Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4247-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4247-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution regional emission inventory contributes to the evaluation of policy effectiveness: a case study in Jiangsu Province, China
Chen Gu
State Key Laboratory of Pollution Control and Resource Reuse and
School of the Environment, Nanjing University, 163 Xianlin Rd., Nanjing,
Jiangsu 210023, China
Lei Zhang
State Key Laboratory of Pollution Control and Resource Reuse and
School of the Environment, Nanjing University, 163 Xianlin Rd., Nanjing,
Jiangsu 210023, China
Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology, CICAEET, Nanjing, Jiangsu 210044, China
Zidie Xu
State Key Laboratory of Pollution Control and Resource Reuse and
School of the Environment, Nanjing University, 163 Xianlin Rd., Nanjing,
Jiangsu 210023, China
Sijia Xia
Jiangsu Key Laboratory of Environmental Engineering, Jiangsu
Provincial Academy of Environmental Sciences, Nanjing, Jiangsu 210036, China
Yutong Wang
State Key Laboratory of Pollution Control and Resource Reuse and
School of the Environment, Nanjing University, 163 Xianlin Rd., Nanjing,
Jiangsu 210023, China
Li Li
Jiangsu Key Laboratory of Environmental Engineering, Jiangsu
Provincial Academy of Environmental Sciences, Nanjing, Jiangsu 210036, China
Zeren Wang
State Key Laboratory of Pollution Control and Resource Reuse and
School of the Environment, Nanjing University, 163 Xianlin Rd., Nanjing,
Jiangsu 210023, China
Qiuyue Zhao
Jiangsu Key Laboratory of Environmental Engineering, Jiangsu
Provincial Academy of Environmental Sciences, Nanjing, Jiangsu 210036, China
Hanying Wang
State Key Laboratory of Pollution Control and Resource Reuse and
School of the Environment, Nanjing University, 163 Xianlin Rd., Nanjing,
Jiangsu 210023, China
Yu Zhao
CORRESPONDING AUTHOR
State Key Laboratory of Pollution Control and Resource Reuse and
School of the Environment, Nanjing University, 163 Xianlin Rd., Nanjing,
Jiangsu 210023, China
Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology, CICAEET, Nanjing, Jiangsu 210044, China
Related authors
Chen Gu, Yutong Wang, Yuan Ji, Lei Zhang, Shuanzhu Sun, Yuandong Bian, Zimeng Zhang, Jiewen Zhu, Wenxin Zhao, Sheng Zhong, and Yu Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-5605, https://doi.org/10.5194/egusphere-2025-5605, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We developed a near-real-time approach that consistently estimates the daily emissions of air pollutants. Compared to previous emission inventory, the new emission estimates better supported air quality simulation and efficiently detected short-term emission change due to unexpected events at the provincial level. By combining machine learning, moreover, the major sources of temporal variability of air quality were identified for effective policy making of air pollution controls.
Chen Gu, Yutong Wang, Yuan Ji, Lei Zhang, Shuanzhu Sun, Yuandong Bian, Zimeng Zhang, Jiewen Zhu, Wenxin Zhao, Sheng Zhong, and Yu Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-5605, https://doi.org/10.5194/egusphere-2025-5605, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We developed a near-real-time approach that consistently estimates the daily emissions of air pollutants. Compared to previous emission inventory, the new emission estimates better supported air quality simulation and efficiently detected short-term emission change due to unexpected events at the provincial level. By combining machine learning, moreover, the major sources of temporal variability of air quality were identified for effective policy making of air pollution controls.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025, https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till the 2060s) in China following an IPCC scenario. We evaluate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors and dominate the declining ozone level. The outcomes highlight the importance of human actions, even with a climate penalty on air quality.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025, https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of reactive nitrogen (Nr) deposition till the 2060s in China with air quality modeling. We show China’s clean air and carbon neutrality policies would overcome the adverse effects of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to the west Pacific would also be clearly reduced from continuous stringent emission controls.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023, https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary
Short summary
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and sulfur deposition, with multiple statistical models that combine available observations and chemistry transport modeling. We demonstrated the strong impact of human activities and national pollution control actions on the spatiotemporal changes in deposition and indicated a relatively small benefit of emission abatement on deposition (and thereby ecological risk) for China compared to Europe and the USA.
