Articles | Volume 23, issue 12
https://doi.org/10.5194/acp-23-7033-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-7033-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large-eddy simulation of a two-layer boundary-layer cloud system from the Arctic Ocean 2018 expedition
Department of Meteorology and Bolin Centre for Climate Research,
Stockholm University, Stockholm 106 91, Sweden
Julien Savre
Meteorological Institute, Fakultät für Physik,
Ludwig Maximilian University of Munich, Munich 80333, Germany
Michael Tjernström
Department of Meteorology and Bolin Centre for Climate Research,
Stockholm University, Stockholm 106 91, Sweden
Caroline Leck
Department of Meteorology and Bolin Centre for Climate Research,
Stockholm University, Stockholm 106 91, Sweden
Annica M. L. Ekman
Department of Meteorology and Bolin Centre for Climate Research,
Stockholm University, Stockholm 106 91, Sweden
Related authors
Ines Bulatovic, Adele L. Igel, Caroline Leck, Jost Heintzenberg, Ilona Riipinen, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 3871–3897, https://doi.org/10.5194/acp-21-3871-2021, https://doi.org/10.5194/acp-21-3871-2021, 2021
Short summary
Short summary
We use detailed numerical modelling to show that small aerosol particles (diameters ~25–80 nm; so-called Aitken mode particles) significantly influence low-level cloud properties in the clean summertime high Arctic. The small particles can help sustain clouds when the concentration of larger particles is low (<10–20 cm-3). Measurements from four different observational campaigns in the high Arctic support the modelling results as they indicate that Aitken mode aerosols are frequently activated.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, and Bjørn H. Samset
EGUsphere, https://doi.org/10.5194/egusphere-2024-1946, https://doi.org/10.5194/egusphere-2024-1946, 2024
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that while there is regional warming, the global 2020–2040 temperature rise is only +0.03°C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1891, https://doi.org/10.5194/egusphere-2024-1891, 2024
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity which may lead to further climatic feedbacks. We investigate, using an atmospheric model and results from marine engine experiments which focused on fuel sulfur content reduction and exhaust wet scrubbing, how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022, https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Short summary
In winter when solar radiation is absent in the Arctic, the poleward transport of heat and moisture into the high Arctic becomes the main contribution of Arctic warming. Over completely frozen ocean sectors, total surface energy budget is dominated by net long-wave heat, while over the Barents Sea, with an open ocean to the south, total net surface energy budget is dominated by the surface turbulent heat.
Tiina Nygård, Michael Tjernström, and Tuomas Naakka
Weather Clim. Dynam., 2, 1263–1282, https://doi.org/10.5194/wcd-2-1263-2021, https://doi.org/10.5194/wcd-2-1263-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the Arctic atmosphere in winter are affected by both the large-scale dynamics and the local processes, such as radiation, cloud formation and turbulence. The results show that the influence of different large-scale flows on temperature and humidity profiles must be viewed as a progressing set of processes. Within the Arctic, there are notable regional differences in how large-scale flows affect the temperature and specific humidity profiles.
Erik Johansson, Abhay Devasthale, Michael Tjernström, Annica M. L. Ekman, Klaus Wyser, and Tristan L'Ecuyer
Geosci. Model Dev., 14, 4087–4101, https://doi.org/10.5194/gmd-14-4087-2021, https://doi.org/10.5194/gmd-14-4087-2021, 2021
Short summary
Short summary
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the climate community. Cloud radiative heating (CRH) is a key parameter in this coupling and is therefore essential to model realistically. We, therefore, evaluate a climate model against satellite observations. Our findings indicate good agreement in the seasonal pattern of CRH even if the magnitude differs. We also find that increasing the horizontal resolution in the model has little effect on the CRH.
Georgia Sotiropoulou, Luisa Ickes, Athanasios Nenes, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 9741–9760, https://doi.org/10.5194/acp-21-9741-2021, https://doi.org/10.5194/acp-21-9741-2021, 2021
Short summary
Short summary
Mixed-phase clouds are a large source of uncertainty in projections of the Arctic climate. This is partly due to the poor representation of the cloud ice formation processes. Implementing a parameterization for ice multiplication due to mechanical breakup upon collision of two ice particles in a high-resolution model improves cloud ice phase representation; however, cloud liquid remains overestimated.
Alejandro Baró Pérez, Abhay Devasthale, Frida A.-M. Bender, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 6053–6077, https://doi.org/10.5194/acp-21-6053-2021, https://doi.org/10.5194/acp-21-6053-2021, 2021
Short summary
Short summary
We study the impacts of above-cloud biomass burning plumes on radiation and clouds over the southeast Atlantic using data derived from satellite observations and data-constrained model simulations. A substantial amount of the aerosol within the plumes is not classified as smoke by the satellite. The atmosphere warms more with increasing smoke aerosol loading. No clear influence of aerosol type, loading, or moisture within the overlying aerosol plumes is detected on the cloud top cooling rates.
Ines Bulatovic, Adele L. Igel, Caroline Leck, Jost Heintzenberg, Ilona Riipinen, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 3871–3897, https://doi.org/10.5194/acp-21-3871-2021, https://doi.org/10.5194/acp-21-3871-2021, 2021
Short summary
Short summary
We use detailed numerical modelling to show that small aerosol particles (diameters ~25–80 nm; so-called Aitken mode particles) significantly influence low-level cloud properties in the clean summertime high Arctic. The small particles can help sustain clouds when the concentration of larger particles is low (<10–20 cm-3). Measurements from four different observational campaigns in the high Arctic support the modelling results as they indicate that Aitken mode aerosols are frequently activated.
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, Annika Burzik, and Ryan Neely III
Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, https://doi.org/10.5194/acp-21-289-2021, 2021
Short summary
Short summary
This paper provides interesting new results on the thermodynamic structure of the boundary layer, cloud conditions, and fog characteristics in the Arctic during the Arctic Ocean 2018 campaign. It provides information for interpreting further process studies on aerosol–cloud interactions and shows substantial differences in thermodynamic conditions and cloud characteristics based on comparison with previous campaigns. This certainly raises the question of whether it is just an exceptional year.
André Welti, E. Keith Bigg, Paul J. DeMott, Xianda Gong, Markus Hartmann, Mike Harvey, Silvia Henning, Paul Herenz, Thomas C. J. Hill, Blake Hornblow, Caroline Leck, Mareike Löffler, Christina S. McCluskey, Anne Marie Rauker, Julia Schmale, Christian Tatzelt, Manuela van Pinxteren, and Frank Stratmann
Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020, https://doi.org/10.5194/acp-20-15191-2020, 2020
Short summary
Short summary
Ship-based measurements of maritime ice nuclei concentrations encompassing all oceans are compiled. From this overview it is found that maritime ice nuclei concentrations are typically 10–100 times lower than over continents, while concentrations are surprisingly similar in different oceanic regions. The analysis of the influence of ship emissions shows no effect on the data, making ship-based measurements an efficient strategy for the large-scale exploration of ice nuclei concentrations.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Laura J. Wilcox, Zhen Liu, Bjørn H. Samset, Ed Hawkins, Marianne T. Lund, Kalle Nordling, Sabine Undorf, Massimo Bollasina, Annica M. L. Ekman, Srinath Krishnan, Joonas Merikanto, and Andrew G. Turner
Atmos. Chem. Phys., 20, 11955–11977, https://doi.org/10.5194/acp-20-11955-2020, https://doi.org/10.5194/acp-20-11955-2020, 2020
Short summary
Short summary
Projected changes in man-made aerosol range from large reductions to moderate increases in emissions until 2050. Rapid reductions between the present and the 2050s lead to enhanced increases in global and Asian summer monsoon precipitation relative to scenarios with continued increases in aerosol. Relative magnitude and spatial distribution of aerosol changes are particularly important for South Asian summer monsoon precipitation changes, affecting the sign of the trend in the coming decades.
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
Short summary
The Arctic is a region where aerosols are scarce. Sea spray might be a potential source of aerosols acting as ice-nucleating particles. We investigate two common phytoplankton species (Melosira arctica and Skeletonema marinoi) and present their ice nucleation activity in comparison with Arctic seawater microlayer samples from different field campaigns. We also aim to understand the aerosolization process of marine biological samples and the potential effect on the ice nucleation activity.
Maria Sand, Terje K. Berntsen, Annica M. L. Ekman, Hans-Christen Hansson, and Anna Lewinschal
Atmos. Chem. Phys., 20, 3079–3089, https://doi.org/10.5194/acp-20-3079-2020, https://doi.org/10.5194/acp-20-3079-2020, 2020
Short summary
Short summary
There has been a growing interest in reducing emissions of soot particles to slow global warming and improve air quality. However, estimating the effect of reduced emissions is complex, as soot particles absorb solar radiation and influence heating rates, clouds, and humidity and can influence climate far outside their emission region. Here we investigate the impact of soot emitted in four major emissions areas, using different emissions rates, to see whether location and magnitude matter.
