Articles | Volume 23, issue 15
https://doi.org/10.5194/acp-23-8979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Direct observation for relative-humidity-dependent mixing states of submicron particles containing organic surfactants and inorganic salts
Chun Xiong
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Binyu Kuang
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Fei Zhang
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Xiangyu Pei
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Zhengning Xu
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Zhibin Wang
CORRESPONDING AUTHOR
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
ZJU–Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
Related authors
Yueling Chen, Xiangyu Pei, Huichao Liu, Yikan Meng, Zhengning Xu, Fei Zhang, Chun Xiong, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 23, 10255–10265, https://doi.org/10.5194/acp-23-10255-2023, https://doi.org/10.5194/acp-23-10255-2023, 2023
Short summary
Short summary
The impact of acidity on the phase transition behavior of levitated aerosol particles was examined. Our results revealed that lower acidity decreases the separation relative humidity of aerosol droplets mixed with ammonium sulfate and secondary organic aerosol proxy. Our research suggests that in real atmospheric conditions, with the high acidity found in many ambient aerosol particles, droplets encounter heightened impediments to phase separation and tend to display a homogeneous structure.
Chun Xiong, Xueyan Chen, Xiaolei Ding, Binyu Kuang, Xiangyu Pei, Zhengning Xu, Shikuan Yang, Huan Hu, and Zhibin Wang
Atmos. Chem. Phys., 22, 16123–16135, https://doi.org/10.5194/acp-22-16123-2022, https://doi.org/10.5194/acp-22-16123-2022, 2022
Short summary
Short summary
Water surface tension is applied widely in current aerosol–cloud models but could be inappropriate in the presence of atmospheric surfactants. With cloud condensation nuclei (CCN) activity and atomic force microscopy (AFM) measurement results of mixed inorganic salt and dicarboxylic acid particles, we concluded that surface tension reduction and phase state should be carefully considered in aerosol–cloud interactions. Our results could help to decease uncertainties in climate models.
Kewei Zhang, Zhengning Xu, Fei Zhang, and Zhibin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4421, https://doi.org/10.5194/egusphere-2025-4421, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates how organics contribute to initial particle growth in the 3–10 nm size range. Through laboratory experiments, it was found that sulfuric acid dominates the growth of smaller particles, while organics play an increasingly important role as particle size increases. Elevated humidity also significantly enhances the contribution of organics. These findings further our understanding of new particle formation and subsequent growth.
Jing Wei, Jin-Mei Ding, Yao Song, Xiao-Yuan Wang, Xiang-Yu Pei, Sheng-Chen Xu, Fei Zhang, Zheng-Ning Xu, Xu-Dong Tian, Bing-Ye Xu, and Zhi-Bin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2844, https://doi.org/10.5194/egusphere-2025-2844, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Black carbon (BC) is a light-absorbing particle that contributes to atmospheric warming, but its radiative impact remains highly uncertain. We conducted field measurements in Hangzhou, China, to examine how mass ratio (coating-to-BC) and morphology influence light absorption. Our results show that widely used optical models overestimate absorption especially under clean conditions. A new morphology-based method improves model accuracy and reduces this uncertainty.
Yao Song, Jing Wei, Wenlong Zhao, Jinmei Ding, Xiangyu Pei, Fei Zhang, Zhengning Xu, Ruifang Shi, Ya Wei, Lu Zhang, Lingling Jin, and Zhibin Wang
Atmos. Chem. Phys., 25, 4755–4766, https://doi.org/10.5194/acp-25-4755-2025, https://doi.org/10.5194/acp-25-4755-2025, 2025
Short summary
Short summary
This study investigates the size-resolved effective density (ρeff) of aerosol particles in Hangzhou using a tandem aerodynamic aerosol classifier and scanning mobility particle sizer system. The ρeff values ranged from 1.47 to 1.63 g cm-3, increasing with particle diameter. The relationship between ρeff and the particle diameter varies due to differences in the chemical composition of the particles. A new method to derive the size-resolved chemical composition of particles from ρeff is proposed.
Junyue Yang, Zhengning Xu, Zheng Xia, Xiangyu Pei, Yunye Yang, Botian Qiu, Shuang Zhao, Yuzhong Zhang, and Zhibin Wang
Atmos. Chem. Phys., 25, 4571–4585, https://doi.org/10.5194/acp-25-4571-2025, https://doi.org/10.5194/acp-25-4571-2025, 2025
Short summary
Short summary
Mobile CH4 measurements were conducted at a wastewater treatment plant in Hangzhou in the summer and winter of 2023. A multi-source Gaussian plume model, combined with a genetic algorithm inversion framework, was used to locate major CH4 sources at the plant and quantify emissions. Results indicate that the summer CH4 emissions (603.33 ± 152.66 t a-1) were 2.8 times as high as inventory values, and winter values (418.95 ± 187.59 t a-1) were twice as high. The main sources were the screen and primary clarifier.