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021, https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Short summary
In this study, we use a global chemical transport model to simulate the effects on global air quality and human health due to emission changes in China from 2010 to 2017. By performing sensitivity analysis, we found that the air pollution control policies not only decrease the air pollutant concentration but also bring significant co-benefits in air quality to downwind regions. The benefits for the improved air pollution are dominated by PM2.5.
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys., 21, 6411–6430, https://doi.org/10.5194/acp-21-6411-2021, https://doi.org/10.5194/acp-21-6411-2021, 2021
Short summary
Short summary
We combined air quality and exposure response models to analyze the benefits for air quality and human health of China’s ultra-low emission policy in one of its most developed regions. Atmospheric observations and the air quality model were also used to demonstrate improvement of emission inventories incorporating online emission monitoring data. With implementation of the policy in both power and industrial sectors, the attributable deaths due to PM2.5 exposure are estimated to decrease 5.5 %.
Yang Yang, Yu Zhao, Lei Zhang, Jie Zhang, Xin Huang, Xuefen Zhao, Yan Zhang, Mengxiao Xi, and Yi Lu
Atmos. Chem. Phys., 21, 1191–1209, https://doi.org/10.5194/acp-21-1191-2021, https://doi.org/10.5194/acp-21-1191-2021, 2021
Short summary
Short summary
We conducted new NOx emission estimation based on the satellite-derived NO2 column constraint and found reduced emissions compared to previous estimates for a developed region in east China. The subsequent improvement in air quality modeling was demonstrated based on available ground observations. With multiple emission reduction cases for various pollutants, we explored the effective control approaches for ozone and inorganic aerosol pollution.
Cited articles
An, J., Huang, Y., Huang, C., Wang, X., Yan, R., Wang, Q., Wang, H., Jing, S., Zhang, Y., Liu, Y., Chen, Y., Xu, C., Qiao, L., Zhou, M., Zhu, S., Hu, Q., Lu, J., and Chen, C.: Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China, Atmos. Chem. Phys., 21, 2003–2025, https://doi.org/10.5194/acp-21-2003-2021, 2021.
Crippa, M., Solazzo, E., Huang G., Guizzardi D., Koffi E., Muntean M.,
Schieberle C., and Friedrich R.: High resolution temporal profiles in the
Emissions Database for Global Atmospheric Research, Sci. Data, 7, 121,
https://doi.org/10.1038/s41597-020-0462-2, 2020.
Dang, R., Liao, H., and Fu, Y.: Quantifying the anthropogenic and
meteorological influences on summertime surface ozone in China over
2012–2017, Sci. Total Environ., 754, 142394,
https://doi.org/10.1016/j.scitotenv.2020.142394, 2021.
Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar,
N.: Recommendations on statistics and benchmarks to assess photochemical
model performance, J. Air Waste Manag. Assoc., 67, 582–598,
https://doi.org/10.1080/10962247.2016.1265027, 2017.
Gao, D., Xie, M., Liu, J., Wang, T., Ma, C., Bai, H., Chen, X., Li, M., Zhuang, B., and Li, S.: Ozone variability induced by synoptic weather patterns in warm seasons of 2014–2018 over the Yangtze River Delta region, China, Atmos. Chem. Phys., 21, 5847–5864, https://doi.org/10.5194/acp-21-5847-2021, 2021.