Georgia Sotiropoulou, Sylvia Sullivan, Julien Savre, Gary Lloyd, Thomas Lachlan-Cope, Annica M. L. Ekman, and Athanasios Nenes
Atmos. Chem. Phys., 20, 1301–1316, https://doi.org/10.5194/acp-20-1301-2020, https://doi.org/10.5194/acp-20-1301-2020, 2020
Short summary
Short summary
Arctic clouds constitute a large source of uncertainty in predictions of future climate. Observations indicate that the number concentration of cloud ice crystals exceeds the concentration of aerosols that can act as ice-nucleating particles (INPs). We show that ice multiplication due to mechanical break-up upon collisions between the few primary ice crystals (formed from INPs) can explain the discrepancy. Including a description of the process in climate models can improve cloud representation.
Laura J. Wilcox, Nick Dunstone, Anna Lewinschal, Massimo Bollasina, Annica M. L. Ekman, and Eleanor J. Highwood
Atmos. Chem. Phys., 19, 9081–9095, https://doi.org/10.5194/acp-19-9081-2019, https://doi.org/10.5194/acp-19-9081-2019, 2019
Short summary
Short summary
Asian anthropogenic aerosol emissions have increased rapidly since 1980. In winter, this has resulted in warming over China and cooling over India. Using models of different levels of complexity, we show that Asian-aerosol-induced heating anomalies in the western and northern North Pacific establish a circulation pattern that causes cooling in North America and Europe. This connection makes these regions potentially sensitive to any reductions of Asian aerosol emissions in the near future.
Anna Lewinschal, Annica M. L. Ekman, Hans-Christen Hansson, Maria Sand, Terje K. Berntsen, and Joakim Langner
Atmos. Chem. Phys., 19, 2385–2403, https://doi.org/10.5194/acp-19-2385-2019, https://doi.org/10.5194/acp-19-2385-2019, 2019
Short summary
Short summary
We use a global climate model to study how anthropogenic emissions of short-lived atmospheric particles in different parts of the world influence the global temperature distribution. We find that the global mean temperature change per unit emission is similar for all emission regions, and the largest temperature response is found in the Arctic no matter where the emissions occur. However, for European emissions, the temperature change per unit emission is found to depend on emission strength.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Robin G. Stevens, Katharina Loewe, Christopher Dearden, Antonios Dimitrelos, Anna Possner, Gesa K. Eirund, Tomi Raatikainen, Adrian A. Hill, Benjamin J. Shipway, Jonathan Wilkinson, Sami Romakkaniemi, Juha Tonttila, Ari Laaksonen, Hannele Korhonen, Paul Connolly, Ulrike Lohmann, Corinna Hoose, Annica M. L. Ekman, Ken S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 18, 11041–11071, https://doi.org/10.5194/acp-18-11041-2018, https://doi.org/10.5194/acp-18-11041-2018, 2018
Short summary
Short summary
We perform a model intercomparison of summertime high Arctic clouds. Observed concentrations of aerosol particles necessary for cloud formation fell to extremely low values, coincident with a transition from cloudy to nearly cloud-free conditions. Previous analyses have suggested that at these low concentrations, the radiative properties of the clouds are determined primarily by these particle concentrations. The model results strongly support this hypothesis.
Quentin Bourgeois, Annica M. L. Ekman, Jean-Baptiste Renard, Radovan Krejci, Abhay Devasthale, Frida A.-M. Bender, Ilona Riipinen, Gwenaël Berthet, and Jason L. Tackett
Atmos. Chem. Phys., 18, 7709–7720, https://doi.org/10.5194/acp-18-7709-2018, https://doi.org/10.5194/acp-18-7709-2018, 2018
Short summary
Short summary
The altitude of aerosols is crucial as they can impact cloud formation and radiation. In this study, satellite observations have been used to characterize the global aerosol optical depth (AOD) in the boundary layer and the free troposphere. The free troposphere contributes 39 % to the global AOD during daytime. Overall, the results have implications for the description of budgets, sources, sinks and transport of aerosol particles as presently described in the atmospheric model.
Katharina Loewe, Annica M. L. Ekman, Marco Paukert, Joseph Sedlar, Michael Tjernström, and Corinna Hoose
Atmos. Chem. Phys., 17, 6693–6704, https://doi.org/10.5194/acp-17-6693-2017, https://doi.org/10.5194/acp-17-6693-2017, 2017
Short summary
Short summary
Processes that affect Arctic mixed-phase cloud life cycle are extremely important for the surface energy budget. Three different sensitivity experiments mimic changes in the advection of air masses with different thermodynamic profiles and aerosol properties to find the potential mechanisms leading to the dissipation of the cloud. We found that the reduction of the cloud droplet number concentration was likely the primary contributor to the dissipation of the observed Arctic mixed-phase cloud.
Jost Heintzenberg, Peter Tunved, Martí Galí, and Caroline Leck
Atmos. Chem. Phys., 17, 6153–6175, https://doi.org/10.5194/acp-17-6153-2017, https://doi.org/10.5194/acp-17-6153-2017, 2017
Short summary
Short summary
Events of new particle formation (NPF) were analyzed objectively in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified that were hypothesized to be different expressions of related source processes. Back trajectories and ancillary atmospheric and marine data strongly point to marine biogenic sources causing new particle formation in the summer Arctic.
Evelyne Hamacher-Barth, Caroline Leck, and Kjell Jansson
Atmos. Chem. Phys., 16, 6577–6593, https://doi.org/10.5194/acp-16-6577-2016, https://doi.org/10.5194/acp-16-6577-2016, 2016
Short summary
Short summary
Aerosol particles collected during the ASCOS expedition in the high Arctic in summer 2008 were examined with electron microscopy and elemental dispersive X-ray spectroscopy. The majority of particles consisted of marine gel matter accompanied by minor fractions of ammonium (bi)sulfate and internally mixed sulfur containing particles. Depending on their morphology, marine gel particles showed prevalence for either the ions Na+/K+ or Ca2+/Mg2+.
F. Höpner, F. A.-M. Bender, A. M. L. Ekman, P. S. Praveen, C. Bosch, J. A. Ogren, A. Andersson, Ö. Gustafsson, and V. Ramanathan
Atmos. Chem. Phys., 16, 1045–1064, https://doi.org/10.5194/acp-16-1045-2016, https://doi.org/10.5194/acp-16-1045-2016, 2016
Short summary
Short summary
The paper presents aerosol properties measured during the Cloud Aerosol Radiative Forcing Experiment (CARDEX) on the Maldives Islands in winter 2012. The vertical distribution of absorbing aerosol which is very relevant to the radiative forcing in that region, is investigated. A method for determining particle absorption and equivalent black carbon concentration from lidar extinction coefficients, characteristic single scattering albedo and mass absorption efficiency, is presented and evaluated.
P. Achtert, I. M. Brooks, B. J. Brooks, B. I. Moat, J. Prytherch, P. O. G. Persson, and M. Tjernström
Atmos. Meas. Tech., 8, 4993–5007, https://doi.org/10.5194/amt-8-4993-2015, https://doi.org/10.5194/amt-8-4993-2015, 2015
Short summary
Short summary
Doppler lidar wind measurements were obtained during a 3-month Arctic cruise in summer 2014. Ship-motion effects were compensated by combining a commercial Doppler lidar with a custom-made motion-stabilisation platform. This enables the retrieval of wind profiles in the Arctic boundary layer with uncertainties comparable to land-based lidar measurements and standard radiosondes. The presented set-up has the potential to facilitate continuous ship-based wind profile measurements over the oceans.
E. Johansson, A. Devasthale, T. L'Ecuyer, A. M. L. Ekman, and M. Tjernström
Atmos. Chem. Phys., 15, 11557–11570, https://doi.org/10.5194/acp-15-11557-2015, https://doi.org/10.5194/acp-15-11557-2015, 2015
Short summary
Short summary
Both radiative and latent heat components of total diabatic heating influence Indian monsoon dynamics. This study investigates radiative component in detail, focusing on various cloud types that have largest radiative impact during summer monsoon over the Indian subcontinent. The vertical structure of radiative heating and its intra-seasonal variability is investigated with particular emphasis on the upper troposphere and lower stratosphere (UTLS) region.
J. Heintzenberg, C. Leck, and P. Tunved
Atmos. Chem. Phys., 15, 6487–6502, https://doi.org/10.5194/acp-15-6487-2015, https://doi.org/10.5194/acp-15-6487-2015, 2015
Short summary
Short summary
Particle size distributions from four summer cruises of the Swedish icebreaker Oden were combined with back trajectories and pack ice information in a cluster algorithm to investigate source areas and aerosol formation in the central Arctic. Five source regions and three aerosol types resulted. Long travel times over ice, combined with more open water conditions shortly before air mass arrival, seem to control the formation of ultrafine particles over the central Arctic pack ice.