Xiangyu Pei, Yikan Meng, Yueling Chen, Huichao Liu, Yao Song, Zhengning Xu, Fei Zhang, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 24, 5235–5246, https://doi.org/10.5194/acp-24-5235-2024, https://doi.org/10.5194/acp-24-5235-2024, 2024
Short summary
Short summary
An aerosol optical tweezer (AOT) Raman spectroscopy system is developed to capture a single aerosol droplet for phase transition monitoring and morphology studies. Rapid droplet capture is achieved and accurate droplet size and refractive index are retrieved. Results indicate that mixed inorganic/organic droplets are more inclined to form core–shell morphology when RH decreases. The phase transitions of secondary mixed organic aerosol/inorganic droplets vary with their precursors.
Zhengning Xu, Jian Gao, Zhuanghao Xu, Michel Attoui, Xiangyu Pei, Mario Amo-González, Kewei Zhang, and Zhibin Wang
Atmos. Meas. Tech., 16, 5995–6006, https://doi.org/10.5194/amt-16-5995-2023, https://doi.org/10.5194/amt-16-5995-2023, 2023
Short summary
Short summary
Planar differential mobility analyzers (DMAs) have higher ion transmission efficiency and sizing resolution compared to cylindrical DMAs and are more suitable for use with mass spectrometers (MSs). Performance of the latest planar DMA (P5) was characterized. Sizing resolution and ion transmission efficiency were 5–16 times and ∼10 times higher than cylindrical DMAs. Sulfuric acid clusters were measured by DMA(P5)-MSs. This technique can be applied for natural products and biomolecule analysis.
Yueling Chen, Xiangyu Pei, Huichao Liu, Yikan Meng, Zhengning Xu, Fei Zhang, Chun Xiong, Thomas C. Preston, and Zhibin Wang
Atmos. Chem. Phys., 23, 10255–10265, https://doi.org/10.5194/acp-23-10255-2023, https://doi.org/10.5194/acp-23-10255-2023, 2023
Short summary
Short summary
The impact of acidity on the phase transition behavior of levitated aerosol particles was examined. Our results revealed that lower acidity decreases the separation relative humidity of aerosol droplets mixed with ammonium sulfate and secondary organic aerosol proxy. Our research suggests that in real atmospheric conditions, with the high acidity found in many ambient aerosol particles, droplets encounter heightened impediments to phase separation and tend to display a homogeneous structure.
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Chun Xiong, Xueyan Chen, Xiaolei Ding, Binyu Kuang, Xiangyu Pei, Zhengning Xu, Shikuan Yang, Huan Hu, and Zhibin Wang
Atmos. Chem. Phys., 22, 16123–16135, https://doi.org/10.5194/acp-22-16123-2022, https://doi.org/10.5194/acp-22-16123-2022, 2022
Short summary
Short summary
Water surface tension is applied widely in current aerosol–cloud models but could be inappropriate in the presence of atmospheric surfactants. With cloud condensation nuclei (CCN) activity and atomic force microscopy (AFM) measurement results of mixed inorganic salt and dicarboxylic acid particles, we concluded that surface tension reduction and phase state should be carefully considered in aerosol–cloud interactions. Our results could help to decease uncertainties in climate models.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Yao Song, Xiangyu Pei, Huichao Liu, Jiajia Zhou, and Zhibin Wang
Atmos. Meas. Tech., 15, 3513–3526, https://doi.org/10.5194/amt-15-3513-2022, https://doi.org/10.5194/amt-15-3513-2022, 2022
Short summary
Short summary
Accurate particle classification is very important in aerosol studies. Differential mobility analyzers (DMAs), centrifugal particle mass analyzers (CPMAs), aerodynamic aerosol classifiers (AACs) and their tandem systems are commonly used. We demonstrated that DMA–CPMA is more susceptible to the multiple charging effect than DMA–AAC. It is not suggested to reduce the resolutions of the instruments, especially when selecting small-size soot particles.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Yuliang Liu, Wei Nie, Yuanyuan Li, Dafeng Ge, Chong Liu, Zhengning Xu, Liangduo Chen, Tianyi Wang, Lei Wang, Peng Sun, Ximeng Qi, Jiaping Wang, Zheng Xu, Jian Yuan, Chao Yan, Yanjun Zhang, Dandan Huang, Zhe Wang, Neil M. Donahue, Douglas Worsnop, Xuguang Chi, Mikael Ehn, and Aijun Ding
Atmos. Chem. Phys., 21, 14789–14814, https://doi.org/10.5194/acp-21-14789-2021, https://doi.org/10.5194/acp-21-14789-2021, 2021
Short summary
Short summary
Oxygenated organic molecules (OOMs) are crucial intermediates linking volatile organic compounds to secondary organic aerosols. Using nitrate time-of-flight chemical ionization mass spectrometry in eastern China, we performed positive matrix factorization (PMF) on binned OOM mass spectra. We reconstructed over 1000 molecules from 14 derived PMF factors and identified about 72 % of the observed OOMs as organic nitrates, highlighting the decisive role of NOx in OOM formation in populated areas.