Gao, Y., Ma, M., Yan, F., Su, H., Wang, S., Liao, H., Zhao, B., Wang, X.,
Sun, Y., Hopkins, J. R., Chen, Q., Fu, P., Lewis, A. C., Qiu, Q., Yao, X.,
and Gao, H.: Impacts of biogenic emissions from urban landscapes on summer
ozone and secondary organic aerosol formation in megacities, Sci. Total
Environ., 814, 152654, https://doi.org/10.1016/j.scitotenv.2021.152654,
2022a.
Gao, Y., Zhang, L., Huang, A., Kou, W., Bo, X., Cai, B., and Qu, J.:
Unveiling the spatial and sectoral characteristics of a high-resolution
emission inventory of CO2 and air pollutants in China, Sci. Total
Environ., 847, 157623, https://doi.org/10.1016/j.scitotenv.2022.157623,
2022b.
Geng, G., Zheng, Y., Zhang, Q., Xue, T., Zhao, H., Tong, D., Zheng, B., Li,
M., Liu, F., Hong, C., He, K., and Davis, S. J.: Drivers of PM2.5 air
pollution deaths in China 2002–2017, Nat. Geosci., 14, 645–650,
https://doi.org/10.1038/s41561-021-00792-3, 2021.
He, K., Zhang, Q., and Wang, S.: Technical manual for the preparation of urban air pollution source emission inventory, Tsinghua University, 2018 (in Chinese).
Hsu, C., Chiang, H., Shie, R., Ku, C., Lin, T., Chen, M., Chen, N., and
Chen, Y.: Ambient VOCs in residential areas near a large-scale petrochemical
complex: Spatiotemporal variation, source apportionment and health risk,
Environ. Pollut., 240, 95–104, https://doi.org/10.1016/j.envpol.2018.04.076,
2018.
Huang, Y., Shen, H., Chen, H., Wang, R., Zhang, Y., Su, S., Chen, Y., Lin,
N., Zhuo, S., Zhong, Q., Wang, X., Liu, J., Li, B., Liu, W., and Tao, S.:
Quantification of Global Primary Emissions of PM2.5, PM10, and TSP
from Combustion and Industrial Process Sources, Environ. Sci. Technol., 48,
13834–13843, https://doi.org/10.1021/es503696k, 2014.
Huang, Z., Zhong, Z., Sha, Q., Xu, Y., Zhang, Z., Wu, L., Wang, Y., Zhang,
L., Cui, X., Tang, M., Shi, B., Zheng, C., Li, Z., Hu, M., Bi, L., Zheng,
J., and Yan, M.: An updated model-ready emission inventory for Guangdong
Province by incorporating big data and mapping onto multiple chemical
mechanisms, Sci. Total Environ., 769, 144535,
https://doi.org/10.1016/j.scitotenv.2020.144535, 2021.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Jin, X. and Holloway, T.: Spatial and temporal variability of ozone
sensitivity over China observed from the Ozone Monitoring Instrument, J.
Geophys. Res., 120, 7229–7246, https://doi.org/10.1002/2015JD023250, 2015.
Karplus, V. J., Zhang, S., and Almond, D.: Quantifying coal power plant
responses to tighter SO2 emissions standards in China, P. Natl.
Acad. Sci. USA, 115, 7004–7009, https://doi.org/10.1073/pnas.1800605115, 2018.
Ke, J., Li, S., and Zhao, D.: The application of leak detection and repair
program in VOCs control in China's petroleum refineries, J. Air Waste Manag.
Assoc., 70, 862–875, https://doi.org/10.1080/10962247.2020.1772407, 2020.
Klimont, Z., Smith, S. J., and Cofala, J.: The last decade of global
anthropogeni sulfur dioxide: 2000–2011 emissions, Environ. Res. Lett., 8,
014003, https://doi.org/10.1088/1748-9326/8/1/014003, 2013.
Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3, Atmos. Chem. Phys., 20, 12761–12793, https://doi.org/10.5194/acp-20-12761-2020, 2020.
