentration on May 12, 2018, in Shandong, China using 139 

Timesformer (left) and also the zoomed-in map in region-scale distribution (right). The 140 

blue area represents the ocean. 141 

  142 
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 143 

Figure S3. Out-of-sample cross-validation of daily surface O3, NO2 and O3 estimates 144 

at each monitoring site. 145 

  146 
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 147 

Figure S4. Out-of-site cross-validation of daily surface O3, NO2 and O3 estimates at 148 

each monitoring site. 149 

  150 
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 151 

Figure S5. Out-of-sample cross-validation (A-C) of daily ground-level O3, NO2 and 152 

PM2.5 concentration in the validation set based on the AiT model trained by monitoring 153 

data of CNEMC.  154 

  155 
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 156 

Figure S6. Validation for daily ground-level O3, NO2, and PM2.5 concentration in the 157 

SDEM dataset based on the AiT model trained by monitoring data of CNEMC.  158 

  159 
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 160 

Figure S7. Spatial distribution of the annual mean (A-D) O3, (I-L) NO2 and (Q-T) PM2.5 161 

concentrations from observations, Air Transformer (AiT), Random Forest (RF) and 162 

ChinaHighAirPollutants (CHAP), respectively, in 2020. The region enclosed by the red 163 

rectangular box in (A-T) corresponds to the zoomed-in maps of the satellite (© Tianditu: 164 

www.tianditu.gov.cn) and pollutant concentrations at a city scale for the capital city of 165 

Shandong Province, Jinan. 166 

  167 
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 168 

Figure S8. Spatial distribution of annual mean disparities for (A-D) O3, (I-L) NO2 and 169 

(Q-T) PM2.5 concentrations from observations, Air Transformer (AiT), Random Forest 170 

(RF) and ChinaHighAirPollutants (CHAP), respectively, during 2019-2020. The region 171 

enclosed by the red rectangular box in (A-T) corresponds to the zoomed-in maps of the 172 

satellite (© Tianditu: www.tianditu.gov.cn) and pollutant concentrations at a city scale 173 

for the capital city of Shandong Province, Jinan. 174 

  175 
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 176 

Figure S9. Comparison of spatial distribution between estimations from AiT trained 177 

with all data and AiT with CNEMC data during the dust storm. 178 

  179 
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 180 

Figure S10. The spatial distribution of ground-level O3 (A-C), NO2 (D-F), and PM2.5 181 

(G-I) from AiT and monitoring stations in three cities experiencing diverse dust storm 182 

pollution on 15 March 2021 in Shandong, China. J-L represents the satellite maps of 183 

these cities (© Tianditu: www.tianditu.gov.cn). 184 

  185 
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 186 

Figure S11. Urban extents (red) in Shandong province, China in 2019. 187 

  188 
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 189 

Figure S12. The urban-nonurban disparities of O3, NO2, PM2.5 and HCHO calculated 190 

by AiT across cities with administrative divisions in Shandong, China during summer 191 

in 2019 (A, D, G) and 2020 (B, E, H), and the changes of differences between 2019 and 192 

2020 (C, F, I).  193 

  194 
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 195 

 196 

Figure S13. The urban-nonurban disparities of O3, NO2, and PM2.5 were calculated by 197 

monitoring station data across cities in Shandong, China in 2019 (A, D, G) and 2020 198 

(B, E, H), and the changes of differences between 2019 and 2020 (C, F, I). 199 

  200 
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 201 

Figure S14. The urban-nonurban disparities of O3, NO2, and PM2.5 calculated by CHAP 202 

across cities in Shandong, China in 2019 (A, D, G) and 2020 (B, E, H), and the changes 203 

of differences between 2019 and 2020 (C, F, I). 204 

  205 
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 206 

Figure S15. The seasonal changes of surface HCHO mixing ratio inferred from 207 

TROPOMI and EAC4 (A-D), and surface NO2 (E-D), PM2.5 (I-L) and O3 (M-P) derived 208 

from Air Transformer across Shandong, China, in 2010 and 2020. 209 

  210 
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 211 

Figure S16. Results of 10-fold cross-validation in validation dataset based on 212 

XGBoost for modeling the nonlinear response of monthly O3 variations to meteorology 213 

and chemical indicators from 2019 to 2020. 214 

  215 



 22 

 216 

Figure S17. The geographical distribution of the averaged SHAP values for the 217 

important driving factors of O3 production (A-K) in XGBoost model, and O3 218 

concentration (L) from May to October across Shandong, China in 2019 and 2020. The 219 

above color demonstrates how different variables each contribute to pushing the model 220 

output away from the base value (the average model output over the training dataset) 221 

towards the actual model output. Variables pushing the O3 higher are shown in red, 222 

indicating they promote O3 formation. In contrast, variables pushing the estimations 223 

lower are in blue, revealing they inhibit O3 formation. 224 

  225 
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 226 

Figure S18. The seasonal changes of SHAP values in HCHO (A-D), NO2 (E-H) and 227 

PM2.5 (I-L) for O3 formation across Shandong, China in 2019 and 2020. 228 

  229 
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 230 

Figure S19. Comparison of urban-nonurban disparities in meteorological conditions 231 