Ting Lei, Nan Ma, Juan Hong, Thomas Tuch, Xin Wang, Zhibin Wang, Mira Pöhlker, Maofa Ge, Weigang Wang, Eugene Mikhailov, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Alfred Wiedensohler, and Yafang Cheng
Atmos. Meas. Tech., 13, 5551–5567, https://doi.org/10.5194/amt-13-5551-2020, https://doi.org/10.5194/amt-13-5551-2020, 2020
Short summary
Short summary
We present the design of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. We further introduce comprehensive methods for system calibration and validation of the performance of the system. We then study the size dependence of the deliquescence and the efflorescence of aerosol nanoparticles for sizes down to 6 nm.
Cited articles
Altaf, M. B. and Freedman, M. A.: Effect of Drying Rate on Aerosol Particle
Morphology, J. Phys. Chem. Lett., 8, 3613–3618, https://doi.org/10.1021/acs.jpclett.7b01327, 2017.
Altaf, M. B., Dutcher, D. D., Raymond, T. M., and Freedman, M. A.: Effect of
Particle Morphology on Cloud Condensation Nuclei Activity, ACS Earth Space
Chem., 2, 634–639, https://doi.org/10.1021/acsearthspacechem.7b00146, 2018.
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A.,
Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the
Relative Humidities of Liquid-Liquid Phase Separation, Efflorescence, and
Deliquescence of Mixed Particles of Ammonium Sulfate, Organic Material, and
Water Using the Organic-to-Sulfate Mass Ratio of the Particle and the
Oxygen-to-Carbon Elemental Ratio of the Organic Component, Atmos. Chem.
Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011.
Boistelle, R. and Astier, J. P.: Crystallization Mechanisms in Solution, J.
Cryst. Growth, 90, 14–30, https://doi.org/10.1016/0022-0248(88)90294-1, 1988.
Bruggemann, M., Xu, R. S., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H.
Y., Otto, T., Schaefer, T., Poulain, L., Chan, M. N., and Herrmann, H.:
Organosulfates in Ambient Aerosol: State of Knowledge and Future Research
Directions on Formation, Abundance, Fate, and Importance, Environ. Sci.
Technol., 54, 3767–3782, https://doi.org/10.1021/acs.est.9b06751, 2020.
Cheng, M. Q. and Kuwata, M.: Development of the Low-Temperature
Hygroscopicity Tandem Differential Mobility Analyzer (Low-T HTDMA) and its
Application to (NH4)2SO4 and NaCl Particles, J. Aerosol Sci., 168, 106111, https://doi.org/10.1016/j.jaerosci.2022.106111, 2023.
Choi, M. Y. and Chan, C. K.: The Effects of Organic Species on the Hygroscopic Behaviors of Inorganic Aerosols, Environ. Sci. Technol., 36,
2422–2428, https://doi.org/10.1021/es0113293, 2002.
Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.:
Liquid-Liquid Phase Separation in Mixed Organic/Inorganic Aerosol Particles,
J. Phys. Chem. A, 113, 10966–10978, https://doi.org/10.1021/jp905054d, 2009.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient
thermodynamic equilibrium model for
K+–Ca –Mg –NH –Na+–SO –NO3–Cl–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Freedman, M. A.: Liquid-Liquid Phase Separation in Supermicrometer and
Submicrometer Aerosol Particles, Acc. Chem. Res., 53, 1102–1110,
https://doi.org/10.1021/acs.accounts.0c00093, 2020.
Ghorai, S., Wang, B. B., Tivanski, A., and Laskin, A.: Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids, Environ. Sci. Technol., 48, 2234–2241, https://doi.org/10.1021/es404727u, 2014.
Griffin, R. J., Nguyen, K., Dabdub, D., and Seinfeld, J. H.: A coupled
hydrophobic-hydrophilic model for predicting secondary organic aerosol
formation, J. Atmos. Chem., 44, 171–190, https://doi.org/10.1023/A:1022436813699, 2003.
Guo, L. Y., Peng, C., Zong, T. M., Gu, W. J., Ma, Q. X., Wu, Z. J., Wang, Z., Ding, X., Hu, M., Wang, X. M., and Tang, M. J.: Comprehensive Characterization of Hygroscopic Properties of Methanesulfonates, Atmos.