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.:
Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China,
P. Natl. Acad. Sci. USA, 116, 422–427, https://doi.org/10.1073/pnas.1812168116, 2019.
Li, L., An, J. Y., Zhou, M., Qiao, L. P., Zhu, S. H., Yan, R. S., Ooi, C.
G., Wang, H. L., Huang, C., Huang, L., Tao, S. K., Yu, J. Z., Chan, A.,
Wang, Y. J., Feng, J. L., and Chen, C. H.: An integrated source
apportionment methodology and its application over the Yangtze River Delta
region, China, Environ. Sci. Technol., 52, 14216–14227,
10.1021/acs.est.8b01211, 2018.
Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, 2014.
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15, 13299–13317, https://doi.org/10.5194/acp-15-13299-2015, 2015.
Liu, M., Shang, F., Lu, X., Huang, X., Song, Y., Liu, B., Zhang, Q., Liu,
X., Cao, J., Xu, T., Wang, T., Xu, Z., Xu, W., Liao, W., Kang, L., Cai, X.,
Zhang, H., Dai, Y., and Zhu, T.: Unexpected response of nitrogen deposition
to nitrogen oxide controls and implications for land carbon sink, Nat.
Commun., 13, 3126, https://doi.org/10.1038/s41467-022-30854-y, 2022.
Liu, Y., Han, F., Liu, W., Cui, X., Luan, X., and Cui, Z.: Process-based
volatile organic compound emission inventory establishment method for the
petroleum refining industry, J. Clean. Prod., 263, 121609, https://doi.org/10.1016/j.jclepro.2020.121609, 2020.
Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation, Atmos. Chem. Phys., 17, 807–837, https://doi.org/10.5194/acp-17-807-2017, 2017.
Mo, Z., Shao, M., and Lu, S.: Compilation of a source profile database for
hydrocarbon and OVOC emissions in China, Atmos. Environ., 143, 209–217,
https://doi.org/10.1016/j.atmosenv.2016.08.025, 2016.
Mo, Z., Lu, S., and Shao, M.: Volatile organic compound (VOC) emissions and
health risk assessment in paint and coatings industry in the Yangtze River
Delta, China, Environ. Pollut., 269, 115740,
https://doi.org/10.1016/j.envpol.2020.115740, 2021.
National Bureau of Statistics of China: Statistical Yearbook of China, China Statistics Press, Beijing, http://www.stats.gov.cn/sj/ndsj/ (last access: 10 October 2022), 2016–2021 (in Chinese).
Ren, Y., Qu, Z., Du, Y., Xu, R., Ma, D., Yang, G., Shi, Y., Fan, X., Tani,
A., Guo, P., Ge, Y., and Chang, J.: Air quality and health effects of
biogenic volatile organic compounds emissions from urban green spaces and
the mitigation strategies, Environ. Pollut., 230, 849–861,
https://doi.org/10.1016/j.envpol.2017.06.049, 2017.
Sha, T., Ma, X. Y., Jia, H. L., van der A, R. J., Ding, J. Y., Zhang, Y. L.,
and Chang, Y. H.: Exploring the influence of two inventories on simulated
air pollutants during winter over the Yangtze River Delta, Atmos. Environ.,
206, 170–182, https://doi.org/10.1016/j.atmosenv.2019.03.006, 2019.
Shen, Y., Wu, Y., Chen, G., Van Grinsven, H. J. M., Wang, X., Gu, B., and
Lou, X.: Non-linear increase of respiratory diseases and their costs under
severe air pollution, Environ. Pollut., 224, 631–637,
https://doi.org/10.1016/j.envpol.2017.02.047, 2017.
Simayi, M., Hao, Y. F., Li, J., Wu, R. R., Shi, Y. Q., Xi, Z. Y., Zhou, Y.,
and Xie, S. D.: Establishment of county-level emission inventory for
industrial NMVOCs in China and spatial-temporal characteristics for
2010–2016, Atmos. Environ., 211, 194–203,
https://doi.org/10.1016/j.atmosenv.2019.04.064, 2019.