C. Leck and E. Svensson
Atmos. Chem. Phys., 15, 2545–2568, https://doi.org/10.5194/acp-15-2545-2015, https://doi.org/10.5194/acp-15-2545-2015, 2015
Short summary
Short summary
In the Arctic clouds are very important for determining the melting of the sea ice. The radiative properties of the optically thin Arctic clouds strongly depend on the number of particles available for water uptake. This study argues that the Köhler equation commonly used for simulating cloud droplet activation is not fully complete for describing the condensational growth of the interaction of the hydrophilic and hydrophobic entities on the structures of the airborne polymer gels present.
G. Sotiropoulou, J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson
Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, https://doi.org/10.5194/acp-14-12573-2014, 2014
Short summary
Short summary
During ASCOS, clouds are more frequently decoupled from the surface than coupled to it; when coupling occurs it is primary driven by the cloud. Decoupled clouds have a bimodal structure; they are either weakly or strongly decoupled from the surface; the enhancement of the decoupling is possibly due to sublimation of precipitation. Stable clouds (no cloud-driven mixing) are also observed; those are optically thin, often single-phase liquid, with no or negligible precipitation (e.g. fog).
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
J. Browse, K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, and C. Leck
Atmos. Chem. Phys., 14, 7543–7557, https://doi.org/10.5194/acp-14-7543-2014, https://doi.org/10.5194/acp-14-7543-2014, 2014
N. Rastak, S. Silvergren, P. Zieger, U. Wideqvist, J. Ström, B. Svenningsson, M. Maturilli, M. Tesche, A. M. L. Ekman, P. Tunved, and I. Riipinen
Atmos. Chem. Phys., 14, 7445–7460, https://doi.org/10.5194/acp-14-7445-2014, https://doi.org/10.5194/acp-14-7445-2014, 2014
B. Sierau, R. Y.-W. Chang, C. Leck, J. Paatero, and U. Lohmann
Atmos. Chem. Phys., 14, 7409–7430, https://doi.org/10.5194/acp-14-7409-2014, https://doi.org/10.5194/acp-14-7409-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
C. Wesslén, M. Tjernström, D. H. Bromwich, G. de Boer, A. M. L. Ekman, L.-S. Bai, and S.-H. Wang
Atmos. Chem. Phys., 14, 2605–2624, https://doi.org/10.5194/acp-14-2605-2014, https://doi.org/10.5194/acp-14-2605-2014, 2014
G. de Boer, M. D. Shupe, P. M. Caldwell, S. E. Bauer, O. Persson, J. S. Boyle, M. Kelley, S. A. Klein, and M. Tjernström
Atmos. Chem. Phys., 14, 427–445, https://doi.org/10.5194/acp-14-427-2014, https://doi.org/10.5194/acp-14-427-2014, 2014
C. Leck, Q. Gao, F. Mashayekhy Rad, and U. Nilsson
Atmos. Chem. Phys., 13, 12573–12588, https://doi.org/10.5194/acp-13-12573-2013, https://doi.org/10.5194/acp-13-12573-2013, 2013
P. Kupiszewski, C. Leck, M. Tjernström, S. Sjogren, J. Sedlar, M. Graus, M. Müller, B. Brooks, E. Swietlicki, S. Norris, and A. Hansel
Atmos. Chem. Phys., 13, 12405–12431, https://doi.org/10.5194/acp-13-12405-2013, https://doi.org/10.5194/acp-13-12405-2013, 2013
E. Hamacher-Barth, K. Jansson, and C. Leck
Atmos. Meas. Tech., 6, 3459–3475, https://doi.org/10.5194/amt-6-3459-2013, https://doi.org/10.5194/amt-6-3459-2013, 2013
M. D. Shupe, P. O. G. Persson, I. M. Brooks, M. Tjernström, J. Sedlar, T. Mauritsen, S. Sjogren, and C. Leck
Atmos. Chem. Phys., 13, 9379–9399, https://doi.org/10.5194/acp-13-9379-2013, https://doi.org/10.5194/acp-13-9379-2013, 2013
J. Zábori, R. Krejci, J. Ström, P. Vaattovaara, A. M. L. Ekman, M. E. Salter, E. M. Mårtensson, and E. D. Nilsson
Atmos. Chem. Phys., 13, 4783–4799, https://doi.org/10.5194/acp-13-4783-2013, https://doi.org/10.5194/acp-13-4783-2013, 2013
A. Kirkevåg, T. Iversen, Ø. Seland, C. Hoose, J. E. Kristjánsson, H. Struthers, A. M. L. Ekman, S. Ghan, J. Griesfeller, E. D. Nilsson, and M. Schulz
Geosci. Model Dev., 6, 207–244, https://doi.org/10.5194/gmd-6-207-2013, https://doi.org/10.5194/gmd-6-207-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Exploring aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean using the WRF-Chem–SBM model
Finite domains cause bias in measured and modeled distributions of cloud sizes
A systematic evaluation of high-cloud controlling factors
Tracking precipitation features and associated large-scale environments over southeastern Texas
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
How well can persistent contrails be predicted? An update
Potential impacts of marine fuel regulations on Arctic clouds and radiative feedbacks
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project
Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
Impact of ice multiplication on the cloud electrification of a cold-season thunderstorm: a numerical case study
Developing a climatological simplification of aerosols to enter the cloud microphysics of a global climate model
High ice water content in tropical mesoscale convective systems (a conceptual model)
Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations
Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation
Diurnal variation of amplified canopy urban heat island in Beijing megacity during heat wave periods: Roles of mountain-valley circulation and urban morphology
Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps
Cloud response to co-condensation of water and organic vapors over the boreal forest
Distribution and morphology of non-persistent contrail and persistent contrail formation areas in ERA5
Diurnal evolution of non-precipitating marine stratocumuli in an LES ensemble
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
Effect of Secondary Ice Production Processes on the Simulation of ice pellets using the Predicted Particle Properties microphysics scheme
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Evolution of Cloud Droplet Temperature and Lifetime in Spatiotemporally Varying Subsaturated Environments with Implications for Ice Nucleation at Cloud Edges
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Cloud properties and their projected changes in CMIP models with low to high climate sensitivity
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric circulation at different scales
Impact of urban land use on mean and heavy rainfall during the Indian summer monsoon
Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment
Opinion: Tropical cirrus – from micro-scale processes to climate-scale impacts
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 1: A process-oriented evaluation of COSMOiso simulations with EUREC4A observations
Assimilation of 3D polarimetric microphysical retrievals in a convective-scale NWP system
Sensitivity of cloud-phase distribution to cloud microphysics and thermodynamics in simulated deep convective clouds and SEVIRI retrievals
Assessing the destructiveness of tropical cyclones induced by anthropogenic aerosols in an atmosphere–ocean coupled framework
Opinion: A critical evaluation of the evidence for aerosol invigoration of deep convection
Historical (1960–2014) lightning and LNOx trends and their controlling factors in a chemistry–climate model
The chance of freezing – a conceptional study to parameterize temperature-dependent freezing by including randomness of ice-nucleating particle concentrations
Evaluation of hygroscopic cloud seeding in warm-rain processes by a hybrid microphysics scheme using a Weather Research and Forecasting (WRF) model: a real case study
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024, https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary
Short summary
Ice nucleation from supercooled droplets is important in many weather and climate modeling efforts. For experiments where droplets are steadily supercooled from the freezing point, our work combines nucleation theory and survival probability analysis to predict the nucleation spectrum, i.e., droplet freezing probabilities vs. temperature. We use the new framework to extract approximately consistent rate parameters from experiments with different cooling rates and droplet sizes.
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024, https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Short summary
Quantifying cloud response to aerosol perturbations presents a major challenge in understanding the human impact on climate. Using a large number of process-resolving simulations of marine stratocumulus, we show that solar heating drives a negative feedback mechanism that buffers the persistent negative trend in cloud water adjustment after sunrise. This finding has implications for the dependence of the cloud cooling effect on the timing of deliberate aerosol perturbations.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024, https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Short summary
Microphysical processes impact the phase-partitioning of clouds. In this study we evaluate these processes while focusing on low-level Arctic clouds. To achieve this we used an extensive simulation set in combination with a new diagnostic tool. This study presents our findings on the relevance of these processes and their behaviour under different thermodynamic regimes.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024, https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Short summary
There is considerable disagreement on mathematical parameters that describe the number of clouds of different sizes as well as the size of the largest clouds. Both are key defining characteristics of Earth's atmosphere. A previous study provided an incorrect explanation for the disagreement. Instead, the disagreement may be explained by prior studies not properly accounting for the size of their measurement domain. We offer recommendations for how the domain size can be accounted for.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024, https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Short summary
The prediction of downhill thunderstorms (DSs) remains elusive. We propose an objective method to identify DSs, based on which enhanced and dissipated DSs are discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance the intensity of DSs, whereas low-level divergence is observed when the DS dissipates. The findings highlight the key role that an RWP mesonet plays in the evolution of DSs.