Environ., 224, 117349, https://doi.org/10.1016/j.atmosenv.2020.117349, 2020.
Ho, K. F., Lee, S. C., Ho, S. S. H., Kawamura, K., Tachibana, E., Cheng, Y.,
and Zhu, T.: Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006), J. Geophys. Res.-Atmos., 115, D19312, https://doi.org/10.1029/2009jd013304, 2010.
Hyder, M., Genberg, J., Sandahl, M., Swietlicki, E., and Jönsson, J. Å.: Yearly trend of dicarboxylic acids in organic aerosols from south of
Sweden and source attribution, Atmos. Environ., 57, 197–204,
https://doi.org/10.1016/j.atmosenv.2012.04.027, 2012.
Kirpes, R. M., Lei, Z. Y., Fraund, M., Gunsch, M. J., May, N. W., Barrett,
T. E., Moffett, C. E., Schauer, A. J., Alexander, B., Upchurch, L. M., China, S., Quinn, P. K., Moffet, R. C., Laskin, A., Sheesley, R. J., Pratt, K. A., and Ault, A. P.: Solid organic-coated ammonium sulfate particles at high relative humidity in the summertime Arctic atmosphere, P. Natl. Acad. Sci. USA, 119, e2104496119, https://doi.org/10.1073/pnas.2104496119, 2022.
Kwamena, N. O. A., Buajarern, J., and Reid, J. P.: Equilibrium Morphology of
Mixed Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect
of Relative Humidity and Surfactants, J. Phys. Chem. A, 114, 5787–5795,
https://doi.org/10.1021/jp1003648, 2010.
Lambert, F., Kug, J. S., Park, R. J., Mahowald, N., Winckler, G., Abe-Ouchi,
A., O'Ishi, R., Takemura, T., and Lee, J. H.: The role of mineral-dust aerosols in polar temperature amplification, Nat. Clim. Change, 3, 487–491,
https://doi.org/10.1038/Nclimate1785, 2013.
Laskin, A., Cowin, J. P., and Iedema, M. J.: Analysis of Individual Environmental Particles using Modern Methods of Electron Microscopy and
X-ray Microanalysis, J. Electron. Spectrosc. Relat. Phenom., 150, 260–274,
https://doi.org/10.1016/j.elspec.2005.06.008, 2006.
Laskina, O., Morris, H. S., Grandquist, J. R., Qiu, Z., Stone, E. A.,
Tivanski, A. V., and Grassian, V. H.: Size Matters in the Water Uptake and
Hygroscopic Growth of Atmospherically Relevant Multicomponent Aerosol
Particles, J. Phys. Chem. A, 119, 4489–4497, https://doi.org/10.1021/jp510268p, 2015.
Li, W. J., Shao, L. Y., Zhang, D. Z., Ro, C. U., Hu, M., Bi, X. H., Geng, H., Matsuki, A., Niu, H. Y., and Chen, J. M.: A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions, J. Clean. Product., 112, 1330–1349,
https://doi.org/10.1016/j.jclepro.2015.04.050, 2016.
Li, W. J., Teng, X. M., Chen, X. Y., Liu, L., Xu, L., Zhang, J., Wang, Y. Y., Zhang, Y., and Shi, Z. B.: Organic Coating Reduces Hygroscopic Growth of
Phase-Separated Aerosol Particles, Environ. Sci. Technol., 55, 16339–16346,
https://doi.org/10.1021/acs.est.1c05901, 2021.
Ma, S. S., Pang, S. F., Li, J., and Zhang, Y. H.: A review of efflorescence
kinetics studies on atmospherically relevant particles, Chemosphere, 277,
130320, https://doi.org/10.1016/j.chemosphere.2021.130320, 2021.
Martin, S. T.: Phase Transitions of Aqueous Atmospheric Particles, Chem. Rev., 100, 3403–3453, https://doi.org/10.1021/cr990034t, 2000.
Metzger, S., Dentener, F., Krol, M., Jeuken, A., and Lelieveld, J.:
Gas/aerosol partitioning 2. Global modeling results, J. Geophys. Res.-Atmos., 107, ACH 17-1–ACH 17-23, https://doi.org/10.1029/2001jd001103, 2002a.
Metzger, S., Dentener, F., Pandis, S., and Lelieveld, J.: Gas/aerosol
partitioning 1. A computationally efficient model, J. Geophys. Res.-Atmos., 107, 4312, https://doi.org/10.1029/2001jd001102, 2002b.
Myhre, G., Bellouin, N., Berglen, T. F., Berntsen, T. K., Boucher, O.,
Grini, A., Isaksen, I. S. A., Johnsrud, M., Mishchenko, M. I., Stordal, F.,
and Tanre, D.: Comparison of the radiative properties and direct radiative
effect of aerosols from a global aerosol model and remote sensing data over
ocean, Tellus B, 59, 115–129, https://doi.org/10.1111/j.1600-0889.2006.00238.x, 2007.