State Council of the People's Republic of China (SCC): The air pollution
prevention and control national action plan, http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (last access: 10 October 2022), 2013.
State Council of the People's Republic of China (SCC): Three-year Action Plan for
Protecting Blue Sky, Central People's Government of the People's Republic of
China, http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm (last access: 10 October 2022), 2018.
Sun, X. W., Cheng, S. Y., Lang, J. L., Ren, Z. H., and Sun, C.: Development
of emissions inventory and identification of sources for priority control in
the middle reaches of Yangtze River Urban Agglomerations, Sci. Total
Environ., 625, 155–167, https://doi.org/10.1016/j.scitotenv.2017.12.103, 2018.
Wang, J. D., Zhao, B., Wang, S. X., Yang, F. M., Xing, J., Morawska, L.,
Ding, A. J., Kulmala, M., Kerminen, V., Kujansuu, J., Wang, Z. F., Ding, D.,
Zhang, X. Y., Wang, H. B., Tian, M., Petäjä, T., Jiang, J. K., and
Hao, J. M.: Particulate matter pollution over China and the effects of
control policies, Sci. Total Environ., 584–585, 426–447,
https://doi.org/10.1016/j.scitotenv.2017.01.027, 2017.
Wang, N., Xu, J., Pei, C., Tang, R., Zhou, D., Chen, Y., Li, M., Deng, X.,
Deng, T., Huang, X., and Ding, A.: Air quality during COVID-19 lockdown in
the Yangtze River Delta and the Pearl River Delta: Two different responsive
mechanisms to emission reductions in China, Environ. Sci. Technol., 55,
5721–5730, https://doi.org/10.1021/acs.est.0c08383, 2021.
Wang, P., Guo, H., Hu, J., Kota, S. H., Ying, Q., and Zhang, H.: Responses
of PM2.5 and O3 concentrations to changes of meteorology and
emissions in China, Sci. Total Environ., 662, 297–306,
https://doi.org/10.1016/j.scitotenv.2019.01.227, 2019.
Wang, R., Yuan, Z., Zheng, J., Li, C., Huang, Z., Li, W., Xie, Y., Wang, Y.,
Yu, K., and Duan, L.: Characterization of VOC emissions from construction
machinery and river ships in the Pearl River Delta of China, J. Environ.
Sci., (China), 96, 138–150, https://doi.org/10.1016/j.jes.2020.03.013, 2020.
Wang, W., van der A, R., Ding, J., van Weele, M., and Cheng, T.: Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations, Atmos. Chem. Phys., 21, 7253–7269, https://doi.org/10.5194/acp-21-7253-2021, 2021.
Wang, Y., Zhao, Y., Zhang, L., Zhang, J., and Liu, Y.: Modified regional
biogenic VOC emissions with actual ozone stress and integrated land cover
information: A case study in Yangtze River Delta, China, Sci. Total
Environ., 727, 138703, https://doi.org/10.1016/j.scitotenv.2020.138703,
2020.
Wiedinmyer, C., Yokelson, R. J., and Gullett, B. K.: Global Emissions of
Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open
Burning of Domestic Waste, Environ. Sci. Technol., 48, 9523–9530,
https://doi.org/10.1021/es502250z, 2014.
Wu, R., Zhao, Y., Xia, S., Hu, W., Xie, F., Zhang, Y., Sun, J., Yu, H., An,
J., and Wang, Y.: Reconciling the bottom-up methodology and ground
measurement constraints to improve the city-scale NMVOCs emission inventory:
A case study of Nanjing, China, Sci. Total Environ., 812, 152447,
https://doi.org/10.1016/j.scitotenv.2021.152447, 2022.
Yang, Y., Zhao, Y., Zhang, L., and Lu, Y.: Evaluating the methods and
influencing factors of satellite-derived estimates of NOx emissions at
regional scale: A case study for Yangtze River Delta, China, Atmos.