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Short summary
We try to improve the forecast of ice supersaturation (ISS) and potential persistent contrails using data on dynamical quantities in addition to temperature and relative humidity in a modern kind of regression model. Although the results are improved, they are not good enough for flight routing. The origin of the problem is the strong overlap of probability densities conditioned on cases with and without ice-supersaturated regions (ISSRs) in the important range of 70–100 %.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1891, https://doi.org/10.5194/egusphere-2024-1891, 2024
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity which may lead to further climatic feedbacks. We investigate, using an atmospheric model and results from marine engine experiments which focused on fuel sulfur content reduction and exhaust wet scrubbing, how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024, https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Short summary
Climate models are our primary tool to probe past, present, and future climate states unlike the more recent observation record. By constructing a hypothetical model configuration, we show that present-day correlations are insufficient to predict a persistent uncertainty in climate projection (how much sun because clouds will reflect in a changing climate). We hope our result will contribute to the scholarly conversation on better utilizing observations to constrain climate uncertainties.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024, https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary
Short summary
Advection fog occurs when warm and moist air moves over a cold sea surface. In this situation, the temperature of the foggy air usually drops below the sea surface temperature (SST), particularly at night. High-resolution simulations show that the cooling effect of longwave radiation from the top of the fog layer permeates through the fog, resulting in a cooling of the surface air below SST. This study emphasizes the significance of monitoring air temperature to enhance sea fog forecasting.
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary
Short summary
We present simulations with a high-resolution numerical weather prediction model to study the growth of ice crystals in low clouds following glaciogenic seeding. We show that the simulated ice crystals grow slower than observed and do not consume as many cloud droplets as measured in the field. This may have implications for forecasting precipitation, as the ice phase is crucial for precipitation at middle and high latitudes.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Jing Yang, Shiye Huang, Tianqi Yang, Qilin Zhang, Yuting Deng, and Yubao Liu
Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, https://doi.org/10.5194/acp-24-5989-2024, 2024
Short summary
Short summary
This study contributes to filling the dearth of understanding the impacts of different secondary ice production (SIP) processes on the cloud electrification in cold-season thunderstorms. The results suggest that SIP, especially the rime-splintering process and the shattering of freezing drops, has significant impacts on the charge structure of the storm. In addition, the modeled radar composite reflectivity and flash rate are improved after implementing the SIP processes in the model.
Ulrike Proske, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 5907–5933, https://doi.org/10.5194/acp-24-5907-2024, https://doi.org/10.5194/acp-24-5907-2024, 2024
Short summary
Short summary
Climate models include treatment of aerosol particles because these influence clouds and radiation. Over time their representation has grown increasingly detailed. This complexity may hinder our understanding of model behaviour. Thus here we simplify the aerosol representation of our climate model by prescribing mean concentrations, which saves run time and helps to discover unexpected model behaviour. We conclude that simplifications provide a new perspective for model study and development.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg McFarquhar, Paul Lawson, and Ann Fridlind
EGUsphere, https://doi.org/10.5194/egusphere-2024-1465, https://doi.org/10.5194/egusphere-2024-1465, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCS) when a large number of small ice particles with typical sizes of a few hundred micrometers are found at high altitudes. This study presents a conceptual model of the formation of HIWC in tropical MCSs developed based on in-situ observations and numerical simulation. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC.
Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison
Atmos. Chem. Phys., 24, 5713–5736, https://doi.org/10.5194/acp-24-5713-2024, https://doi.org/10.5194/acp-24-5713-2024, 2024
Short summary
Short summary
We studied how shallow clouds and rain behave over the Great Barrier Reef (GBR) using a detailed weather model. We found that the shape of the land, especially mountains, and particles in the air play big roles in influencing these clouds. Surprisingly, the sea's temperature had a smaller effect. Our research helps us understand the GBR's climate and how various factors can influence it, where the importance of the local cloud in thermal coral bleaching has recently been identified.
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Short summary
Relative humidity relative to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. This study shows that the properties of the probability density function of RHi differ between the tropics and higher latitudes. In line with RHi and temperature variability, aircraft are likely to produce more contrails with bioethanol and liquid hydrogen as fuel. The impact of this fuel change decreases with decreasing pressure levels but increases from high latitudes to the tropics.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1200, https://doi.org/10.5194/egusphere-2024-1200, 2024
Short summary
Short summary
In the background of global warming and the rapid urbanization, heat wave have emerged as increasingly frequent occurrences. Despite this, the specific roles played by local circulation patterns and urban morphology in the synergistic interaction between HW and CUHI remain elusive. To address this gap, this paper used automatic weather stations data and meachine learning model to delve into the spatiotemporal patterns governing the intricate interactions between HW and CUHI.
Zane Dedekind, Ulrike Proske, Sylvaine Ferrachat, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 24, 5389–5404, https://doi.org/10.5194/acp-24-5389-2024, https://doi.org/10.5194/acp-24-5389-2024, 2024
Short summary
Short summary
Ice particles precipitating into lower clouds from an upper cloud, the seeder–feeder process, can enhance precipitation. A numerical modeling study conducted in the Swiss Alps found that 48 % of observed clouds were overlapping, with the seeder–feeder process occurring in 10 % of these clouds. Inhibiting the seeder–feeder process reduced the surface precipitation and ice particle growth rates, which were further reduced when additional ice multiplication processes were included in the model.
Liine Heikkinen, Daniel G. Partridge, Sara Blichner, Wei Huang, Rahul Ranjan, Paul Bowen, Emanuele Tovazzi, Tuukka Petäjä, Claudia Mohr, and Ilona Riipinen
Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024, https://doi.org/10.5194/acp-24-5117-2024, 2024
Short summary
Short summary
The organic vapor condensation with water vapor (co-condensation) in rising air below clouds is modeled in this work over the boreal forest because the forest air is rich in organic vapors. We show that the number of cloud droplets can increase by 20 % if considering co-condensation. The enhancements are even larger if the air contains many small, naturally produced aerosol particles. Such conditions are most frequently met in spring in the boreal forest.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 24, 5009–5024, https://doi.org/10.5194/acp-24-5009-2024, https://doi.org/10.5194/acp-24-5009-2024, 2024
Short summary
Short summary
The contrail formation potential and its tempo-spatial distribution are estimated for the North Atlantic flight corridor. Meteorological conditions of temperature and relative humidity are taken from the ERA5 re-analysis and IAGOS. Based on IAGOS flight tracks, crossing length, size, orientation, frequency of occurrence, and overlap of persistent contrail formation areas are determined. The presented conclusions might provide a guide for statistical flight track optimization to reduce contrails.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1033, https://doi.org/10.5194/egusphere-2024-1033, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow clouds that covers the vast areas of Earth's surface. They play an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024, https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Short summary
Using idealized large eddy simulations, we find that clouds forming in the Arctic in environments with low concentrations of aerosol particles may be sustained by mixing in new particles through the cloud top. Observations show that higher concentrations of these particles regularly exist above cloud top in concentrations that are sufficient to promote this sustenance.
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
EGUsphere, https://doi.org/10.5194/egusphere-2024-594, https://doi.org/10.5194/egusphere-2024-594, 2024
Short summary
Short summary
Hazardous precipitation types such as ice pellets and freezing rain are difficult to predict because they are associated with complex microphysical processes. Using the Predicted Particles Properties (P3), this work shows that secondary ice production processes increase the amount of ice pellets simulated while decreasing the amount of freezing rain. Moreover, the properties of the simulated precipitation compare well with those measured.
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-618, https://doi.org/10.5194/egusphere-2024-618, 2024
Short summary
Short summary
Clouds play a crucial role in the energy balance of the earth, as they can either warm up or cool down the area they cover depending on their height and depth. It is expected that they will alter their behaviour under climate change, which will affect the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect by simulating a climate where clouds are transparent. Results show that, with the model used, clouds have a stabilising effect on climate.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
EGUsphere, https://doi.org/10.5194/egusphere-2024-526, https://doi.org/10.5194/egusphere-2024-526, 2024
Short summary
Short summary
Cloud droplet temperature impacts cloud processes such as activation of ice-nucleating particles. This study investigates the thermal and radial evolution of supercooled cloud droplets and their surrounding environments, with an aim to better understand observed enhancement of ice nucleation at moderately supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is much greater than estimated from past studies, especially for drier environments.