(A), and mean absolute SHAP values (B) between 2019 and 2020 across Shandong, 232 

China during the COVID period.   233 
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 234 

Figure S20. Contribution of each covariate to the near-surface O3 (a), NO2 (b), and 235 

PM2.5 (c) concentration quantified with the Shapley Additive explanations (SHAP) 236 

method in the training dataset. The estimations of the model are shown above the 237 

heatmap matrix and the global importance of each model input is shown as a bar plot 238 

on the right side of the plot. The top fifteen variables of global importance are listed in 239 

order from top to bottom. The abbreviation of “people_density”, “road_gau”, and 240 

“land_use” represents the people density, road density and land use data, respectively. 241 

Another full form of the abbreviation can be found in Text S2 and Table S1. 242 

  243 
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Table S1. Summary of the dataset used in Air Transformer from multiple sources* 244 

Data category Data name Spatial resolution 
Temporal 

resolution 
Data source 

Ground 

observation 
O3、NO2、PM2.5 measurements  Point Hourly 

http://www.sdem.org.cn 

http://www.cnemc.cn 

Satellite data 
TROPOMI O3, NO2 

[1] 5.5 × 3.5 km [2] Daily https://scihub.copernicus.eu 

MAIAC AOD [3] 1 × 1 km Daily https://lpdaac.usgs.gov/products/mcd19a2v006/ 

Meteorological 

fields 
ERA5 [4] 0.25° × 0.25° Hourly https://cds.climate.copernicus.eu 

Ancillary data 

Industry emission Point Hourly http://www.sdem.org.cn 

Land use 30 × 30 m - http://www.globallandcover.com 

People density  100m - https://hub.worldpop.org 

Road density  0.5 × 0.5 km - https://www.openstreetmap.org 

Digital elevation model (DEM) 0.5 × 0.5 km - https://www.resdc.cn 

MODIS vegetation index [5] 0.25 × 0.25 km 16-daily https://lpdaac.usgs.gov/products/mod13q1v061/ 

Nighttime lights (NTL) 0.5 × 0.5 km Daily 
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-

measurements/products/VNP46A2/ 

Land surface temperature (LST) 1 × 1 km Daily https://e4ftl01.cr.usgs.gov 

MERRA-2 AOD reanalysis [6] 0.625° × 0. 5° 3-hourly https://disc.gsfc.nasa.gov/datasets/M2I3NXGAS_5.12.4/summary 

Spatial-temporal 

information 

Euclidean spherical coordinates 
- - - 

Temporal trend [7] 
* The dataset covers the Shandong province of China from May 1, 2018 to July 1, 2021. 245 
[1] TROPOMI satellite data contains: Tropospheric NO2 column density (NO2); Total O3 column density (O3); NO2 slant columns density (NO2_slant); Absorbing 246 

aerosol index (AAI); cloud fraction. The Level-2 data from TROPOMI were filtered based on quality assurance values (>0.5). 247 
[2] 7.5 × 3.5 km from 30. May 2018 to 6. August 2019. 248 
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[3] MAIAC AOD data including Aerosol Optical Depth (AOD) and column water vapor over land and clouds (AOD_cwv). The AOD was calculated by averaging the 249 

AOD at 0.47 µm and 0.55 µm. MAIAC AOD has better accuracy in the brighter areas15 compared with AOD products generated from the Deep Blue16 or Dark Target 250 

algorithms17. 251 
[4] ERA5 hourly data on single levels (reanalysis). It contains 18 variables: 10 meter U wind component (u10), 10 meter V wind component (v10), 2 meter dewpoint 252 

temperature (d2m); 2 meter temperature (t2m); Boundary layer height (blh); Evaporation (e); Total precipitation (tp); Surface pressure (sp); Boundary layer dissipation; 253 

Cloud base height; Low vegetation cover; Forecast albedo; Instantaneous large-scale surface precipitation fraction; Medium cloud cover; Mean evaporation rate (mer); 254 

Mean surface downward long-wave radiation flux, clear sky (msdwlwrfcs); Mean surface downward short-wave radiation flux, clear sky (msdwswrfcs); Mean sea level 255 

pressure (msl); Total columns ozone; Total columns water (tcw). 256 
[5] MODIS vegetation index contains: Normalized Difference Vegetation Index (NDVI); Enhanced Vegetation Index (EVI). 257 
[6] MERRA-2 AOD reanalysis contains: Aerosol Optical Depth Analysis, Aerosol Optical Depth Analysis Increment. 258 
[7] Temporal trends contain: Helix-shape trigonometric month sequence; Julian day; Year; Month. One-hot encoding was used to process categorical variables. 259 

