Articles | Volume 24, issue 3
https://doi.org/10.5194/acp-24-2045-2024
https://doi.org/10.5194/acp-24-2045-2024
Research article
 | 
16 Feb 2024
Research article |  | 16 Feb 2024

Jet aircraft lubrication oil droplets as contrail ice-forming particles

Joel Ponsonby, Leon King, Benjamin J. Murray, and Marc E. J. Stettler

Related authors

An updated microphysical model for particle activation in contrails: the role of volatile plume particles
Joel Ponsonby, Roger Teoh, Bernd Kärcher, and Marc Stettler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1717,https://doi.org/10.5194/egusphere-2025-1717, 2025
Short summary
Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations
Jade Low, Roger Teoh, Joel Ponsonby, Edward Gryspeerdt, Marc Shapiro, and Marc E. J. Stettler
Atmos. Meas. Tech., 18, 37–56, https://doi.org/10.5194/amt-18-37-2025,https://doi.org/10.5194/amt-18-37-2025, 2025
Short summary

Cited articles

Appleman, H.: The Formation of Exhaust Condensation Trails by Jet Aircraft, American Meteorological Society, 34, 14–20, 1953. 
Bier, A. and Burkhardt, U.: Variability in Contrail Ice Nucleation and Its Dependence on Soot Number Emissions, J. Geophys. Res.-Atmos., 124, 3384–3400, https://doi.org/10.1029/2018JD029155, 2019. 
Bier, A., Unterstrasser, S., and Vancassel, X.: Box model trajectory studies of contrail formation using a particle-based cloud microphysics scheme, Atmos. Chem. Phys., 22, 823–845, https://doi.org/10.5194/acp-22-823-2022, 2022. 
Bräuer, T., Voigt, C., Sauer, D., Kaufmann, S., Hahn, V., Scheibe, M., Schlager, H., Huber, F., Le Clercq, P., Moore, R. H., and Anderson, B. E.: Reduced ice number concentrations in contrails from low-aromatic biofuel blends, Atmos. Chem. Phys., 21, 16817–16826, https://doi.org/10.5194/acp-21-16817-2021, 2021. 
Burkhardt, U. and Kärcher, B.: Process-based simulation of contrail cirrus in a global climate model, J. Geophys. Res.-Atmos., 114, 1–13, https://doi.org/10.1029/2008JD011491, 2009. 
Download
Short summary
Aerosol emissions from aircraft engines contribute to the formation of contrails, which have a climate impact as important as that of aviation’s CO2 emissions. For the first time, we experimentally investigate the freezing behaviour of water droplets formed on jet lubrication oil aerosol. We show that they can activate to form water droplets and discuss their potential impact on contrail formation. Our study has implications for contrails produced by future aircraft engine and fuel technologies.
Share
Altmetrics
Final-revised paper
Preprint