Environ., 219, 117051, https://doi.org/10.1016/j.atmosenv.2019.117051, 2019.
Yang, J., Zhao, Y., Cao, J., and Nielsen, C. P.: Co-benefits of carbon and
pollution control policies on air quality and health till 2030 in China,
Environ. Int., 152, 106482, https://doi.org/10.1016/j.envint.2021.106482,
2021.
Yang, Y., Zhao, Y., Zhang, L., Zhang, J., Huang, X., Zhao, X., Zhang, Y., Xi, M., and Lu, Y.: Improvement of the satellite-derived NOx emissions on air quality modeling and its effect on ozone and secondary inorganic aerosol formation in the Yangtze River Delta, China, Atmos. Chem. Phys., 21, 1191–1209, https://doi.org/10.5194/acp-21-1191-2021, 2021.
Yen, C. and Horng, J.: Volatile organic compounds (VOCs) emission
characteristics and control strategies for a petrochemical industrial area
in middle Taiwan, J. Environ. Health, Part A, 44, 1424–1429,
https://doi.org/10.1080/10934520903217393, 2009.
Zhang, B., Wang, S., Wang, D., Wang, Q., Yang, X., and Tong, R.: Air quality
changes in China 2013–2020: Effectiveness of clean coal technology
policies, J. Clean. Prod., 366, 132961,
https://doi.org/10.1016/j.jclepro.2022.132961, 2022.
Zhang, J., Liu, L., Zhao, Y., Li, H., Lian, Y., Zhang, Z., Huang, C., and
Du, X.: Development of a high-resolution emission inventory of agricultural
machinery with a novel methodology: A case study for Yangtze River Delta
region, Environ. Pollut., 266, 115075,
https://doi.org/10.1016/j.envpol.2020.115075, 2020.
Zhang, L., Zhu, X., Wang, Z., Zhang, J., Liu, X., and Zhao, Y.: Improved
speciation profiles and estimation methodology for VOCs emissions: A case
study in two chemical plants in eastern China, Environ. Pollut., 291,
118192, https://doi.org/10.1016/j.envpol.2021.118192, 2021.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air
quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116,
24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, S. J., Wu, Y., Zhao, B., Wu, X. M., Shu, J. W., and Hao, J. M.:
City-specific vehicle emission control strategies to achieve stringent
emission reduction targets in China's Yangtze River Delta region, J.
Environ. Sci., 51, 75–87, https://doi.org/10.1016/j.jes.2016.06.038, 2017.
Zhang, X. M., Wu, Y. Y., Liu, X. J., Reis, S., Jin, J. X., Dragosits, U.,
Van Damme, M., Clarisse, L., Whitburn, S., Coheur, P., and Gu, B. J.:
Ammonia emissions may be substantially underestimated in China, Environ.
Sci. Technol., 51, 12089–12096, https://doi.org/10.1021/acs.est.7b02171, 2017.
Zhang, Y., Bo, X., Zhao, Y., and Nielsen, C. P.: Benefits of current and
future policies on emissions of China's coal-fired power sector indicated by
continuous emission monitoring, Environ. Pollut., 251, 415–424,
https://doi.org/10.1016/j.envpol.2019.05.021, 2019.
Zhang, Y., Zhao, Y., Gao, M., Bo, X., and Nielsen, C. P.: Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China, Atmos. Chem. Phys., 21, 6411–6430, https://doi.org/10.5194/acp-21-6411-2021, 2021.
Zhao, Y.: Gridded emissions for Jiangsu China 2015–2019, Air Quality Nju [data set], http://www.airqualitynju.com/En/Data/List/Datadownload, last access: 2 April 2023.
Zhao, Y., Wang, S., Nielsen, C. P., Li, X., and Hao, J.: Establishment of a
database of emission factors for atmospheric pollutants from Chinese
coal-fired power plants, Atmos. Environ., 44, 1515–1523,
https://doi.org/10.1016/j.atmosenv.2010.01.017, 2010.
Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China, Atmos. Chem. Phys., 13, 487–508, https://doi.org/10.5194/acp-13-487-2013, 2013.
Zhao, Y., Qiu, L. P., Xu, R. Y., Xie, F. J., Zhang, Q., Yu, Y. Y., Nielsen, C. P., Qin, H. X., Wang, H. K., Wu, X. C., Li, W. Q., and Zhang, J.: Advantages of a city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China, Atmos. Chem. Phys., 15, 12623–12644, https://doi.org/10.5194/acp-15-12623-2015, 2015.
Zhao, Y., Mao, P., Zhou, Y., Yang, Y., Zhang, J., Wang, S., Dong, Y., Xie, F., Yu, Y., and Li, W.: Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China, Atmos. Chem. Phys., 17, 7733–7756, https://doi.org/10.5194/acp-17-7733-2017, 2017.
Zhao, Y., Xia, Y., and Zhou, Y.: Assessment of a high-resolution NOx
emission inventory using satellite observations: A case study of southern
Jiangsu, China, Atmos. Environ., 190, 135–145,
https://doi.org/10.1016/j.atmosenv.2018.07.029, 2018.
Zhao, Y., Yuan, M., Huang, X., Chen, F., and Zhang, J.: Quantification and evaluation of atmospheric ammonia emissions with different methods: a case study for the Yangtze River Delta region, China, Atmos. Chem. Phys., 20, 4275–4294, https://doi.org/10.5194/acp-20-4275-2020, 2020.
Zhao, Y., Huang, Y., Xie, F., Huang, X., and Yang, Y.: The effect of recent
controls on emissions and aerosol pollution at city scale: A case study for
Nanjing, China, Atmos. Environ., 246, 118080,
https://doi.org/10.1016/j.atmosenv.2020.118080, 2021.
Zheng, B., Zhang, Q., Tong, D., Chen, C., Hong, C., Li, M., Geng, G., Lei, Y., Huo, H., and He, K.: Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China, Atmos. Chem. Phys., 17, 921–933, https://doi.org/10.5194/acp-17-921-2017, 2017.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, B., Cheng, J., Geng, G., Wang, X., Li, M., Shi, Q., Qi, J., Lei, Y.,
Zhang, Q., and He, K.: Mapping anthropogenic emissions in China at 1 km
spatial resolution and its application in air quality modeling, Sci. Bull.,
66, 612–620, https://doi.org/10.1016/j.scib.2020.12.008, 2021.
Zheng, J., Zhang, L., Che, W., Zheng, Z., and Yin, S.: A highly resolved
temporal and spatial air pollutant emission inventory for the Pearl River
Delta region, China and its uncertainty assessment, Atmos. Environ., 43,
5112–5122, https://doi.org/10.1016/j.atmosenv.2009.04.060, 2009.
Zheng, J. J., Jiang, P., Qiao, W., Zhu, Y., and Kennedy, E.: Analysis of air
pollution reduction and climate change mitigation in the industry sector of
Yangtze River Delta in China, J. Clean. Prod., 114, 314–322,
https://doi.org/10.1016/j.jclepro.2015.07.011, 2016.
Zhou, Y., Zhao, Y., Mao, P., Zhang, Q., Zhang, J., Qiu, L., and Yang, Y.: Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China, Atmos. Chem. Phys., 17, 211–233, https://doi.org/10.5194/acp-17-211-2017, 2017.
Short summary
We demonstrated the development of a high-resolution emission inventory and its application to evaluate the effectiveness of emission control actions, by incorporating the improved methodology, the best available data, and air quality modeling. We show that substantial efforts for emission controls indeed played an important role in air quality improvement even with worsened meteorological conditions and that the contributions of individual measures to emission reduction were greatly changing.
We demonstrated the development of a high-resolution emission inventory and its application to...
Altmetrics
Final-revised paper
Preprint