Nandy, L., Yao, Y., Zheng, Z. H., and Riemer, N.: Water uptake and optical
properties of mixed organic-inorganic particles, Aerosol Sci. Tech., 55,
1398–1413, https://doi.org/10.1080/02786826.2021.1966378, 2021.
Nguyen, Q. T., Kjær, K. H., Kling, K. I., Boesen, T., and Bilde, M.:
Impact of Fatty Acid Coating on the CCN Activity of Sea Salt Particles,
Tellus B, 69, 1304064, https://doi.org/10.1080/16000889.2017.1304064, 2017.
Noziere, B.: Don't Forget the Surface, Science, 351, 1396–1397,
https://doi.org/10.1126/science.aaf3253, 2016.
O'Brien, R. E., Wang, B. B., Kelly, S. T., Lundt, N., You, Y., Bertram, A.
K., Leone, S. R., Laskin, A., and Gilles, M. K.: Liquid-Liquid Phase Separation in Aerosol Particles: Imaging at the Nanometer Scale, Environ.
Sci. Technol., 49, 4995–5002, https://doi.org/10.1021/acs.est.5b00062, 2015.
Ohno, P. E., Qin, Y. M., Ye, J. H., Wang, J. F., Bertram, A. K., and Martin,
S. T.: Fluorescence Aerosol Flow Tube Spectroscopy to Detect Liquid-Liquid
Phase Separation, ACS Earth Space Chem., 5, 1223–1232,
https://doi.org/10.1021/acsearthspacechem.1c00061, 2021.
Ohno, P. E., Brandao, L., Rainone, E. M., Aruffo, E., Wang, J. F., Qin, Y.
M., and Martin, S. T.: Size Dependence of Liquid-Liquid Phase Separation by
in Situ Study of Flowing Submicron Aerosol Particles, J. Phys. Chem. A, 127,
2967–2974, https://doi.org/10.1021/acs.jpca.2c08224, 2023.
Onasch, T. B., Siefert, R. L., Brooks, S. D., Prenni, A. J., Murray, B.,
Wilson, M. A., and Tolbert, M. A.: Infrared Spectroscopic Study of The
Deliquescence and Efflorescence of Ammonium Sulfate Aerosol as a Function of
Temperature, J. Geophys. Res.-Atmos., 104, 21317–21326, https://doi.org/10.1029/1999jd900384, 1999.
Ott, E. J. E. and Freedman, M. A.: Influence of Ions on the Size Dependent
Morphology of Aerosol Particles, ACS Earth Space Chem., 5, 2320–2328,
https://doi.org/10.1021/acsearthspacechem.1c00210, 2021.
Ott, E. J. E., Kucinski, T. M., Dawson, J. N., and Freedman, M. A.: Use of
Transmission Electron Microscopy for Analysis of Aerosol Particles and
Strategies for Imaging Fragile Particles, Anal. Chem., 93, 11347–11356,
https://doi.org/10.1021/acs.analchem.0c05225, 2021.
Peng, C., Chan, M. N., and Chan, C. K.: The Hygroscopic Properties of
Dicarboxylic and Multifunctional Acids: Measurements and UNIFAC Predictions,
Environ. Sci. Technol., 35, 4495–4501, https://doi.org/10.1021/es0107531, 2001.
Peng, C., Jing, B., Guo, Y. C., Zhang, Y. H., and Ge, M. F.: Hygroscopic
Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids,
J. Phys. Chem. A, 120, 1029–1038, https://doi.org/10.1021/acs.jpca.5b09373, 2016.
Peng, C., Chen, L., and Tang, M.: A Database for Deliquescence and
Efflorescence Relative Humidities of Compounds with Atmospheric Relevance,
Fundam. Res., 2, 578–587, https://doi.org/10.1016/j.fmre.2021.11.021, 2022.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem.
Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pöhlker, C., Saturno, J., Krüger, M. L., Förster, J. D., Weigand, M., Wiedemann, K. T., Bechtel, M., Artaxo, P., and Andreae, M. O.: Efflorescence upon Humidification? X-ray Microspectroscopic in situ Observation of Changes in Aerosol Microstructure and Phase State upon Hydration, Geophys. Res. Lett., 41, 3681–3689, https://doi.org/10.1002/2014gl059409, 2014.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate
and Health Effects, Angew. Chem. Int. Ed., 44, 7520–7540,
https://doi.org/10.1002/anie.200501122, 2005.
Posfai, M., Axisa, D., Tompa, E., Freney, E., Bruintjes, R., and Buseck, P.