  260 
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Table S2. The performances of AiT in estimating multiple targeted pollutants as well as single 261 

targeted pollutants. All four models was trained using the same input dataset, but different targets 262 

(The targets of AiT are O3, NO2, and PM2.5. The target of AiT_O3, AiT_NO2, AiT_PM2.5 is O3, NO2 263 

and PM2.5, respectively). 264 

Model AiT AiT_O3 AiT_NO2 AiT_PM2.5 

 O3 NO2 PM2.5 O3 NO2 PM2.5 

R2 0.96 0.92 0.90 0.97 0.92 0.90 

RMSE (µg/m3) 9.96 4.72 11.99 9.27 4.75 12.57 

MAE (µg/m3) 7.06 3.48 5.38 6.35 3.46 6.14 

  265 
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Table S3. Comparison of model performance with previous studies. 266 

Model 
Spatial 

resolution 

Cross-validation 
Pollutant Literature 

R2 RMSE (µg/m3) 

RF 0.05° 0.87 13.03 O3 Zhu et al., 202218 

STET 0.1° 0.87 17.1 O3 Wei et al., 202219 

LSTM 0.1° 0.94 10.64 O3 Wang et al., 202220 

DP 0.003° 0.94 11.29 O3 Li et al., 202210 

LightGBM 0.05° 0.91 14.14 O3 Wang et al., 20212 

XGBoost 0.05° 0.83 7.58 NO2 Liu, 202121 

LightGBM 0.05° 0.83 6.62 NO2 Wang et al., 20212 

GTWR-SK 0.025° 0.84 6.70 NO2 Wu et al., 202122 

FSDN 0.01° 0.82 8.80 NO2 Li & Wu, 202123 

SWDF 0.01° 0.93 4.89 NO2 Wei et al., 202224 

DP 0.04° 0.88 11.27 PM2.5 Song et al., 20221 

DEML 0.01° 0.87 5.38 PM2.5 Yu et al., 202225 

RF 0.1° 0.83 13.9−22.1 PM2.5 Geng et al., 202126 

STET 0.01° 0.89 10.33 PM2.5 Wei et al., 20209 

RF 0.01° 0.88 15.73 PM2.5 Huang et al., 202127 

RF* 0.005° 

0.90 15.5 O3 

This study 0.82 7.2 NO2 

0.92 10.72 PM2.5 

AiT 0.005° 

0.96 10.11 O3 

This study 0.92 4.82 NO2 

0.95 8.54 PM2.5 

STET: Space-time extremely randomized trees; LSTM: Long short-term memory network; DP: 267 

deep forest; semi-SILDM: tree-based ensemble deep learning model; LightGBM: Light gradient 268 

boosting machine; XGBoost: Extreme gradient boosting; GTWR-SK: Geographically and temporal 269 

weighted regression with spatiotemporal kriging; SFDN: Full residual deep networks; SWDF: 270 

Spatiotemporally weight deep forest; DEML: deep ensemble machine learning; RF: random forest; 271 

AiT: Air Transformer. 272 
*: While training RF with variables involving neighboring grids is necessary, ML models are limited 273 

to accepting only one-dimensional data. Flattening four-dimensional data (R ∈ T23×5×2×2) causes 274 

a significant increase in the number of features, which results in a reduction in model performance. 275 

Thus, to ensure optimal performance, only variables in situ were employed to train RF. 276 

  277 
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Table S4. The average concentration of four pollutants across urban and non-urban areas in 2019 278 

and 2020. 279 

Year Type O3 NO2 PM2.5 HCHO 

2019 Nonurban 141.1 24.7 33.3 3.5 

Urban 141.1 26.3 32.6 4.2 

2020 Nonurban 129.2 24.2 30.8 3.3 

Urban 130.4 25.4 29.5 4.0 

Relative 

Changes (%) 

Nonurban -8.43 -2.02 -7.51 -5.71 

Urban -7.58 -3.42 -9.51 -4.76 

  280 
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Table S5. The number of monitoring stations across urban and non-urban areas. (YT: Yantai, BZ: 281 

Binzhou, DY: Dongying, WH: Weihai, DZ: Dezhou, JNA: Jinan, QD: Qingdao, WF: Weifang, ZB: 282 

Zibo, LC: Liaocheng, LW: Laiwu, TA: Taian, LY: Linyi, RZ: Rizhao, JNI: Jining, HZ: Hezhe, ZZ: 283 

Zaozhuang) 284 

City Name BZ DY DZ HZ JNA JNI LC LW LY 

Non-urban 9 2 10 6 2 6 7 2 8 

Urban 7 11 14 14 17 15 15 1 14 

City Name QD RZ TA WF WH YT ZB ZZ  

Non-urban 1 5 4 9 3 3 10 2  

Urban 11 5 7 15 7 18 6 8  

  285 
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