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024, https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Short summary
Using hydrogen as aviation fuel affects contrails' climate impact. We study contrail formation behind aircraft with H2 combustion. Due to the absence of soot emissions, contrail ice crystals are assumed to form only on ambient particles mixed into the plume. The ice crystal number, which strongly varies with temperature and aerosol number density, is decreased by more than 80 %–90 % compared to kerosene contrails. However H2 contrails can form at lower altitudes due to higher H2O emissions.
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024, https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the northeast Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605, https://doi.org/10.5194/acp-24-1587-2024, https://doi.org/10.5194/acp-24-1587-2024, 2024
Short summary
Short summary
Climate model simulations still show a large range of effective climate sensitivity (ECS) with high uncertainties. An important contribution to ECS is cloud climate feedback. We investigate the representation of cloud physical and radiative properties from Coupled Model Intercomparison Project models grouped by ECS. We compare the simulated cloud properties of today’s climate from three ECS groups and quantify how the projected changes in cloud properties and cloud radiative effects differ.
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024, https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary
Short summary
Three numerical simulations performed with an isotope-enabled weather forecast model are used to investigate the cloud–circulation coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. It is shown that stable water isotopes near cloud base in the tropics reflect (1) the diel cycle of the atmospheric circulation, which drives the formation and dissipation of clouds, and (2) changes in the large-scale circulation over the North Atlantic.
Renaud Falga and Chien Wang
Atmos. Chem. Phys., 24, 631–647, https://doi.org/10.5194/acp-24-631-2024, https://doi.org/10.5194/acp-24-631-2024, 2024
Short summary
Short summary
The impact of urban land use on regional meteorology and rainfall during the Indian summer monsoon has been assessed in this study. Using a cloud-resolving model centered around Kolkata, we have shown that the urban heat island effect led to a rainfall enhancement via the amplification of convective activity, especially during the night. Furthermore, the results demonstrated that the kinetic effect of the city induced the initiation of a nighttime storm.
Dario Sperber and Klaus Gierens
Atmos. Chem. Phys., 23, 15609–15627, https://doi.org/10.5194/acp-23-15609-2023, https://doi.org/10.5194/acp-23-15609-2023, 2023
Short summary
Short summary
A significant share of aviation's climate impact is due to persistent contrails. Avoiding their creation is a step toward sustainable air transportation. For this purpose, a reliable forecast of so-called ice-supersaturated regions is needed, which then allows one to plan aircraft routes without persistent contrails. Here, we propose a method that leads to the better prediction of ice-supersaturated regions.
Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann
Atmos. Chem. Phys., 23, 15413–15444, https://doi.org/10.5194/acp-23-15413-2023, https://doi.org/10.5194/acp-23-15413-2023, 2023
Short summary
Short summary
Tropical cirrus clouds are essential for climate, but our understanding of these clouds is limited due to their dependence on a wide range of small- and large-scale climate processes. In this opinion paper, we review recent advances in the study of tropical cirrus clouds, point out remaining open questions, and suggest ways to resolve them.
Leonie Villiger, Marina Dütsch, Sandrine Bony, Marie Lothon, Stephan Pfahl, Heini Wernli, Pierre-Etienne Brilouet, Patrick Chazette, Pierre Coutris, Julien Delanoë, Cyrille Flamant, Alfons Schwarzenboeck, Martin Werner, and Franziska Aemisegger
Atmos. Chem. Phys., 23, 14643–14672, https://doi.org/10.5194/acp-23-14643-2023, https://doi.org/10.5194/acp-23-14643-2023, 2023
Short summary
Short summary
This study evaluates three numerical simulations performed with an isotope-enabled weather forecast model and investigates the coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. We show that the simulations reproduce key characteristics of shallow trade-wind clouds as observed during the field experiment EUREC4A and that the spatial distribution of stable-water-vapour isotopes is shaped by the overturning circulation associated with these clouds.
Lucas Reimann, Clemens Simmer, and Silke Trömel
Atmos. Chem. Phys., 23, 14219–14237, https://doi.org/10.5194/acp-23-14219-2023, https://doi.org/10.5194/acp-23-14219-2023, 2023
Short summary
Short summary
Polarimetric radar observations were assimilated for the first time in a convective-scale numerical weather prediction system in Germany and their impact on short-term precipitation forecasts was evaluated. The assimilation was performed using microphysical retrievals of liquid and ice water content and yielded slightly improved deterministic 9 h precipitation forecasts for three intense summer precipitation cases with respect to the assimilation of radar reflectivity alone.
Cunbo Han, Corinna Hoose, Martin Stengel, Quentin Coopman, and Andrew Barrett
Atmos. Chem. Phys., 23, 14077–14095, https://doi.org/10.5194/acp-23-14077-2023, https://doi.org/10.5194/acp-23-14077-2023, 2023
Short summary
Short summary
Cloud phase has been found to significantly impact cloud thermodynamics and Earth’s radiation budget, and various factors influence it. This study investigates the sensitivity of the cloud-phase distribution to the ice-nucleating particle concentration and thermodynamics. Multiple simulation experiments were performed using the ICON model at the convection-permitting resolution of 1.2 km. Simulation results were compared to two different retrieval products based on SEVIRI measurements.
Yun Lin, Yuan Wang, Jen-Shan Hsieh, Jonathan H. Jiang, Qiong Su, Lijun Zhao, Michael Lavallee, and Renyi Zhang
Atmos. Chem. Phys., 23, 13835–13852, https://doi.org/10.5194/acp-23-13835-2023, https://doi.org/10.5194/acp-23-13835-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) can cause catastrophic damage to coastal regions. We used a numerical model that explicitly simulates aerosol–cloud interaction and atmosphere–ocean coupling. We show that aerosols and ocean coupling work together to make TC storms bigger but weaker. Moreover, TCs in polluted air have more rainfall and higher sea levels, leading to more severe storm surges and flooding. Our research highlights the roles of aerosols and ocean-coupling feedbacks in TC hazard assessment.
Adam C. Varble, Adele L. Igel, Hugh Morrison, Wojciech W. Grabowski, and Zachary J. Lebo
Atmos. Chem. Phys., 23, 13791–13808, https://doi.org/10.5194/acp-23-13791-2023, https://doi.org/10.5194/acp-23-13791-2023, 2023
Short summary
Short summary
As atmospheric particles called aerosols increase in number, the number of droplets in clouds tends to increase, which has been theorized to increase storm intensity. We critically evaluate the evidence for this theory, showing that flaws and limitations of previous studies coupled with unaddressed cloud process complexities draw it into question. We provide recommendations for future observations and modeling to overcome current uncertainties.
Yanfeng He and Kengo Sudo
Atmos. Chem. Phys., 23, 13061–13085, https://doi.org/10.5194/acp-23-13061-2023, https://doi.org/10.5194/acp-23-13061-2023, 2023
Short summary
Short summary
Lightning has big social impacts. Lightning-produced NOx (LNOx) plays a vital role in atmospheric chemistry and climate. Investigating past lightning and LNOx trends can provide essential indicators of all lightning-related phenomena. Simulations show almost flat global lightning and LNOx trends during 1960–2014. Past global warming enhances the trends positively, but increases in aerosol have the opposite effect. Moreover, global lightning decreased markedly after the Pinatubo eruption.
Hannah C. Frostenberg, André Welti, Mikael Luhr, Julien Savre, Erik S. Thomson, and Luisa Ickes
Atmos. Chem. Phys., 23, 10883–10900, https://doi.org/10.5194/acp-23-10883-2023, https://doi.org/10.5194/acp-23-10883-2023, 2023
Short summary
Short summary
Observations show that ice-nucleating particle concentrations (INPCs) have a large variety and follow lognormal distributions for a given temperature. We introduce a new immersion freezing parameterization that applies this lognormal behavior. INPCs are drawn randomly from a temperature-dependent lognormal distribution. We then show that the ice content of the modeled Arctic stratocumulus cloud is highly sensitive to the probability of drawing large INPCs.
Kai-I Lin, Kao-Shen Chung, Sheng-Hsiang Wang, Li-Hsin Chen, Yu-Chieng Liou, Pay-Liam Lin, Wei-Yu Chang, Hsien-Jung Chiu, and Yi-Hui Chang
Atmos. Chem. Phys., 23, 10423–10438, https://doi.org/10.5194/acp-23-10423-2023, https://doi.org/10.5194/acp-23-10423-2023, 2023
Short summary
Short summary
This study develops a hybrid microphysics scheme to enable the complex model simulation of cloud seeding based on observational cloud condensation nuclei size distribution. Our results show that more precipitation can be developed in the scenarios seeding in the in-cloud region, and seeding over an area of tens km2 is the most efficient strategy due to the strengthening of the accretion process. Moreover, particles bigger than 0.4 μm are the main factor contributing to cloud-seeding effects.
Cited articles
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The
impact of humidity above stratiform clouds on indirect aerosol climate
forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004.