R.: Interactions of Mineral Dust with Pollution and Clouds: An Individual-Particle TEM Study of Atmospheric Aerosol from Saudi Arabia,
Atmos. Res., 122, 347–361, https://doi.org/10.1016/j.atmosres.2012.12.001, 2013.
Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H. Y.,
Weber, R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt, J.
D., Nenes, A., Hu, W. W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal, P.
K., and Goldstein, A. H.: On the implications of aerosol liquid water and
phase separation for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369,
https://doi.org/10.5194/acp-17-343-2017, 2017.
Reed, N. W., Wing, B. A., Tolbert, M. A., and Browne, E. C.: Trace H2S
Promotes Organic Aerosol Production and Organosulfur Compound Formation in
Archean Analog Haze Photochemistry Experiments, Geophys. Res. Lett., 49,
e2021GL097032, https://doi.org/10.1029/2021GL097032, 2022.
Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol
Mixing State: Measurements, Modeling, and Impacts, Rev. Geophys., 57, 187–249, https://doi.org/10.1029/2018rg000615, 2019.
Römpp, A., Winterhalter, R., and Moortgat, G. K.: Oxodicarboxylic acids
in atmospheric aerosol particles, Atmos. Environ., 40, 6846–6862,
https://doi.org/10.1016/j.atmosenv.2006.05.053, 2006.
Roy, P., Mael, L. E., Makhnenko, I., Martz, R., Grassian, V. H., and Dutcher, C. S.: Temperature-Dependent Phase Transitions of Aqueous Aerosol Droplet Systems in Microfluidic Traps, ACS Earth Space Chem., 4, 1527–1539,
https://doi.org/10.1021/acsearthspacechem.0c00114, 2020.
Ruehl, C. R. and Wilson, K. R.: Surface Organic Monolayers Control the
Hygroscopic Growth of Submicrometer Particles at High Relative Humidity, J.
Phys. Chem. A, 118, 3952–3966, https://doi.org/10.1021/jp502844g, 2014.
Ruehl, C. R., Davies, J. F., and Wilson, K. R.: An Interfacial Mechanism for
Cloud Droplet Formation on Organic Aerosols, Science, 351, 1447–1450,
https://doi.org/10.1126/science.aad4889, 2016.
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-Particle
Partitioning of Atmospheric Aerosols: Interplay of Physical State, Non-Ideal
Mixing and Morphology, Phys. Chem. Chem. Phys., 15, 11441–11453,
https://doi.org/10.1039/c3cp51595h, 2013.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-Liquid Phase Separation and Morphology of Internally Mixed Dicarboxylic Acids/Ammonium Sulfate/Water Particles, Atmos. Chem. Phys., 12,
2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012a.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-Liquid Phase Separation in Aerosol Particles: Dependence on O:C, Organic Functionalities, and Compositional Complexity, Geophys. Res. Lett., 39, L19801, https://doi.org/10.1029/2012gl052807, 2012b.
Song, M., Maclean, A. M., Huang, Y. Z., Smith, N. R., Blair, S. L., Laskin,
J., Laskin, A., DeRieux, W. S. W., Li, Y., Shiraiwa, M., Nizkorodov, S. A.,
and Bertram, A. K.: Liquid-Liquid Phase Separation and Viscosity within
Secondary Organic Aerosol Generated from Diesel Fuel Vapors, Atmos. Chem.
Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019, 2019.
Song, M. J., Liu, P. F., Martin, S. T., and Bertram, A. K.: Liquid-Liquid
Phase Separation in Particles Containing Secondary Organic Material Free of
Inorganic Salts, Atmos. Chem. Phys., 17, 11261–11271,
https://doi.org/10.5194/acp-17-11261-2017, 2017.
Stewart, D. J., Cai, C., Nayler, J., Preston, T. C., Reid, J. P., Krieger,
U. K., Marcolli, C., and Zhang, Y. H.: Liquid-Liquid Phase Separation in
Mixed Organic/Inorganic Single Aqueous Aerosol Droplets, J. Phys. Chem. A,
119, 4177–4190, https://doi.org/10.1021/acs.jpca.5b01658, 2015.
Takahama, S., Pathak, R. K., and Pandis, S. N.: Efflorescence Transitions of
Ammonium Sulfate Particles Coated with Secondary Organic Aerosol, Environ.
Sci. Technol., 41, 2289–2295, https://doi.org/10.1021/es0619915, 2007.
Ting, Y. C., Mitchell, E. J. S., Allan, J. D., Liu, D. T., Spracklen, D. V.,
Williams, A., Jones, J. M., Lea-Langton, A. R., McFiggans, G., and Coe, H.:
Mixing State of Carbonaceous Aerosols of Primary Emissions from “Improved”
African Cookstoves, Environ. Sci. Technol., 52, 10134–10143,
https://doi.org/10.1021/acs.est.8b00456, 2018.
