Articles | Volume 24, issue 21
https://doi.org/10.5194/acp-24-12295-2024
https://doi.org/10.5194/acp-24-12295-2024
Research article
 | 
06 Nov 2024
Research article |  | 06 Nov 2024

Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods

Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann

Related authors

The AERosol and TRACe gas Collector (AERTRACC): an online-measurement-controlled sampler for source-resolved emission analysis
Julia Pikmann, Lasse Moormann, Frank Drewnick, and Stephan Borrmann
Atmos. Meas. Tech., 16, 1323–1341, https://doi.org/10.5194/amt-16-1323-2023,https://doi.org/10.5194/amt-16-1323-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Boosting aerosol surface effects: strongly enhanced cooperative surface propensity of atmospherically relevant organic molecular ions in aqueous solution
Harmanjot Kaur, Stephan Thürmer, Shirin Gholami, Bruno Credidio, Florian Trinter, Debora Vasconcelos, Ricardo Marinho, Joel Pinheiro, Hendrik Bluhm, Arnaldo Naves de Brito, Gunnar Öhrwall, Bernd Winter, and Olle Björneholm
Atmos. Chem. Phys., 25, 3503–3518, https://doi.org/10.5194/acp-25-3503-2025,https://doi.org/10.5194/acp-25-3503-2025, 2025
Short summary
The lifetimes and potential change in planetary albedo owing to the oxidation of thin surfactant organic films extracted from atmospheric aerosol by hydroxyl (OH) radicals at the air–water interface of particles
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025,https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
Atmos. Chem. Phys., 25, 1805–1829, https://doi.org/10.5194/acp-25-1805-2025,https://doi.org/10.5194/acp-25-1805-2025, 2025
Short summary
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025,https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Atmospheric oxidation of 1,3-butadiene: influence of seed aerosol acidity and relative humidity on SOA composition and the production of air toxic compounds
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
Atmos. Chem. Phys., 25, 1401–1432, https://doi.org/10.5194/acp-25-1401-2025,https://doi.org/10.5194/acp-25-1401-2025, 2025
Short summary

Cited articles

Abbatt, J. P. D. and Wang, C.: The atmospheric chemistry of indoor environments, Environ. Sci.-Proc. Imp., 22, 25–48, https://doi.org/10.1039/c9em00386j, 2020. 
Abdullahi, K. L., Delgado-Saborit, J. M., and Harrison, R. M.: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review, Atmos. Environ., 71, 260–294, https://doi.org/10.1016/j.atmosenv.2013.01.061, 2013. 
Alfarra, M. R., Coe, H., Allan, J. D., Bower, K. N., Boudries, H., Canagaratna, M. R., Jimenez, J. L., Jayne, J. T., Garforth, A. A., Li, S.-M., and Worsnop, D. R.: Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers, Atmos. Environ., 38, 5745–5758, https://doi.org/10.1016/j.atmosenv.2004.01.054, 2004. 
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010. 
Alves, C. A., Duarte, M., Nunes, T., Moreira, R., and Rocha, S.: Carbonaceous particles emitted from cooking activities in Portugal, Glob. Nest J., 16, 411–419, https://doi.org/10.30955/gnj.001313, 2014. 
Download
Short summary
Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecuing as an especially strong source.
Share
Altmetrics
Final-revised paper
Preprint