Bergeron, T.: On the physics of clouds and precipitation. Proces Verbaux de
l'Association de Météorologie, International Union of Geodesy and
Geophysics, 156–178, 1935.
Bigg, E. K. and Leck, C.: Cloud-active particles over the central Arctic
ocean, J. Geophys. Res., 106, 32155–32166, https://doi.org/10.1029/1999JD901152, 2001.
Bigg, E. K., Leck, C., and Nilsson, E. D.: Sudden changes in arctic
atmospheric aerosol concentrations during summer and autumn, Tellus B, 48,
254–271, 1996.
Bigg, E. K., Leck, C., and Nilsson, E. D.: Sudden Changes in Aerosol and Gas
concentrations in the central Arctic Marine Boundary Layer – Causes and
Consequences, J. Geophys. Res., 106, 32167–32185, https://doi.org/10.1029/2000jd900753, 2001.
Birch, C. E., Brooks, I. M., Tjernström, M., Shupe, M. D., Mauritsen, T., Sedlar, J., Lock, A. P., Earnshaw, P., Persson, P. O. G., Milton, S. F., and Leck, C.: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies, Atmos. Chem. Phys., 12, 3419–3435, https://doi.org/10.5194/acp-12-3419-2012, 2012.
Boeke, R. C. and Taylor, P. C.: Evaluation of the Arctic surface radiation
budget in CMIP5 models, J. Geophys. Res.-Atmos., 121, 8525–8548, https://doi.org/10.1002/2016JD025099, 2016.
Brooks, I. M., Tjernström, M., Persson, P. O. G., Shupe, M. D.,
Atkinson, R. A., Canut, G., Birch, C. E., Mauritsen, T., Sedlar, J., and
Brooks, B. J.: The Turbulent structure of the Arctic summer boundary layer
during the Arctic Summer Cloud-Ocean Study., J. Geophys. Res.-Atmos., 122, 9685–9704, https://doi.org/10.1002/2017JD027234, 2017.
Bulatovic, I., Ekman, A. M. L., Savre, J., Riipinen, I., and Leck, C.:
Aerosol indirect effects in marine stratocumulus: The importance of
explicitly predicting cloud droplet activation, Geophys. Res. Lett., 46,
3473–3481, https://doi.org/10.1029/2018GL081746, 2019.
Bulatovic, I., Igel, A. L., Leck, C., Heintzenberg, J., Riipinen, I., and Ekman, A. M. L.: The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data, Atmos. Chem. Phys., 21, 3871–3897, https://doi.org/10.5194/acp-21-3871-2021, 2021.
Bulatovic, I., Savre, J., Leck, C., Tjernström, M., and Ekman, A. M. L.:
Data from a modelling study of a two-layer boundary-layer cloud system from
the Arctic Ocean 2018 expedition, Dataset version 1, Bolin Centre
Database [data set], https://doi.org/10.17043/bulatovic-2022-cloud-structure-1, 2022.
Chang, R. Y.-W., Leck, C., Graus, M., Müller, M., Paatero, J., Burkhart, J. F., Stohl, A., Orr, L. H., Hayden, K., Li, S.-M., Hansel, A., Tjernström, M., Leaitch, W. R., and Abbatt, J. P. D.: Aerosol composition and sources in the central Arctic Ocean during ASCOS, Atmos. Chem. Phys., 11, 10619–10636, https://doi.org/10.5194/acp-11-10619-2011, 2011.
Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurry, P.
H., and Leck, C.: Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn,
Tellus B, 48, 197–212, https://doi.org/10.3402/tellusb.v48i2.15886, 1996.
Curry, J. A. and Ebert, E. E.: Annual cycle of radiative fluxes over the
Arctic Ocean: Sensitivity to cloud optical properties, J. Climate, 5,
1267–1280, https://doi.org/10.1175/1520-0442(1992)005<1267:ACORFO>2.0.CO;2, 1992.
Dada, L., Angot, H., Beck, I., Baccarini, A., Quéléver, L. L., J.,
Boyer, M., Laurila, T., Brasseur, Z, Jozef, G., e Boer, G., Shupe, M. D.,
Henning, S., Bucci, S., Dütsch, M., Stohl, A., Petäjä, T.,
Daellenbach, K., R., Jokinen T., and Schmale, J.: A central arctic extreme
aerosol event triggered by a warm air-mass intrusion, Nat. Commun., 13, 5290,
https://doi.org/10.1038/s41467-022-32872-2, 2022.
Deardorff, J. W.: Three-dimensional numerical study of turbulence in an
entraining mixed layer, Bound.-Lay. Meteorol., 7, 199–226, https://doi.org/10.1007/BF00227913, 1974.
Dimitrelos, A., Ekman, A. M. L., Caballero, R., and Savre, J.: A Sensitivity
Study of Arctic Air-Mass Transformation Using Large Eddy Simulation, J.
Geophys. Res.-Atmos., 125, e2019JD031738, https://doi.org/10.1029/2019JD031738, 2020.
Durran, D. R.: Numerical methods for fluid dynamics, Texts Appl. Math.,
2nd edn., Springer, Berlin-Heidelberg, Germany, https://doi.org/10.1007/978-1-4419-6412-0, 2010.
Ekman, A. M. L., Wang, C., Ström, J., and Krejci, R.: Explicit
simulation of aerosol physics in a cloud-resolving model: Aerosol transport
and processing in the free troposphere, J. Atmos. Sci., 63, 682–696,
https://doi.org/10.1175/JAS3645.1, 2006.
Findeisen, W.: Kolloid-meteorologische Vorgänge bei
Neiderschlags-bildung, Meteor. Z., 55, 121–133, 1938.
Fu, Q. and Liou, K. N.: Parameterization of the radiative properties of
cirrus clouds, J. Atmos. Sci., 50, 2008–2025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2, 1993.
Graversen, R. G., Mauritsen, T., Tjernström, M., Källen, E., and
Svensson, G.: Vertical structure of recent Arctic warming, Nature, 451,
53–57, https://doi.org/10.1038/nature06502, 2008.
Heintzenberg, J., Leck, C., and Tunved, P.: Potential source regions and processes of aerosol in the summer Arctic, Atmos. Chem. Phys., 15, 6487–6502, https://doi.org/10.5194/acp-15-6487-2015, 2015.
Hoffmann, F. and Feingold, G: Entrainment and Mixing in Stratocumulus:
Effects of a New Explicit Subgrid-Scale Scheme for Large-Eddy Simulations
with Particle-Based Microphysics, J. Atmos. Sci., 76, 1955–1973, https://doi.org/10.1175/JAS-D-18-0318.1, 2019.
Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in
coupled models, Clim. Dynam., 21, 221–232, https://doi.org/10.1007/s00382-003-0332-6, 2003.
Igel, A. L., Ekman, A. M. L., Leck, C., Tjernström, M., Savre, J., and
Sedlar, J.: The free troposphere as a potential source of Arctic boundary
layer aerosol particles, Geophys. Res. Lett., 44, 7053–7060, https://doi.org/10.1002/2017GL073808, 2017.
Illingworth, A. J., Hogan, R. J., O'Connor, E. J., Bouniol, D., Brooks, M.
E., Delanoé, J., Donovan, D. P., Eastment, J. D., Gaussiat, N., Goddard,
J. W. F., Haeffelin, M., Baltink, H. K., Krasnov, O. A., Pelon, J., Piriou,
J.-M., Protat, A., Russchenberg, H. W. J., Seifert, A., Tompkins, A. M.,
vanZadelhoff, G.-J., Vinit, F., Willén, U., Wilson, D. R., and Wrench,
C. L.: Cloudnet, B. Am. Meteorol. Soc., 88, 883–898, https://doi.org/10.1175/BAMS-88-6-883, 2007.
Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas,
E. L., Guest, P. S., and Moritz, R. E.: An annual cycle of Arctic surface
cloud forcing at SHEBA, J. Geophys. Res., 107, 8039, https://doi.org/10.1029/2000JC000439, 2002.
IPCC: Climate Change 2007: The Physical Science Basis, in: Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, ISBN 978-0-521-70596-7, 2007.
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, ISBN 978-1-107-66182-0, 2013.
IPCC: Global warming of 1.5 ∘C. An IPCC Special Report on the impacts
of global warming of 1.5 ∘C above pre-industrial levels and related
global greenhouse gas emission pathways, in the context of strengthening the
global response to the threat of climate change, edited by: Masson-Delmotte, V., Zhai,
P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A.,
Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B.
R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M.,
and Waterfield, T., Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3–24, https://doi.org/10.1017/9781009157940.001, 2018.
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.,
https://doi.org/10.1017/9781009157896, 2021.
Karlsson, J. and Svensson, G.: The simulation of Arctic clouds and their
influence on the winter surface temperature in present-day 987climate in the
CMIP3 multi-model dataset, Clim. Dynam., 36, 623–635, https://doi.org/10.1007/s00382-010-0758-6, 2011.