Tolocka, M. P. and Turpin, B.: Contribution of Organosulfur Compounds to
Organic Aerosol Mass, Environ. Sci. Technol., 46, 7978–7983,
https://doi.org/10.1021/es300651v, 2012.
Tong, Y. K., Meng, X. X. Y., Zhou, B., Sun, R., Wu, Z. J., Hu, M., and Ye, A. P.: Detecting the pH-dependent liquid-liquid phase separation of single
levitated aerosol microdroplets via laser tweezers-Raman spectroscopy, Front. Phys., 10, 969921, https://doi.org/10.3389/fphy.2022.969921, 2022.
Unga, F., Choel, M., Derimian, Y., Deboudt, K., Dubovik, O., and Goloub, P.:
Microscopic Observations of Core-Shell Particle Structure and Implications
for Atmospheric Aerosol Remote Sensing, J. Geophys. Res.-Atmos., 123, 13944–13962, https://doi.org/10.1029/2018jd028602, 2018.
Veghte, D. P., Bittner, D. R., and Freedman, M. A.: Cryo-Transmission Electron Microscopy Imaging of the Morphology of Submicrometer Aerosol
Containing Organic Acids and Ammonium Sulfate, Anal. Chem., 86, 2436–2442,
https://doi.org/10.1021/ac403279f, 2014.
Voorhees, P. W.: The Theory of Ostwald Ripening, J. Stat. Phys., 38, 231–252, https://doi.org/10.1007/Bf01017860, 1985.
Wang, N., Jing, B., Wang, P., Wang, Z., Li, J. R., Pang, S. F., Zhang, Y. H., and Ge, M. F.: Hygroscopicity and Compositional Evolution of Atmospheric
Aerosols Containing Water-Soluble Carboxylic Acid Salts and Ammonium Sulfate: Influence of Ammonium Depletion, Environ. Sci. Technol., 53, 6225–6234, https://doi.org/10.1021/acs.est.8b07052, 2019.
Wang, W. H., Shao, L. Y., Mazzoleni, C., Li, Y. W., Kotthaus, S., Grimmond,
S., Bhandari, J., Xing, J. P., Feng, X. L., Zhang, M. Y., and Shi, Z. B.:
Measurement report: Comparison of wintertime individual particles at ground
level and above the mixed layer in urban Beijing, Atmos. Chem. Phys., 21,
5301–5314, https://doi.org/10.5194/acp-21-5301-2021, 2021.
Wise, M. E., Martin, S. T., Russell, L. M., and Buseck, P. R.: Water Uptake
by NaCl Particles Prior to Deliquescence and the Phase Rule, Aerosol Sci. Tech., 42, 281–294, https://doi.org/10.1080/02786820802047115, 2008.
Xiong, C., Chen, X. Y., Ding, X. L., Kuang, B. Y., Pei, X. Y., Xu, Z. N., Yang, S. K., Hu, H., and Wang, Z. B.: Reconsideration of Surface Tension and
Phase State Effects on Cloud Condensation Nuclei Activity Based on the
Atomic Force Microscopy Measurement, Atmos. Chem. Phys., 22, 16123–16135,
https://doi.org/10.5194/acp-22-16123-2022, 2022.
Xiong, C., Kuang, B. Y., Zhang, F., Pei, X. Y., Xu, Z. N., and Wang, Z. B.: In-situ observation for RH-dependent mixing states of submicron particles containing organic surfactants and inorganic salts, Zenodo [data set], https://doi.org/10.5281/zenodo.8079001, 2023.
Xu, L., Fukushima, S., Sobanska, S., Murata, K., Naganuma, A., Liu, L., Wang, Y. Y., Niu, H. Y., Shi, Z. B., Kojima, T., Zhang, D. Z., and Li, W. J.: Tracing the evolution of morphology and mixing state of soot particles along with the movement of an Asian dust storm, Atmos. Chem. Phys., 20, 14321–14332, https://doi.org/10.5194/acp-20-14321-2020, 2020.
Xu, W. Q., Chen, C., Qiu, Y. M., Li, Y., Zhang, Z. Q., Karnezi, E., Pandis,
S. N., Xie, C. H., Li, Z. J., Sun, J. X., Ma, N., Xu, W. Y., Fu, P. Q., Wang, Z. F., Zhu, J., Worsnop, D. R., Ng, N. L., and Sun, Y. L.: Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter, Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, 2021.
Yang, H., Wang, N., Pang, S. F., Zheng, C. M., and Zhang, Y. H.: Chemical
reaction between sodium pyruvate and ammonium sulfate in aerosol particles
and resultant sodium sulfate efflorescence, Chemosphere, 215, 554–562,
https://doi.org/10.1016/j.chemosphere.2018.10.062, 2019.