Karlsson, L., and Zieger, P.: Aerosol particle number size distribution data
collected during the Arctic Ocean 2018 expedition, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ao-2018-aerosol-dmps-1, 2020.
Karlsson, L., Baccarini, A., Duplessis, P., Baumgardner, D., Brooks, I. M.,
Chang, R. Y., Dada, L., Dällenbach, K. R., Heikkinen, L., Krejci, R.,
Leaitch, W. R., Leck, C., Partridge, D. G., Satler, M. E., Werni, H.,
Wheeler, M., J., Schmale, J., and Zieger, P.: Physical and chemical
properties of cloud droplet residuals and aerosol particles during the
Arctic Ocean 2018 expedition, J. Geophys. Res.-Atmos, 127, e2021JD036383,
https://doi.org/10.1029/2021JD036383, 2022.
Kupiszewski, P., Leck, C., Tjernström, M., Sjogren, S., Sedlar, J., Graus, M., Müller, M., Brooks, B., Swietlicki, E., Norris, S., and Hansel, A.: Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer, Atmos. Chem. Phys., 13, 12405–12431, https://doi.org/10.5194/acp-13-12405-2013, 2013.
Leck, C. and Bigg, E. K.: Biogenic particles in the surface microlayer and
overlaying atmosphere in the central Arctic Ocean during summer, Tellus B,
57, 305–316, https://doi.org/10.3402/tellusb.v57i4.16546,
2005.
Leck, C. and Persson, C.: Seasonal and short-term variability in dimethyl
sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles
in the arctic marine boundary layer during summer and autumn, Tellus B, 48,
272–299, https://doi.org/10.3402/tellusb.v48i2.15891, 1996.
Leck, C. and Svensson, E.: Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer, Atmos. Chem. Phys., 15, 2545–2568, https://doi.org/10.5194/acp-15-2545-2015, 2015.
Leck, C., Bigg, E. K., Covert, D. S., Heintzenberg, J., Maenhaut, W.,
Nilsson, E. D., and Wiedensohler, A.: Overview of the atmospheric research
program during the International Arctic Ocean Expedition 1991 (IAOE-91) and
its scientific results, Tellus B, 48, 136–155, https://doi.org/10.3402/tellusb.v48i2.15833, 1996.
Leck, C., Nilsson, E. D., Bigg, E. K., and Bäcklin, L.: Atmospheric
program on the Arctic Ocean Expedition 1996 (AOE96) – An overview of
scientific goals, experimental approach, and instruments, J. Geophys.
Res.-Atmos., 106, 32051–32067, https://doi.org/10.1029/2000JD900461, 2001.
Leck, C., Norman, M., Bigg, E. K., and Hillamo, R.: Chemical composition and
sources of the high Arctic aerosol relevant for cloud formation, J. Geophys.
Res., 107, 4135, https://doi.org/10.1029/2001JD001463, 2002.
Leck, C., Tjernström, M., Matrai, P., Swietlicki E., and Bigg, E. K.:
Can marine micro-organisms influence melting of the Arctic pack ice?, EOS T.
Am. Geophys. Un., 85, 25–36, 2004.
Leck, C., Matrai, P., Perttu A.-M., and Gårdfeldt, K.: Expedition report:
SWEDARTIC Arctic Ocean 2018, ISBN 978-91-519-3671-0, 2020.
Lundén J., Svensson, G., and Leck, C.: Influence of meteorological
processes on the spatial and temporal variability of atmospheric dimethyl
sulfide in the high Arctic summer, J. Geophys. Res., 112, D13308, https://doi.org/10.1029/2006JD008183, 2007.
Mauritsen, T., Sedlar, J., Tjernström, M., Leck, C., Martin, M., Shupe, M., Sjogren, S., Sierau, B., Persson, P. O. G., Brooks, I. M., and Swietlicki, E.: An Arctic CCN-limited cloud-aerosol regime, Atmos. Chem. Phys., 11, 165–173, https://doi.org/10.5194/acp-11-165-2011, 2011.
McCusker, G. Y., Vüllers, J., Achtert, P., Field, P., Day, J. J., Forbes, R., Price, R., O'Connor, E., Tjernström, M., Prytherch, J., Neely III, R., and Brooks, I. M.: Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System, Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, 2023.
Morrison, H. and Grabowski, W.: Modeling supersaturation and subgrid-scale
mixing with two-moment bulk warm microphysics, J. Atmos. Sci., 65, 792–812,
https://doi.org/10.1175/2007JAS2374.1, 2008.
Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat. Geosci.,
5, 11–17, https://doi.org/10.1038/ngeo1332, 2012.
Orellana, M. V., Matrai, P. A., Leck, C., Rauschenberg, C. D., Lee, A. M.,
and Coz, E.: Marine microgels as a source of cloud condensation nuclei in
the high Arctic, P. Natl. Acad. Sci., 108, 13612–13617, https://doi.org/10.1073/pnas.1102457108, 2011.
Orellana, M. V., Hansell, D. A., Matrai, P. A., and Leck, C.: Marine
polymer-gels' relevance in the atmosphere as aerosols and CCN, Gels, 7, 185,
https://doi.org/10.3390/gels7040185, 2021.
Ovchinnikov, M., Korolev, A., and Fan, J.: Effects of ice number
concentration on dynamics of a shallow mixedphase stratiform cloud, J.
Geophys. Res.-Atmos., 116, 1–15, https://doi.org/10.1029/2011JD015888, 2011.
Ovchinnikov, M., Ackerman, A. S., Avramov, A., Cheng, A., Fan, J., Fridlind,
A. M., Ghan, S., Harrington, J., Hoose, C., Korolev, A., McFarquhar, G. M.,
Morrison, H., Paukert, M., Savre, J., Shipway, B. J., Shupe, M. D., Solomon,
A., and Sulia, K.: Intercomparison of large-eddy simulations of Arctic
mixed-phase clouds: Importance of ice size distribution assumptions, J. Adv.
Model. Earth Sy., 6, 223–248, https://doi.org/10.1002/2013MS000282, 2014.
Persson, P. O. G., Shupe, M. D., Perovich, D., and Solomon, A.: Linking
atmospheric synoptic transport, cloud phase, surface energy fluxes, and
sea-ice growth: observations of midwinter SHEBA conditions, Clim. Dynam., 49,
1341–1364, https://doi.org/10.1007/s00382-016-3383-1, 2017.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184,
https://doi.org/10.1038/ngeo2071, 2014.
Porter, G. C. E., Adams, M. P., Brooks, I. M., Ickes, L., Karlsson, L.,
Leck, C., Salter, M. E., Schmale, J., Siegel, K., Sikora, S. N. F., Tarn, M.
D., Vüllers, J., Wernli, H., Zieger, P., Zinke, J., and Benjamin, J. M.:
Highly active ice-nucleating particles at the summer North Pole, J. Geophys.
Res.-Atmos., 127, e2021JD036059, https://doi.org/10.1029/2021JD036059, 2022.
Prytherch, J.: Present weather sensor visibility and precipitation data from
the Arctic Ocean 2018 expedition, Dataset version 1, Bolin Centre for
Climate Research, Stockholm University, https://doi.org/10.17043/oden-ao-2018-present-weather-1, 2019.
Prytherch, J.: Weather data from MISU weather station during the Arctic
Ocean 2018 expedition, Dataset version 3, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ao-2018-misu-weather-3, 2021.
Prytherch, J. and Tjernström, M.: Ceilometer backscatter, cloud base
height and cloud fraction data from the Arctic Ocean 2018 expedition,
Dataset version 2, Bolin Centre Database [data set],
https://doi.org/10.17043/oden-ao-2018-ceilometer-2, 2020.
Prytherch, J., Tjernström, M., Vüllers, J., Achtert, P., Brooks, I.,
Porter, G., and Adams, M.: Radiosonde data from the Arctic Ocean 2018
expedition. Dataset version 2. Bolin Centre Database [data set],
https://doi.org/10.17043/oden-ao-2018-radiosonde-2, 2019.
Richter-Menge, J., Jeffries, M. O., and Osborne, E.: The Arctic in “State
of the Climate in 2017”, B. Am. Meteorol. Soc., 99, 143–173, https://doi.org/10.1175/2018BAMSStateoftheClimate.1, 2018.
Savre, J., Ekman, A. M. L., and Svensson, G.: Technical note: Introduction
to MIMICA, a large-eddy simulation solver for cloudy planetary boundary
layers, J. Adv. Model. Earth Sy., 6, 630–649, https://doi.org/10.1002/2013MS000292, 2014.