You, Y. and Bertram, A. K.: Effects of Molecular Weight and Temperature on
Liquid-Liquid Phase Separation in Particles Containing Organic Species and
Inorganic Salts, Atmos. Chem. Phys., 15, 1351–1365, https://doi.org/10.5194/acp-15-1351-2015, 2015.
You, Y., Renbaum-Wolff, L., Carreras-Sospedra, M., Hanna, S. J., Hiranuma, N., Kamal, S., Smith, M. L., Zhang, X. L., Weber, R. J., Shilling, J. E.,
Dabdub, D., Martin, S. T., and Bertram, A. K.: Images Reveal that Atmospheric Particles can Undergo Liquid-Liquid Phase Separations, P. Natl. Acad. Sci. USA, 109, 13188–13193, https://doi.org/10.1073/pnas.1206414109, 2012.
You, Y., Renbaum-Wolff, L., and Bertram, A. K.: Liquid–liquid phase
separation in particles containing organics mixed with ammonium sulfate,
ammonium bisulfate, ammonium nitrate or sodium chloride, Atmos. Chem. Phys.,
13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, 2013.
Závacká, K., Nedvela, V., Olbert, M., Tihlaříková, E., Vetráková, L., Yang, X., and Heger, D.: Temperature and Concentration Affect Particle Size Upon Sublimation Saline Ice: Implications for Sea Salt Aerosol Production in Polar Regions, Geophys. Res. Lett., 49, e2021GL097098, https://doi.org/10.1029/2021GL097098, 2022.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007jd008782, 2008.
Zeng, G., Kelley, J., Kish, J. D., and Liu, Y.: Temperature-Dependent Deliquescent and Efflorescent Properties of Methanesulfonate Sodium Studied
by ATR-FTIR Spectroscopy, J. Phys. Chem. A, 118, 583–591, https://doi.org/10.1021/jp405896y, 2014.
Zhang, J., Yuan, Q., Liu, L., Wang, Y. Y., Zhang, Y. X., Xu, L., Pang, Y.,
Zhu, Y. H., Niu, H. Y., Shao, L. Y., Yang, S. S., Liu, H., Pan, X. L., Shi,
Z. B., Hu, M., Fu, P. Q., and Li, W. J.: Trans-Regional Transport of Haze
Particles From the North China Plain to Yangtze River Delta During Winter,
J. Geophys. Res.-Atmos., 126, e2020JD033778, https://doi.org/10.1029/2020JD033778, 2021.
Zhang, J., Wang, Y. Y., Teng, X. M., Liu, L., Xu, Y. S., Ren, L. H., Shi, Z.
B., Zhang, Y., Jiang, J. K., Liu, D. T., Hu, M., Shao, L. Y., Chen, J. M.,
Martin, S. T., Zhang, X. Y., and Li, W. J.: Liquid-Liquid Phase Separation
Reduces Radiative Absorption by Aged Black Carbon Aerosols, Commun. Earth
Environ., 3, 128, https://doi.org/10.1038/s43247-022-00462-1, 2022.
Zhang, Y., Chen, Y. Z., Lambe, A. T., Olson, N. E., Lei, Z. Y., Craig, R.
L., Zhang, Z. F., Gold, A., Onasch, T. B., Jayne, J. T., Worsnop, D. R.,
Gaston, C. J., Thornton, J. A., Vizuete, W., Ault, A. P., and Surratt, J.
D.: Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation
from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPDX), Environ.
Sci. Technol. Lett., 5, 167–174, https://doi.org/10.1021/acs.estlett.8b00044, 2018.
Zhang, Y. X., Zhang, Q., Yao, Z. L., and Li, H. Y.: Particle Size and Mixing
State of Freshly Emitted Black Carbon from Different Combustion Sources in
China, Environ. Sci. Technol., 54, 7766–7774, https://doi.org/10.1021/acs.est.9b07373, 2020.
Zhu, Y., Pang, S., and Zhang, Y.: Observations on the unique phase transitions of inorganics relevant due to gluconic acid in particles, Atmos.
Environ., 288, 119313, https://doi.org/10.1016/j.atmosenv.2022.119313, 2022.
Short summary
In hydration, an apparent water diffusion hindrance by an organic surfactant shell was confirmed, raising the inorganic deliquescence relative humidity (RH) to a nearly saturated condition. In dehydration, phase separations were observed for inorganic surfactant systems, showing a strong dependence on the organic molecular
oxygen-to-carbon ratio. Our results could improve fundamental knowledge about aerosol mixing states and decrease uncertainty in model estimations of global radiative effects.
In hydration, an apparent water diffusion hindrance by an organic surfactant shell was...
Altmetrics
Final-revised paper
Preprint