Sedlar, J., Tjernström, M., Mauritsen, T., Shupe, M. D., Brooks, I. M.,
Persson, P. O. G., Birch, C. E., Leck, C., Sirevaag, A., and Nicolaus, M.: A
transitioning Arctic surface energy budget: the impacts of solar zenith
angle, surface albedo and cloud radiative forcing, Clim. Dynam., 37,
1643–1660, https://doi.org/10.1007/s00382-010-0937-5, 2011.
Sedlar, J., Shupe, M. D., and Tjernström, M.: On the relationship
between thermodynamic structure and cloud top, and its climate significance
in the Arctic, J. Climate, 25, 2374–2393, https://doi.org/10.1175/JCLI-D-11-00186.1, 2012.
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics
parameterization for mixed-phase clouds. Part 1: Model description,
Meteorol. Atmos. Phys., 92, 45–66, https://doi.org/10.1007/s00703-005-0112-4, 2006.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shupe, M. D. and Intrieri, J. M.: Cloud radiative forcing of the Arctic
surface: The influence of cloud properties, surface albedo, and solar zenith
angle, J. Climate, 17, 616–628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2, 2004.
Shupe, M. D., Matrosov, S. Y., and Uttal, T.: Arctic mixed-phase cloud
properties derived from surface-based sensors at SHEBA, J. Atmos. Sci., 63,
697–711, https://doi.org/10.1175/JAS3659.1, 2006.
Shupe, M. D., Persson, P. O. G., Brooks, I. M., Tjernström, M., Sedlar, J., Mauritsen, T., Sjogren, S., and Leck, C.: Cloud and boundary layer interactions over the Arctic sea ice in late summer, Atmos. Chem. Phys., 13, 9379–9399, https://doi.org/10.5194/acp-13-9379-2013, 2013.
Solomon, A., Shupe M. D., Persson, O., Morrison, H., Yamaguchi, T.,
Caldwell, P. M., and de Boer, G.: The sensitivity of springtime Arctic
mixed-phase stratocumulus clouds to surface-layer and cloud-top
inversion-layer moisture sources, J. Atmos. Sci., 71, 574–595, https://doi.org/10.1175/JAS-D-13-0179.1, 2014.
Sotiropoulou, G., Sedlar, J., Tjernström, M., Shupe, M. D., Brooks, I. M., and Persson, P. O. G.: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface, Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, 2014.
Sotiropoulou, G., Sedlar, J., Forbes, R., and Tjernström, M.: Summer
Arctic clouds in the ECMWF forecast model: an evaluation of cloud
parametrization schemes, Q. J. Roy. Meteor. Soc., 142, 387–400,
https://doi.org/10.1002/qj.2658, 2016.
Stevens, R. G., Loewe, K., Dearden, C., Dimitrelos, A., Possner, A., Eirund, G. K., Raatikainen, T., Hill, A. A., Shipway, B. J., Wilkinson, J., Romakkaniemi, S., Tonttila, J., Laaksonen, A., Korhonen, H., Connolly, P., Lohmann, U., Hoose, C., Ekman, A. M. L., Carslaw, K. S., and Field, P. R.: A model intercomparison of CCN-limited tenuous clouds in the high Arctic, Atmos. Chem. Phys., 18, 11041–11071, https://doi.org/10.5194/acp-18-11041-2018, 2018.
Stjern, C. W., Lund, M. T., Samset, B. H., Myhre, G., Forster, P. M.,
Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Iversen, T.,
Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J., Olivié, D.,
Richardson, T., Sand, M., Shawki, D., Shindell, D., Smith, C. J., Takemura,
T., and Voulgarakis, A.: Arctic amplification response to individual climate
drivers, J. Geophys. Res.-Atmos., 124, 6698–6717, https://doi.org/10.1029/2018JD029726, 2019.
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland,
M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and
observations, Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676, 2012.
Taylor, P. C., Cai, M., Hu, A., Meehl, J., Washington, W., and Zhang, G. J.:
A decomposition of feedback contributions to polar warming amplification, J.
Climate, 26, 7023–7043, https://doi.org/10.1175/JCLI-D-12-00696.1, 2013.
Tjernström, M.: Is there a diurnal cycle in the summer cloud-capped
Arctic boundary layer?, J. Atmos. Sci., 64, 3970–3986, https://doi.org/10.1175/2007JAS2257.1, 2007.
Tjernström, M., Leck, C., Persson, P. O. G., Jensen, M. L., Oncley, S.
P., and Targino, A.: The summertime Arctic atmosphere: Meteorological
measurements during the Arctic Ocean experiment 2001, B. Am. Meteorol. Soc.,
85, 1305–1322, https://doi.org/10.1175/BAMS-85-9-1305,
2004a.
Tjernström, M., Leck, C., Persson, P. O. G., Jensen, M. L., Oncley, S.
P., and Targino, A.: Experimental Equipment: A Supplement to The Summertime
Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean
Experiment 2001, B. Am. Meteorol. Soc., 85, ES14–ES18, https://doi.org/10.1175/BAMS-85-9-Tjernstrom, 2004b.
Tjernström, M., Birch, C. E., Brooks, I. M., Shupe, M. D., Persson, P. O. G., Sedlar, J., Mauritsen, T., Leck, C., Paatero, J., Szczodrak, M., and Wheeler, C. R.: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS), Atmos. Chem. Phys., 12, 6863–6889, https://doi.org/10.5194/acp-12-6863-2012, 2012.
Tjernström, M., Leck, C., Birch, C. E., Bottenheim, J. W., Brooks, B. J., Brooks, I. M., Bäcklin, L., Chang, R. Y.-W., de Leeuw, G., Di Liberto, L., de la Rosa, S., Granath, E., Graus, M., Hansel, A., Heintzenberg, J., Held, A., Hind, A., Johnston, P., Knulst, J., Martin, M., Matrai, P. A., Mauritsen, T., Müller, M., Norris, S. J., Orellana, M. V., Orsini, D. A., Paatero, J., Persson, P. O. G., Gao, Q., Rauschenberg, C., Ristovski, Z., Sedlar, J., Shupe, M. D., Sierau, B., Sirevaag, A., Sjogren, S., Stetzer, O., Swietlicki, E., Szczodrak, M., Vaattovaara, P., Wahlberg, N., Westberg, M., and Wheeler, C. R.: The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design, Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, 2014.
Tjernström, M., Svensson, G., Magnusson, L., Brooks, I. M., Prytherch,
J., Vüllers, J., and Young, G.: Central Arctic weather forecasting:
Confronting the ECMWF IFS with observations from the Arctic Ocean 2018
expedition, Q. J. Roy. Meteor. Soc., 147, 1–22, https://doi.org/10.1002/qj.3971, 2021.
Uttal, T., Curry, J. A., McPhee, M. G., Perovich, D. K., Moritz, R. E.,
Maslanik, J. A., Guest, P. S., Stern, H. L., Moore, J. A., Turenne, R.,
Heiberg, A., Serreze, M. C., Wylie, D. P., Persson, O. G., Paulson, C. A.,
Halle, C., Morison, J. H., Wheeler, P. A., Makshtas, A., Welch, H., Shupe,
M. D., Intrieri, J., M., Stamnes, K., Linsey, R. W., Pinkel, R., Pegau, W.
S., Stanton, T. P., and Grenfeld, T. C.: Surface Heat Budget of the Arctic
Ocean, B. Am. Meteorol. Soc, 83, 255–276, https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2, 2002.
Vüllers, J., Achtert, P., Brooks, I., Neely III, R., and Brooks, B.:
Cloudnet remote sensing retrievals of cloud properties during the Arctic
Ocean 2018 expedition, Dataset version 4, Bolin Centre Database [data set], https://doi.org/10.17043/oden-ao-2018-cloudnet-4, 2021a.
Vüllers, J., Achtert, P., Brooks, I. M., Tjernström, M., Prytherch, J., Burzik, A., and Neely III, R.: Meteorological and cloud conditions during the Arctic Ocean 2018 expedition, Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, 2021b.
Wegener, A.: Thermodynamik der Atmosphäre, 331 pp., Leipzig, ISBN 0270854282, 1911.
Wesslén, C., Tjernström, M., Bromwich, D. H., de Boer, G., Ekman, A. M. L., Bai, L.-S., and Wang, S.-H.: The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data, Atmos. Chem. Phys., 14, 2605–2624, https://doi.org/10.5194/acp-14-2605-2014, 2014.
Short summary
We use numerical modeling with detailed cloud microphysics to investigate a low-altitude cloud system consisting of two cloud layers – a type of cloud situation which was commonly observed during the summer of 2018 in the central Arctic (north of 80° N). The model generally reproduces the observed cloud layers and the thermodynamic structure of the lower atmosphere well. The cloud system is maintained unless there are low aerosol number concentrations or high large-scale wind speeds.
We use numerical modeling with detailed cloud microphysics to investigate a low-altitude cloud...
Altmetrics
Final-revised paper
Preprint